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A NEW ITERATION FOR COMPUTING THE EIGENVALUES OF
SEMISEPARABLE (PLUS DIAGONAL) MATRICES ∗

RAF VANDEBRIL†, MARC VAN BAREL†, AND NICOLA MASTRONARDI‡

Abstract. This paper proposes a new type of iteration for computing eigenvalues of semiseparable (plus diago-
nal) matrices based on a structured-rank factorization. Remarks on higher order semiseparability ranks are also made.
More precisely, instead of the traditionalQR iteration, aQH iteration is used. TheQH factorization is character-
ized by a unitary matrixQ and a Hessenberg-like matrixH in which the lower triangular part is semiseparable (often
called a lower semiseparable matrix). TheQ factor of this factorization determines the similarity transformation of
theQH method.

It is shown that this iteration is extremely useful for computing the eigenvalues of structured-rank matrices.
Whereas the traditionalQR method applied to semiseparable (plus diagonal) and Hessenberg-like matrices uses
similarity transformations involving2p(n− 1) Givens transformations (wherep denotes the semiseparability rank),
theQH iteration only needsp(n − 1) Givens transformations, which is comparable to the generalized Hessenberg
(symmetric band) situation havingp subdiagonals. It is also shown that this method can in some sense be interpreted
as an extension of the traditionalQR method for Hessenberg matrices, i.e., the traditional casealso fits into this
framework. It is also shown that this iteration exhibits an extra type of convergence behavior compared to the
traditionalQR method.

The algorithm is implemented in an implicit way, based on theGivens-weight representation of the structured
rank matrices. Numerical experiments show the viability ofthis approach. The new approach yields better complex-
ity and more accurate results than the traditionalQR method.

Key words. QH algorithm, structured rank matrices, implicit computations, eigenvalue,QR algorithm, rational
QR iteration
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1. Introduction and preliminary results. Many authors are currently investigating ef-
ficient algorithms for computing the eigenvalues of structured rank matrices. All the methods
discussed thus far focus attention onQR algorithms for computing the eigenvalues of these
matrices. VariousQR-type algorithms exist for higher order structured rank matrices, gener-
alized eigenvalue problems, polynomial root finding algorithms and so forth [2, 4–7, 11, 20].

TheQR factorization of a Hessenberg (tridiagonal1) matrix can be computed easily by
performing a sequence ofn − 1 Givens transformations from top to bottom, annihilating
in each of then − 1 steps one subdiagonal element [13, 14]. The corresponding (single
shift) implicit QR algorithm also usesn − 1 Givens transformations. The implicit version
consists of an initial Givens similarity transformation applied to the Hessenberg (tridiagonal)
matrix. This introduces a disturbing element, the so-called bulge, in the structure. In the
implicit version, one constructs the remainingn− 2 Givens transformations so that the bulge
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1When discussing tridiagonal and semiseparable matrices inthe context of eigenvalue computations, we assume
them to be symmetric.
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is removed and we obtain again a Hessenberg (tridiagonal) matrix [33]. Implicitly, one has
now performed a step of the shiftedQR method.

TheQR factorization of a semiseparable (Hessenberg-like) matrix plus a diagonal2 con-
sists of2n − 2 Givens transformations [17]. A first sequence of Givens transformations
from bottom to top transforms the semiseparable (Hessenberg-like) plus diagonal matrix into
a Hessenberg matrix, whereas the second sequence of transformations from top to bottom
brings the Hessenberg matrix to upper triangular form. The implicit QR algorithm connected
to this type ofQR factorization also can be decomposed into two steps. A first step corre-
sponds to a similarity transformation involvingn − 1 Givens transformations; see [11, 20].
In the second step, a disturbance is introduced andn − 2 Givens transformations are needed
to restore the structure. Unfortunately, this implicitQR algorithm uses twice as many Givens
transformations as the corresponding algorithm for the Hessenberg (tridiagonal) case.

This paper introduces a new type of algorithm for computing the eigenvalues of struc-
tured rank matrices. The new algorithm is based on a so-called QH factorization. This is a
factorization of a matrixA = Q̌Ž, in which Q̌ is unitary andŽ is a Hessenberg-like matrix
(in which the lower triangular part of the matrix has semiseparable form). This unitary ma-
trix Q̌ is used to define the new iterateAQH = Q̌HAQ̌. It is shown that this iteration can
be performed in an efficient manner for structured rank matrices. More precisely, theQH
factorization of a Hessenberg-like minus shift matrixZ − µI also consists ofn − 1 Givens
transformations. TheQH algorithm also can be implemented in an implicit way, such that
n − 1 Givens transformations instead of the traditional2n − 2 are needed. Besides the fact
that the method is cheaper in terms of numerical computations for structured rank matrices,
we also show that this new iteration inherits a new type of convergence behavior, which can
be advantageous in many cases.

The paper is organized as follows. This section continues bybriefly introducing the
classes of semiseparable, Hessenberg-like (plus diagonal) matrices as well as the Givens-
weight representation. In Section2, various methods for computing theQR factorization of
structured rank matrices are introduced. Based on these different types ofQR factorizations,
one can deduce different types ofQR algorithms. The different ways of computing theseQR
algorithms are discussed in Section2.4. Section3 discusses theQH factorization, which is
the basis for the newQH method. A rigorous treatment of the convergence and preservation
of structure is presented in Section4. An implicit version of the method for Hessenberg-like
plus diagonal matrices is presented in Section5. Before providing numerical experiments in
Section7, we briefly show that theQR method for Hessenberg matrices can be considered as
a special case of theQH method. This is done in Section6.

1.1. Definitions. The class of semiseparable and Hessenberg-like matrices considered
in this paper is defined as follows.

DEFINITION 1.1. A square matrixS is called a{p, q}-semiseparable matrix if the fol-
lowing relations are satisfied:

rankS(1 : i + q − 1, i : n) ≤ q and rankS(i : n, 1 : i + p − 1) ≤ p,

for all feasiblei. A matrix is called{p}-semiseparable if it is{p, p}-semiseparable, and
semiseparable if it is{1, 1}-semiseparable.

DEFINITION 1.2. A square matrixZ is called a{p}-Hessenberg-like (or lower semisep-
arable) matrix if the following relations are satisfied:

rankZ(i : n, 1 : i + p − 1) ≤ p,

2The diagonal is necessary for introducing the shift matrix−µI in the shiftedQR algorithm. In the Hessenberg
(tridiagonal) case this does not influence the structure, whereas in the structured rank case it does.
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for all feasiblei.
Sometimes{p}-generalized Hessenberg matrices arise. These matrices are extensions of

the standard Hessenberg matrices, and have{p} subdiagonals different from zero.
For simplicity, we focus on Hessenberg-like (plus diagonal) matrices in this paper. There

is no loss of generality, because only the structure of the lower triangular part of the involved
matrices is important in the theoretical analysis. Hence, for most derivations, we do not
need to know the structure of the upper triangular part. Thisis very important for actual
implementations in order to obtain the lowest possible computational complexity. TheQR
algorithm computesQR factorizations of the matricesZ − µI for the shifted Hessenberg-
like matrix, orZ + D − µI for the shifted Hessenberg-like plus diagonal matrix. Since both
shifted matrices are essentially Hessenberg-like plus diagonal matrices, we discuss in the next
section theQR factorization of a Hessenberg-like plus diagonal matrix.

1.2. Representation.The matrices defined above are dense in the sense that they con-
tain mostly nonzero elements. But these matrices can be represented by using only a limited
number of parameters. They admit, for example, a sparse representation based on Givens
transformations. This representation is the so-called Givens-weight representation for the
general structured rank case (see [8]), or the Givens-vector representation for the class of
{1}-semiseparable matrices3. More precisely, the Givens-weight representation for thelower
triangular part of a{p}-Hessenberg-like matrixZ consists ofp sequences of Givens transfor-
mations. In fact, it is a sort ofQR factorization of the matrix:

QH
1 QH

2 . . . QH
p Z = R andZ = Q1Q2 . . .QpR = QR, (1.1)

where every unitary matrixQH
i consists of(n− 1)− (p− i) Givens transformations, peeling

off a rank-1 part from the Hessenberg-like matrixZ. Each of the matricesQi contains a
descending sequence of Givens transformations. This meansthat for a particularQi, the first
Givens transformation acts on rowsp− i +1 andp− i+ 2, the second on rowsp− i+ 2 and
p − i + 3, and so forth. They start changing the top rows of the matrix and go downwards;
hence, the name descending. Similarly, we call the sequencecorresponding toQH

i ascending.
In an actual implementation, one does not really store the matrix R, but a condensed

form (called the weights). The effective representation consists ofp sequences of Givens
transformations plus the weights.

One can also construct such a representation for the upper triangular part, if it has rank
structure. In the case of a{p, q}-semiseparable matrix, one hasp sequences of Givens trans-
formations for storing the lower triangular part andq sequences for storing the upper tri-
angular part plus all weights. The use of the weights is only necessary for implementation
details. For theoretical purposes, we work with theQR-like formulation from (1.1). More
information can be found in [8, 21].

The above representation is often referred to as the top-bottom representation, as it starts
on the top row of the matrixR (right equation in (1.1)) and gradually fills up the matrix from
the top to the bottom. One can easily change this representation to another kind of factoriza-
tion: Z = RQ, where the matrixQ consists again ofp sequences of Givens transformations,
now gradually filling up the low rank part of the matrix from right to left. This is called a
right-left representation. One can easily convert from thetop-bottom form to the right-left
form in O(pn) flops4.

3There are many more representations, such as the quasiseparable, generator representation and so forth.
4Every operation of the form+,−, /, ∗ is considered as a flop.
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2. TheQR factorization and its variants. The idea for the new iteration finds its origin
in the different variants for computing theQR factorization of structured rank matrices. These
variants result, of course, in differentQR algorithms. Let us briefly discuss the different
forms for computing theQR factorization of structured rank matrices. For simplicitywe
assume we are working with a Hessenberg-like plus diagonal matrix; semiseparable plus
diagonal matrices and higher order semiseparable plus diagonal matrices can be treated in the
same way.

2.1. The traditional factorization: ∧ pattern. For this type ofQR factorization, an
ascending sequence of Givens transformations is applied tothe Hessenberg-like plus diag-
onal matrixZ + D, followed by a descending sequence of Givens transformations. More
information on this type ofQR factorization can be found in [9, 10, 17, 22]. The first ascend-
ing sequence of Givens transformations acting onZ + D, denoted byQ̂H

1 consists ofn − 1
Givens transformations in which each Givens transformation acts on two successive rows of
the matrixZ, exploiting thereby the rank structure in the lower triangular part to annihilate
all elements below the diagonal (these unitary transformations coincide with the ones from
the top to bottom representation). We obtain

Q̂H
1 Z = R and Q̂H

1 (Z + D) = H,

in whichH is a Hessenberg matrix. This is followed by a second sequenceof n − 1 Givens
transformations from top to bottom to annihilate the subdiagonal elements of the matrixH .
This gives

Q̂H
2 H = Q̂H

2 Q̂H
1 (Z + D) = Q̂H(Z + D) = R̂, (2.1)

in which R̂ is the resulting upper triangular matrix. This is the standard QR factorization,
which is discussed in detail in the paper [17].

We often work with a graphical interpretation related to Givens transformations and the
matrix they are acting on. The matrix productQ̂H(Z + D) is graphically represented as
follows.

➊ � � × × × × ×
➋ �

� �

� ⊠ × × × ×
➌ �

� �

� ⊠ ⊠ × × ×
➍ �

� �

� ⊠ ⊠ ⊠ × ×
➎

� �

⊠ ⊠ ⊠ ⊠ ×
8 7 6 5 4 3 2 1

(2.2)

The right part consisting of× and⊠ elements represents the matrixZ + D. The elements⊠
denote the part of the matrix satisfying the rank structure.The elements× denote arbitrary
elements. In this figure, the elements on the diagonal cannotbe included in the rank structure
because they are perturbed by the diagonalD. The left part, consisting of the brackets with
arrows, denotes the Givens transformations.

The numbered circles on the vertical axis depict the rows of the matrix, to indicate on
which rows the Givens transformations act. The bottom numbers represent in some sense a
time line to indicate in which order the Givens transformations are performed. The brackets in
the table represent graphically a Givens transformation acting on the rows in which the arrows
of the brackets are lying. The Givens transformations from columns1 up to4 represent the
Givens transformations in the matrix̂QH

1 . The ones in the columns5 up to8 denote these of
the matrixQ̂H

2 ; see (2.1).
Let us explain this schemes in more detail. First, a Givens transformation is performed,

the one in position1 in Scheme2.2, that acts on row5 and row4 to annihilate the first three
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elements of row5. Second, a Givens transformation is performed that acts on row3 and row4
to annihilate the first two elements of row4, and this process continues. Applying the Givens
transformations in positions1 through4 to the matrix on the right results in the following
graphical representation. This represents exactly the same matrix as in the previous scheme,
but equals noŵQH

2 H .

➊ � × × × × ×
➋ �

�

× × × × ×
➌ �

�

× × × ×
➍ �

�

× × ×
➎

�

× ×
8 7 6 5

(2.3)

Applying the remaining four Givens transformations in Scheme 2.3 to the Hessenberg
matrix on the right removes the remaining subdiagonal elements. Hence, we obtain the up-
per triangular matrixR̂. Therefore, Scheme2.2 gives a graphical way to represent theQR
factorization of a Hessenberg-like plus diagonal matrix.

NOTE 2.1. Consider a{p}-Hessenberg-like plus diagonal matrix. First, one removes
the low rank part by applyingp ascending sequences of Givens transformations. This gives
us

Q̂H
p . . . Q̂H

1 (Z + D) = R + H,

in whichH is a generalized Hessenberg matrix, havingp nonzero subdiagonals. To complete
the QR factorization, anotherp top-to-bottom sequences of Givens rotations are needed,
each of which removes one subdiagonal fromH .

Globally, we havep ascending sequences of Givens transformations for removing the
rank p structure, followed byp descending sequences of Givens transformations removing
thep subdiagonals. This leads again to a so-called∧ pattern, this one having thicker legs.

Due to some specific properties of Givens transformations wecan obtain other patterns,
as we describe in the next two subsections.

2.2. Some properties of Givens transformations.Briefly, two important properties of
Givens transformations are mentioned here. We also show their graphical interpretation.

LEMMA 2.2. Suppose two Givens transformations5 G1 andG2 are given:

G1 =

[

c1 −s̄1

s1 c̄1

]

andG2 =

[

c2 −s̄2

s2 c̄2

]

.

Then we have thatG1G2 = G3 is again a Givens transformation. We call this the fusion of
Givens transformations in the remainder of the text.

The proof is trivial. In our graphical schemes, we depict this as follows.

➊ �→֒ �
➋

� �

2 1
resulting in

➊ �
➋

�

1
.

The following lemma is very powerful and allows us to interchange the order of Givens
transformations and to obtain different patterns. Quite often Givens transformations of higher

5The considered transformations are in fact rotations. Moreinformation on Givens rotations can be found in [3].
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dimensions, sayn, are considered. This means that the corresponding2 × 2 Givens transfor-
mation is embedded in the identity matrix of dimensionn, still changing only two consecutive
rows when applied to the left.

LEMMA 2.3 (Shift through lemma).Suppose three3×3 Givens transformationšG1, Ǧ2

andǦ3 are given, such that the Givens transformationsǦ1 andǦ3 act on the first two rows
of a matrix, andǦ2 acts on the second and third row (when applied on the left to a matrix).
Then there exist Givens transformationsĜ1, Ĝ2, andĜ3 such that

Ǧ1Ǧ2Ǧ3 = Ĝ1Ĝ2Ĝ3,

whereĜ1 andĜ3 work on the second and third row and̂G2 works on the first two rows.
This result is well-known. The proof can be found in [22] and is simply based on the

fact that one can factorize a3×3 unitary matrix in different ways. Graphically we depict this
rearrangement as follows.

➊ � y �
➋

�

�

�

➌
�

3 2 1

resulting in

➊ �
➋ �

�

�
➌

� �

3 2 1

.

Of course, there is a similar transformation that transforms the right figure to the left figure,
which we would depict by a xin the right figure.

2.3. The∨ pattern. We now show how one can change the order of the Givens trans-
formations in Scheme2.2. We ultimately obtain a different graphical scheme that represents
exactly the same factorization, but in which the Givens transformations are performed in a
different order.

After applying Lemma2.2to the Givens transformations in position4 and5 in Scheme2.2,
we can apply the shift through lemma several times (three times in this case), and thereby
change the order of the transformations so that we obtain thefollowing factorization.

➊ � � × × × × ×
➋

�

� �

�

⊠ × × × ×
➌

�

� �

�

⊠ ⊠ × × ×
➍

�

�

�

⊠ ⊠ ⊠ × ×
➎

�

⊠ ⊠ ⊠ ⊠ ×
7 6 5 4 3 2 1

(2.4)

This gives us the∨ pattern for computing theQR factorization of a matrix. The order of
the Givens transformations has changed, but we compute the sameQR factorization (more
information can be found in [26]):

Q̌H
2 Q̌H

1 (Z + D) = R̂.

NOTE 2.4. Some important remarks related to the∨ and∧ patterns must be made.
• We have the equality

Q̌1Q̌2 = Q̂1Q̂2;

sinceR̂ was not affected, we obtain an identicalQR factorization.
• But generically:

Q̌2 6= Q̂2

Q̌1 6= Q̂1,
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which means that the factorization of the unitary matrix in theQR factorization is
different in the two patterns.

This pattern can also be decomposed into two parts. First, a descending sequence of
Givens transformations (position1 up to3) is applied, followed by an ascending sequence of
Givens transformations (position4 up to7). To distinguish between the∨ and the∧ pattern
we put a∨ on top of the unitary transformations in case of the∨ pattern.

The first three Givens transformations are, in fact, rank expanding Givens transforma-
tions. They lift up the rank structure. Hence, after having applied these first Givens transfor-
mations, we obtain the following scheme.

➊ � ⊠ × × × ×
➋

�

� ⊠ ⊠ × × ×
➌

�

� ⊠ ⊠ ⊠ × ×
➍

�

� ⊠ ⊠ ⊠ ⊠ ×
➎

�

⊠ ⊠ ⊠ ⊠ ⊠

7 6 5 4

(2.5)

The figure clearly illustrates that the strictly lower triangular rank structure has lifted up and
that the diagonal may be included in the lower triangular rank structure.

The remaining four Givens transformations from bottom to top remove the rank-1 struc-
ture in the lower triangular part so that we obtain the upper triangular matrixR̂.

Writing the above figure in mathematical formulas, we obtain

Q̌H
2 Q̌H

1 (Z + D) = Q̌H
2 Ž,

Q̌H
1 (Z + D) = Ž,

(Z + D) = Q̌1Ž,

whereŽ denotes a Hessenberg-like matrix. The final equation denotes a structured rank
factorization of the matrixZ + D, since the matrix̌Z is of Hessenberg-like form anďQ1 is
a unitary transformation. This unitary-Hessenberg-like (QH) factorization forms the basis of
the eigenvalue computations proposed in this paper.

DEFINITION 2.5. A factorization of the form

A = Q̌Ž,

with Q̌ unitary andŽ a Hessenberg-like matrix is called a unitary-Hessenberg-like factoriza-
tion, or aQH factorization. In the case that the matrix̌Z is a {p}-Hessenberg-like matrix,
we still call this aQH factorization, but we specify the rank of the matrixŽ.

NOTE 2.6. This factorization is a straightforward extension of theQR factorization, as
theQR factorization is aQH factorization in which the matrix̌Z is of semiseparability rank
0, i.e., the strictly lower triangular part of̌Z is zero.

NOTE 2.7. For a {p}-Hessenberg-like plus diagonal matrixZ + D we will use a higher
orderQH factorization in whichŽ, the Hessenberg-like matrix, has a lower triangular part
of {p}-Hessenberg-like form. More precisely, in this case, one needsO(p(n − 1)) Givens
transformations for obtaining the factorization. To provethis statement one has to combine
Note2.1and the results from this subsection.

2.4. TheQR algorithm and its variants. As there are different manners of computing
theQR factorization, theQR algorithms are slightly different. In fact, one obtains exactly
the same result, but the way of computing the matrices after one step of theQR method can
differ. In this section, we will briefly discuss theQR algorithms associated with both the
∧ and the∨ patterns for computing theQR factorization. We remark once more that the
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final outcome of both transformations is equal; however, there are differences both in the
order in which the Givens transformations are performed andin the Givens transformations
themselves.

2.4.1. TheQR algorithm connected to the∧ pattern. We consider the following iter-
ation step on a Hessenberg-like minus shift matrix:

Z − µI = Q̂1Q̂2R̂,

ZQR = R̂Q̂1Q̂2 + µI = Q̂H
2 Q̂H

1 ZQ̂1Q̂2,

in which ZQR denotes the new iterate. We comment on the Hessenberg-like plus diagonal
case afterward.

The single shiftQR algorithm based on the∧ pattern was first discussed in an implicit
form in [20].

Let us discuss the global flow of the iteration related to the∧ pattern. The iteration can
be decomposed into two steps, each step corresponding to performing a sequence ofn − 1
Givens transformations. The first sequence is an ascending one denoted by\ in the∧ pattern,
which annihilates the low rank part in the Hessenberg-like matrix. The second sequence
corresponds to the descending Givens transformations denoted by/ in the∧ pattern, which
removes the subdiagonal elements.

Since the new iterate is defined asQ̂H
2 Q̂H

1 ZQ̂1Q̂2 = Q̂H
2 (Q̂H

1 ZQ̂1)Q̂2, two similarity
transformations need to be applied to the matrixZ. One is determined bŷQ1 and the other
by Q̂2.

• The first similarity transformation (related tôQ1) computes the following (see Sub-
section2.1):

Z̃ = Q̂H
1 ZQ̂1 =

(

Q̂H
1 Z

)

Q̂1 = RQ̂1.

This corresponds to performing a step of theQR method without shift on the matrix
Z. As a result, we obtain another Hessenberg-like matrixZ̃.

• The second similarity transformation (related toQ̂2) can be performed in an implicit
way as follows. Determine the first Givens transformationG̃ of Q̂2 to annihilate the
element in position(2, 1) of the Hessenberg matrix̂QH

1 (Z − µI) = H . Applying
this Givens transformatioñG as a similarity transformation on the Hessenberg-like
matrix Z̃ disturbs the specific rank structure of this Hessenberg-like matrix. The
implicit part of the method consists of finding the remainingn − 2 Givens trans-
formations and applying them tõGH Z̃G̃ so that the resulting matrix is back in
Hessenberg-like form. Based on the implicitQ theorem for Hessenberg-like ma-
trices, one knows that this approach results in a Hessenberg-like matrix that is es-
sentially the same as the one resulting from an explicit stepof theQR method.

NOTE 2.8. The first similarity transformation based on̂Q1 is independent of the chosen
shiftµ. The second similarity transformation is dependent on the shift µ.

TheQR method for Hessenberg-like plus diagonal matricesZ +D is identical. One first
performs a number of Givens transformations, corresponding to a step ofQR-without shift
on Z, followed by a similarity transformation determined byQ̂2. To restore the structure in
the Hessenberg-like plus diagonal case, one needs to take into consideration the structure of
the diagonal, as the diagonal is preserved under a step of theQR method [16].

2.4.2. TheQR algorithm connected to the∨ pattern. We consider the iteration step:

Z − µI = Q̌1Q̌2R̂,

ZQR = R̂Q̌1Q̌2 + µI = Q̌H
2 Q̌H

1 ZQ̌1Q̌2,



ETNA
Kent State University 

http://etna.math.kent.edu

134 R. VANDEBRIL, M. VAN BAREL, AND N. MASTRONARDI

in which ZQR denotes the new iterate. The higher order and semiseparableplus diagonal
cases can be considered in the same way.

TheQR algorithm based on the∨ pattern has not been discussed before. However, the
idea is a straightforward generalization of theQR algorithm based on the∧ pattern. Due to
the fact that we have switched in some sense the order of both sequences ofn − 1 Givens
transformations, we can also switch the interpretation of this algorithm.

We have again two similarity transformations to be performed: Q̌H
2 (Q̌H

1 ZQ̌1)Q̌2. Now,
Q̌1 is a descending sequence of Givens transformations for expanding the rank structure and
Q̌2 is an ascending sequence of Givens transformations for removing the newly created rank
structure of the intermediate Hessenberg-like matrix.

• The first step can be performed implicitly, similar to the second sequence in the
∧-case. An initial disturbing Givens transformation is applied, followed byn − 2
structure restoring Givens transformations6. As a result we obtain the Hessenberg-
like matrix7

Z̃ = Q̌H
1 ZQ̌1.

• One can prove that the second step (corresponding to the Givens transformations
from bottom to top) can again be seen as performing a step of the QR method
without shift on the newly created Hessenberg-like matrixZ̃. After performing the
similarity transformation corresponding tǒQ2, we obtain the result of performing
one step of theQR method without shift applied to the Hessenberg-like matrixZ̃.

NOTE 2.9. In the similarity transformation related to the∨ pattern, we have that the
first step is dependent on the shiftµ, whereas the second step is independent ofµ. See also
Note2.8for the iteration related to the∧ pattern.

NOTE 2.10. The remark above makes it clear that this algorithm (as well as the algo-
rithm related to the∧ pattern) has a kind of contradicting convergence behavior.When we
look at the bottom-right corner of the matrix, we have that:

• The first step is determined by the shift, and hence creates convergence to the eigen-
value(s) closest to the shift.

• The second step corresponds to aQR-step without shift, and hence converges to the
smallest eigenvalue(s) in modulus.

Both convergence behaviors do not necessarily cooperate. In some sense, the second step can
damage the improvements made by the first step.

One can opt to remove the second similarity transformation.Unfortunately we will not
have aQR factorization and a correspondingQR method anymore. This approach leads to
theQH method, which is discussed in Section4.

Based on the comments above, we would like to use only the factor Q̌1 for performing
an orthogonal similarity transformation of the matrixZ. As Q̌1 is closely related to theQH
factorization, a naı̈ve approach would be

Z − µI = Q̌Ž,

which is aQH factorization of the matrixZ − µI. We can define the new iteration as

ZQH = Q̌HZQ̌.

Unfortunately, this creates some problems, as we will see inthe next section.

6The chasing can be performed in the same way as the chasing step in case of the∧ pattern.
7 In Section4, we will prove that the matrix̃Z is indeed of Hessenberg-like form.
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3. More on theQH factorization and the newQH algorithm. TheQH factorization
is the basic step in the newQH method. Unfortunately, theQH factorization as proposed
above is not properly defined for immediate use in theQH method. We illustrate possible
problems with some examples.

EXAMPLE 3.1. Suppose we have the matrix

Z =





1 0 0
0 1 0
0 0 1



 .

This matrix is obviously already in Hessenberg-like form. Hence the factorizationZ = IZ
is aQH factorization. But, in fact, one can apply an arbitrary2 × 2 Givens transformation
acting on the last two rows, without disturbing the structure. This means that we have an
infinite number ofQH factorizations for this matrix.

One can also clearly see in Schemes2.4and2.5that the first three Givens transformations
already applied to the matrix create the desired structure.This means that in general one needs
n− 2 Givens transformations to obtain a matrix of the following form (for a4× 4 problem):

Z =









⊠ × × ×
⊠ ⊠ × ×
⊠ ⊠ ⊠ ×
⊠ ⊠ ⊠ ⊠









.

This matrix is clearly of Hessenberg-like form, and an arbitrary Givens transformation acting
on the last two rows can never destroy this rank structure.

NOTE 3.2. For the higher order case, a similar remark concerning uniqueness can be
made. Suppose one has aQH factorizationQZ, with Z of {p}-Hessenberg-like form. One
can apply an arbitrary unitary transformation involving the lastp+1 rows without disturbing
the factorization.

The freedom in constructing the factorization has a direct impact on theQH method, as
we can no longer guarantee the preservation of the structureas well as convergence. Later, we
will show that we can guarantee this, after having defined ourQH factorization in a different
essentially unique way.

EXAMPLE 3.3. Suppose we have the following3 × 3 matrix Z and aQH factorization
of this matrix. The given matrixZ is clearly a Hessenberg-like matrix, which has its structure
preserved under the standardQR algorithm. Let us construct aQH factorization of this
matrix:

Z =





0 1 0
1 0 0
0 0 1



 =





0 −1
1 0

1









1
0 −1
1 0









1 0 0
0 0 1
0 1 0



 = (Ǧ1Ǧ2)Ž = Q̌Ž,

in whichǦ1Ǧ2 = Q̌, with G1 andG2 two Givens transformations anďZ a Hessenberg-like
matrix. Performing the similarity transformation with theunitary matrixQ, we obtain:

ZQH = Q̌HZQ̌ =





0 0 1
0 1 0
1 0 0



 .

The new iterateZQH after a step of theQH method with this factorization is clearly no
longer of Hessenberg-like form.

Hence, it is clear that we have to impose some extra constraints on theQH factorization.
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Let us consider the following constructive procedure. Suppose that we would like to
compute theQH factorization of the matrixZ +D. For the Hessenberg-like case,D = −µI;
for the Hessenberg-like plus diagonal case,D incorporates the shift matrix−µI. Assume all
diagonal elements are nonzero. We can write the{p}-Hessenberg-like matrixZ as follows:

Z = RQ,

whereQ consists ofp sequences of Givens transformations. The matrixDQH is a {p}-
generalized Hessenberg matrix.

We now obtain

Z + D = RQ + DQHQ = (R + DQH)Q

= Q̌ŘQ,

whereQ̌Ř = R + DQH , which is theQR factorization of the left factor in the product. This
corresponds to aQH factorization of the original matrixZ + D:

Z + D = Q̌ŘQ = Q̌Ž,

with Ž a {p}-Hessenberg-like matrix. It is important to remark that thematrix Ž = ŘQ
has exactly the sameQ factor in its representation from right to left as the original matrix
Z = RQ; only the upper triangular matricešR andR differ. This factorization will be used
for theQH method.

DEFINITION 3.4. A Hessenberg-like matrixZ is said to be irreducible if

rank(Z(i + 1 : n, 1 : i)) 6= 0, for all i = 1 : n − 1

rank(Z(i : n, 1 : i + 1)) > 1, for all i = 1 : n − 1.

This means that one cannot subdivide the problem, and the lowrank structure does not cross
the diagonal [18].

In [20], the irreducibility of Hessenberg-like as well as semiseparable matrices is dis-
cussed in more detail.

NOTE 3.5. We now have several remarks:
• When considering an irreducible Hessenberg-like matrixZ, one can easily prove

uniqueness of the above factorization. Since the matrixZ is irreducible, it has
an essentially uniqueRQ factorization in which all Givens transformations differ
from I. This implies that the corresponding Hessenberg matrixH is irreducible,
guaranteeing an essentially uniqueQR factorization ofH . Hence, we obtain an
essentially uniqueQH factorization of the matrixZ.

• We imposed the constraint that the diagonal elementsD needed to be different from
zero. In fact, one can without loss of generality also consider zero diagonal ele-
ments. This will, however, lead to trivial block divisions in the factorization.

• Reconsidering now both examples above, we see that they do not match our con-
structive procedure.

DEFINITION 3.6. The new iteration proposed in this paper is of the following form.
Assume a Hessenberg-like plus diagonal matrixZ + D is given and we have a shiftµ (with
RQ anRQ factorization ofZ). Then

Z + (D − µI) = RQ + (D − µI)QHQ

= (R + (D − µI)QH)Q

= Q̌ŘQ

= Q̌Ž,
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which gives us a specificQH factorization of the matrixZ + D.
The new iterate is defined as follows

ZQH + DQH = ŽQ̌ + µI

= Q̌H(Z + D)Q̌.

NOTE 3.7. We would like to remark that this paper is based on the technical report [24].
The report contains extra material related to the uniqueness of theQH factorization and
alternative proofs to predict convergence and preservation of structure. The details are rather
technical and we chose not to include them in this paper.

4. Convergence of theQH method. This method can be considered as a specific case
of a more general framework presented in [25]. This framework discusses rationalQR iter-
ation steps. In this report, general theoretical convergence results, as well as results on the
preservation of structure and so forth, are presented. We will only use the results applicable
to our case.

Since the results for the standard Hessenberg-like case arethe easiest ones to derive, we
will focus attention to this case. The results for Hessenberg-like plus diagonal matrices are
more complicated since a diagonal is involved. We will not prove all the details, but state the
results.

4.1. A rational QR iteration. Let us interpret theQH iteration in terms of a rational
QR iteration. The analysis presented here is similar to the onein [30–32] and is a special
case of the rationalQR iteration, which was presented in [25].

As discussed in the previous section, the global iteration is

Z = RQ,

Z + (D − µI) = (R + (D − µI)QH)Q = Q̌ŘQ,

ZQH + DQH = Q̌H(Z + D)Q̌,

whereZQH + DQH defines the new iterate in the method.
One can rewrite the above formulas and obtain that the matrixQ̌ is theQ factor in the

QR factorization of the matrix product(Z + (D − µI))Z−1:

(Z + (D − µI))Z−1 =
(

Q̌ŘQ
) (

QHR−1
)

= Q̌ŘR−1.

This formula illustrates that we have computed the unitary factor of a special function of
Z. Depending on the diagonal matrixD, we have to distinguish between two cases: the case
in whichD is zero, which is the Hessenberg-like case; or the case in whichD is an arbitrary
diagonal matrix.

4.2. The Hessenberg-like case.In this case the diagonal matrixD equals zero, andµ
is a suitably chosen shift. Without loss of generality one can assumeZ to be nonsingular, so
that the equation above simplifies and we obtain

(Z − µI)Z−1 = Q̌ŘR−1,

whereQ̌ is the unitary transformation that will be used to define the new iterate. Since this
fits into the framework of rationalQR as presented in [25], preservation of structure of the
matrix Z follows immediately. This means that the convergence properties of the iteration
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performed on the matrixZ are defined by the subspace convergence properties, defined by
the rational functionp(λ) = (λ − µ)λ−1. These convergence properties, and more advanced
results for a general rational iteration of the formp(λ) = (λ−µ)(λ−κ)−1, were extensively
discussed in [25].

Some initial theoretical results on subspace iteration theory are necessary. Given two
subspacesS andT in Cn, denote byPS andPT the orthonormal projectors onto the sub-
spacesS andT , respectively. The standard metric between subspaces is defined as

d(S, T ) = ‖PS − PT ‖2 = sup
s ∈ S

‖s‖2 = 1

d(s, T ) = sup
s ∈ S

‖s‖2 = 1

inf
t ∈ T

‖s− t‖2

if dim(S) = dim(T ), andd(S, T ) = 1 otherwise; see [13].
The next theorem states how the distance between subspaces changes when performing

subspace iteration with shifted rational functions. The theorem is a generalization of [32,
Theorem 5.1].

THEOREM 4.1. Let A ∈ C
n×n be a simple matrix with eigenvaluesλ1, λ2, . . . , λn

and associated linearly independent eigenvectorsv1,v2, . . . ,vn. LetV = [v1,v2, . . . ,vn]
and letκV be the condition number ofV , with respect to to the spectral8 norm. Letk be
an integer1 ≤ k ≤ n − 1, and define the invariant subspacesU = 〈vk+1, . . . ,vn〉 and
T = 〈v1, . . . ,vk〉. Denote by(pi)i a sequence of rational functions and letp̂i = pi . . . p2p1.
Suppose that

pi(λj) 6= 0 j = 1, . . . , k,

pi(λj) 6= ±∞ j = k + 1, . . . , n,

for all i, and let

r̂i =
maxk+1≤j≤n |p̂i(λj)|
min1≤j≤k |p̂i(λj)|

.

LetS be ak-dimensional subspace ofC
n satisfying

S ∩ U = {0}.

LetSi = p̂i(A)S0, i = 1, 2, . . ., with S0 = S. Then there exists a constantC (depending on
S) such that for alli,

d(Si, T ) ≤ C κV r̂i.

In particularSi → T if r̂i → 0. More precisely we have that

C =
d(V −1S, V −1T )

√

1 − d(V −1S, V −1T )
.

The following lemma relates the subspace convergence to thevanishing of certain sub-
blocks of a matrix.

LEMMA 4.2 ([32, Lemma 6.1]).SupposeA ∈ Cn×n is given, and letT be a subspace
that is invariant underA. AssumeG to be a nonsingular matrix, and assumeS to be the

8The spectral norm is naturally induced by the‖.‖2 norm on vectors.
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subspace spanned by the firstk columns ofG. (The subspaceS can be considered an ap-
proximation of the subspaceT .) Assume thatB = G−1AG, and consider the matrixB,
partitioned as

B =

[

B11 B12

B21 B22

]

,

whereB21 ∈ C(n−k)×k. Then we have:

‖B21‖2 ≤ 2
√

2 µG ‖A‖2 d(S, T ),

whereµG denotes the condition number of the matrixG.
For the Hessenberg-like case, the functions are of the form

pi(λ) = (λ − µi)λ
−1.

Let us compare the convergence behavior of this new iteration to that of the standardQR
iteration with shiftµi. We consider only one iterate, i.e.,ri denotes the contraction rate from
stepi in the iteration process. For the standardQR algorithm we obtain the contraction ratio

r
(QR)
i =

maxk+1≤j≤n |λj − µi|
min1≤j≤k |λj − µi|

. (4.1)

We introduce the constants

ω = min
k+1≤j≤n

{|λj |},

Ω = max
1≤j≤k

{|λj |}.

Calculating now an upper bound for the convergence of theQH method towards the eigen-
value closest to the shiftµi gives us:

r
(QH)
i = max

k+1≤j≤n

∣

∣

∣

∣

λj − µi

λj

∣

∣

∣

∣

max
1≤j≤k

∣

∣

∣

∣

λj

λj − µi

∣

∣

∣

∣

≤ Ω

ω

maxk+1≤j≤n |λj − µi|
min1≤j≤k |λj − µi|

=
Ω

ω
r
(QR)
i .

This indicates that convergence of the new iteration is comparable (up to a constant) to the
convergence of the standardQR method. This constant only creates a small, negligible delay
in the convergence. This means that if the traditionalQR method converges to an eigenvalue
in the lower right corner, theQH method also will converge. Hence, to obtain convergence
to a specific eigenvalueλj , we chooseµi close to this eigenvalue. The convergence results
prove that this eigenvalue will then be revealed by both theQR and theQH method in the
lower right corner.

Moreover, we also have extra convergence, which is not present in the standardQR-case,
and which is stems from the factorλ−1 in the rational functions.

Define the constants

∆i = max
k+1≤j≤n

{|λj − µi|},

δi = min
1≤j≤k

{|λj − µi|}.

Similarly to the above, we can define the contraction ratio

ri =
∆i

δi

max1≤j≤k |λj |
mink+1≤j≤n |λj |

.
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Assume now (without loss of generality) that|λ1| ≤ |λ2| ≤ . . . ≤ |λn|. This means that our
convergence rate can be simplified as follows:

ri =
∆i

δi

|λk|
|λk+1|

.

Hence, we get a contraction for allk determined by the ratioλk/λk+1. This is a basic
non-shifted subspace iteration taking place for allk at the same time. We remark that this
convergence takes place in addition to the convergence imposed by the shiftµi, which can
force, for example, extra convergence towards the bottom-right element.

More information on this specific type of subspace iterationcan be found in [25].

4.3. The Hessenberg-like plus diagonal case.The convergence theory related to the
Hessenberg-like plus diagonal case is more complicated. Ineach step of the above method,
one will now perform a step of the shiftedQR iteration, combined with a nested multishift
iteration. The convergence analysis of this method is not soeasy compared to the standard
QH method for Hessenberg-like matrices. We will not present the global convergence theory,
but a brief explanation of the behavior. Similarly to the results in [25, 28], one can derive
global convergence results and predictions of the convergence ratios.

We distinguish between two cases. First, we discuss the casein which µ = 0. As we
want to compute the specificQH factorization of the matrixA = Z + D in which Z is a
Hessenberg-like matrix andD an arbitrary diagonal, we apply the algorithm

Z = RQ,

Z + D = (R + DQH)Q

= Q̌ŘQ.

Applying the traditional analysis from above, we obtain

(Z + D)Z−1 = A(A − D)−1 = Q̌ŘR−1.

Hence, we have computed theQR factorization of the original matrixA multiplied by the
inverse ofA minus a diagonal shift matrix. This diagonal shift creates the nested multishift
iteration, with shifts equal to the diagonal elements, similar to the reduction to semiseparable
plus diagonal form.

Assumingµ 6= 0, we obtain

Z = RQ,

Z + D − µI =
(

R + (D − µI)QH
)

Q

= Q̌ŘQ.

We also get

(Z + D − µI)Z−1 = (A − µI)(A − D)−1 = Q̂R̂R−1.

This implies that we perform a step of the traditionalQR method combined again with the
nested multishift iteration.

Hence, in the Hessenberg-like plus diagonal case, we again attain the classical conver-
gence of theQR method plus an extra nested multishift iteration. An interpretation of this
kind of subspace iteration and its convergence properties can be found in [28].

NOTE 4.3. Nothing has yet been mentioned about the preservation of thestructure in
case of performing this iteration on a Hessenberg-like plusdiagonal matrix. Since theQH
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iteration performs a partialQR step related to the∨ pattern as discussed in Subsection2.3,
the preservation of the structure can be derived by modifying the proof of the preservation of
the structure in the traditionalQR method. The proof can be found in the technical report
[24]. We only formulate the theorem.

THEOREM 4.4. Suppose a Hessenberg-like plus diagonal matrixZ + D is given where
D = diag([d1, . . . , dn]), with

Z + D − µI = Q̌Ž,

constructed as described above. Then the matrixQ̌H(Z + D)Q̌ is a Hessenberg-like plus
diagonal matrixZQH + DQH , where the diagonal elements ofDQH are shifted up one
position relative to the diagonal elements of the matrixD, i.e.,

DQH = diag([d2, . . . , dn−1, dn, β]),

whereβ is a freely chosen element.

4.4. Summary ofQH convergence results.Let us draw some conclusions from this
and the previous section. TheQH factorization as it was presented initially clearly does not
satisfy the needs of an iterative method to compute eigenvalues. For example, the freedom
in computing the factorization allowed one to make choices such that the structure was not
preserved, making it useless for the design of an eigenvaluesolver.

Definition 3.6 provided formulas for computing the factorization in a different way.
Based on these relations, we were able to prove that theQ̌ factor in theQH factorization
is actually the unitary factor of theQR factorization of a rational function in the Hessenberg-
like (plus diagonal) matrixZ. Hence, all theoretical results for theQH method transform in
a certain sense to classical results for (multishift)QR iterations [31, 32].

Being able to use classical results for the (multishift)QR iteration opens several doors.
One might, for example, consider the design of an implicitQH method. Standard theorems
for constructing implicit algorithms state that the first column of the orthogonal factor, com-
bined with a structure-restoring process applied to the involved matrix, is enough to guarantee
that one has performed a step of theQR method on the matrixZ.

Since theQ̌ factor in theQH-decomposition consists of a descending sequence of Givens
transformations, the first column of̌Q is only determined by a single Givens transformation.
Hence, it is not necessary to follow the complete procedure from Definition3.6 in order to
compute the matrixQ; we only need to determine its first Givens transformation and combine
it with a structure-restoring process. This is the subject of the upcoming section.

Both convergence behaviors are very closely related to the convergence behavior in
the reduction algorithms to respectively Hessenberg-likeand Hessenberg-like plus diagonal
form:

• The unitary similarity reduction of an arbitrary matrix to Hessenberg-like form has
an extra convergence property compared with the traditional reduction to tridiagonal
form. In every step of the reduction process a kind of nested non-shifted subspace it-
eration also takes place. This nested non-shifted subspaceiteration also can be found
in the newQH iteration. The standard convergence results for theQR iteration are
present, plus an extra subspace iteration convergence; see[15].

• The unitary similarity transformation to Hessenberg-likeplus diagonal form has an
even more advanced convergence behavior than the reductionto Hessenberg-like
form: namely, a nested multishift subspace iteration takesplace. A similar phe-
nomenon also takes place in theQH iteration: in every step of the iteration we have
the traditional convergence properties plus an extra shifted iteration, which we can
see when combining multiple steps as a multishift iteration; see [12, 27, 29].



ETNA
Kent State University 

http://etna.math.kent.edu

142 R. VANDEBRIL, M. VAN BAREL, AND N. MASTRONARDI

5. The implicit QH iteration for Hessenberg-like (plus diagonal) matrices.Even
though the presented theoretical results might seem complicated, the actual implementation
is quite simple, even simpler than the implementation of theQR method.

In this section, we derive an implicit chasing technique forHessenberg-like plus diagonal
matrices. This approach is also valid in the special case of Hessenberg-like matrices, for
which the diagonal matrix in the sum is zero.

5.1. An implicit algorithm. In this section, we design an implicit way of performing
an iteration of theQH method on a Hessenberg-like plus diagonal matrix.

Based on the results above, we can compute the factorization

Z + (D − µI) = Q̌Ž.

The matrixQ̌ is then used to perform a unitary similarity transformationonZ + D:

ZQH + DQH = Q̌H(Z + D)Q̌.

The idea of the implicit method is to computěQH(Z + D)Q̌ based on only the first column
of Q̌ and on the fact that the matrixZQH + DQH satisfies some structural constraints. This
approach is completely similar to the implicitQR-step for tridiagonal/Hessenberg matrices
[13, 14] (and also semiseparable matrices [20]).

BecauseQ̌H = ǦH
n−1Ǧ

H
n−2 . . . ǦH

1 consists of a descending sequence ofn − 1 Givens
transformations, only the first Givens transformationǦ1 is needed to determine the first col-
umn of Q̌. This Givens transformation is applied to the matrix(Z + D), disturbing the
Hessenberg-like plus diagonal structure. The remainingn − 2 Givens transformations are
constructed to restore the structure of the Hessenberg-like matrix, and to obtainZQH +DQH

satisfying Theorem4.4. After performing these transformations, we know, based onthe im-
plicit Q-theorems for Hessenberg-like (plus diagonal) matrices (see [1, 12, 19]), that we have
performed a step of theQH method in an implicit manner.

5.2. Assumptions.Before starting the construction of the implicit algorithmwe need
to assume some things about the Hessenberg-like (plus diagonal) matrix. In the Hessenberg
case, one only assumes irreducibility, i.e., the matrix cannot be split up into several sub-
blocks. Here we similarly assume the Hessenberg-like matrix to be irreducible (according to
Definition3.4), and the diagonal minus shift matrix should not have zero elements.

5.3. Computing the initial disturbing Givens transformations. For the actual imple-
mentation, we assume the Hessenberg-like matrixZ to be represented by the Givens-vector
representation. This can be seen as theQR factorization of the matrixZ = QR. We remind
the reader that the matrixQ = Gn−1Gn−2 . . .G1 can be factored as a sequence of Givens
transformations, where each Givens transformationGi acts on two successive rows,i and
i + 1. Graphically, this representationZ = QR is depicted as follows.

➊ � × × × × ×
➋ �

�

× × × ×
➌ �

�

× × ×
➍ �

�

× ×
➎

�

×
4 3 2 1

(5.1)

The Givens transformations in positions1 to 4 make up the matrixQ, and the upper triangular
matrixR is shown on the right.

We will now determine a Givens transformation acting on rows1 and2 of the matrix
Z+D such that the strictly lower triangular rank structure of this matrix also includes the first
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and the second diagonal element. This is the first Givens transformation needed to compute
theQH factorization.

We have

Z + (D − µI) = QR + (D − µI) = Q (R + H) ,

whereH is a Hessenberg matrix. We now want to apply a sequence of descending Givens
transformations toZ + (D − µI) so that we obtain a Hessenberg-like matrixŽ.

Using the graphical representation we can representQ (R + H) as follows, where the
Givens transformations making upQ are shown on the left, and the Hessenberg matrixR+H
is shown on the right.

➊ � × × × × ×
➋ �

�

⊗ × × × ×
➌ �

�

× × × ×
➍ �

�

× × ×
➎

�

× ×
4 3 2 1

The element marked by⊗ should be annihilated, because we want to obtain a Givens-vector
representation of a new Hessenberg-like matrix, namelyŽ, as in Scheme5.1. Removing this
element by placing a new Givens transformation in position one, and applying the indicated
fusion, gives us the following result.

➊ � �→֒× × × × ×
➋ �

� �

0 × × × ×
➌ �

�

× × × ×
➍ �

�

× × ×
➎

�

× ×
4 3 2 1

→

➊ � × × × × ×
➋ �

�

0 × × × ×
➌ �

�

⊗ × × ×
➍ �

�

× × ×
➎

�

× ×
4 3 2 1

Annihilating the element marked in position(3, 2) by a Givens transformation and performing
the shift-through operation at the indicated position, we obtain the following figure.

➊ � × × × × ×
➋ �

�

� 0 × × × ×
➌ �

� x�

0 × × ×
➍ �

�

× × ×
➎

�

× ×
4 3 2 1

→

➊ � � × × × × ×
➋

�

�

�

0 × × × ×
➌ �

�

0 × × ×
➍ �

�

× × ×
➎

�

× ×
5 4 3 2 1

→

➊ � � × × × × ×
➋

�

�

�

0 × × × ×
➌ �

�

0 × × ×
➍ �

�

× × ×
➎

�

× ×
5 4 3 2 1

We remark that the rightmost figure still represents the original matrixZ + D − µI. Due
to the rewriting of the matrix, we can, however, clearly see that performing the Hermitian
conjugate of the Givens transformation in position5 to the left of the matrixZ + D will give
a Hessenberg-like structure in the upper left corner of thismatrix. This is due to the fact that
this upper left part is already represented in the Givens-vector representation.

Having calculated this Givens transformation, we can applyit as a similarity transforma-
tion to Z, and then, to complete the implicit chasing procedure, restore the structure of this
matrix, never again interfering with the first column and row. In the following subsection,
we illustrate how to restore the structure of this matrix based on an initial disturbing Givens
transformation.
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5.4. Restoring the structure. We have a Hessenberg-like plus diagonal matrixZ + D
in which D = diag([d1, d2, . . . , dn]). We know that a step of theQH method results in a
Hessenberg-like plus diagonal matrixZQH + DQH in which D̂ = diag([d2, d3, . . . , dn, β]).
Assume in the following graphical schemes that all transformations are well-defined.

After computing the initial disturbing Givens transformation, we apply this transforma-
tion to Z + D. Before being able to perform the first transformation we need to rewrite our
matrixZ + D = Z1 + D1, whereZ1 is a Hessenberg-like matrix that differs fromZ only in
the upper left element, and whereD1 = diag([d2, d2, d3, . . . , dn]). Applying the similarity
transformation gives ušGH

1 (Z1 + D1)Ǧ1 = ǦH
1 Z1Ǧ1 + D1. The diagonalD1 does not

change, because the Givens transformation acts on the first two rows and columns, and the
diagonal elements in these positions are both equal tod2. Our matrixZ1 can be represented
as in Scheme5.1. After applying the disturbing transformation, this scheme also is disturbed.
Then we try to obtain again Scheme5.1 by applying similarity transformations that do not
further affect the first column and row of the matrix.

In the following figures, we do not show the diagonal, but onlythe effect of the similarity
transformationǦ1 acting on the matrixZ1. For simplicity, we assume our matrix to be of
size5 × 5. Let us writeZ̃2 = ǦH

1 Z1Ǧ1.

➊ � � × × × × ×
➋

�

�

�
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�
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�
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�

×
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� �
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× ×
➎

�

×
6 5 4 3 2 1

The transformatioňG1 applied on the right creates the bulge, marked by⊗ in position(2, 1),
whereas the Givens transformatioňGH

1 applied on the left can be found in position5. The
bulge marked by⊗ can be annihilated by a Givens transformation as depicted above.

In the following figure, we have combined the Givens transformations in position1 and2,
by a fusion. We have moved the transformation from position6 to position3, and we depicted
where to apply the shift-through lemma. The right figure shows the result after applying the
shift-through lemma and after creating the bulge, marked with⊗.
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�
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We remark once more that the above rearrangements of the Givens transformations did not
affect the diagonal matrixD1. To continue further, we need deal again withD1.

The next similarity Givens transformation acts on columns and rows2 and3. To perform
the procedure, we first change the diagonal matrixD1 = diag([d2, d2, d3, . . . , dn]) intoD2 =
diag([d2, d3, d3, . . . , dn]). This change in the diagonal̃D2 with D1 = D2 + D̃2, andD̃2 =
diag([0, d2 − d3, 0, . . . , 0]) needs to be incorporated in the scheme above, in the rightmost
figure, namely matrixZ̃2. To incorporate the matrix̃D2 into Z̃2, we use the factorization
of the matrixZ̃2 = U2S2 depicted in the rightmost scheme above, whereU2 depicts the
combination of the Givens transformations in positions1 to 4 andS2 is the upper triangular
matrix with the bulge on the right. We obtain that the matrixD̃2 = U2U

H
2 D̃2 = U2(U

H
2 D̃2)

equals the following scheme. The Givens transformations inpositions1 to 4 coincide with
U2 and the sparse matrix on the right equals(UH

2 D̃2).
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➊ � 0 × 0 0 0
➋ �

�

× 0 0 0
➌ �

�

× 0 0 0
➍ �

�

0 0
➎

�

0
4 3 2 1

Rewriting all of this into formulas, we obtain

ǦH
1 (Z1 + D1)Ǧ1 = ǦH

1 Z1Ǧ1 + D1

= Z̃2 + D1

= Z̃2 + D̃2 + D2

= U2S2 + U2(U
H
2 D̃2) + D2

= U2(S2 + UH
2 D̃2) + D2

= Z2 + D2.

It is important thatZ̃2 andZ2 are factored by the same matrixU2, and moreover that they
have the bulge in exactly the same position. Hence, we can proceed with a similar scheme to
the one above, where we now work withZ2 instead ofZ̃2.

➊ � × × × × ×
➋ �

�

× × × ×
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�

⊗ × × ×
➍ �

�

× ×
➎

�

×
4 3 2 1

The new scheme looks similar to the one above, but a few elements, including the bulge, have
changed.

To continue the implicit procedure, we want to remove the bulge in position(3, 2). In
order to do so, we choose a Givens transformationǦ2 acting on column2 and3, which will
remove the bulge. Performing this Givens transformation asa similarity transformation on
the matrixZ2 + D2, we obtain

ǦH
2 (Z2 + D2)Ǧ2 = ǦH

2 Z2Ǧ2 + D2

= Z̃3 + D2.

The diagonalD2 remains unchanged, as the diagonal elements on the second and third posi-
tions are equal to each other.

The similarity transformation onZ2 is schematically depicted as follows:
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We see that we have now created a new bulge in position(4, 3). A similar technique can
now be applied to change the diagonalD2 to D3 and to transformZ̃3 into Z3. Since the
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upper triangular parts of the involved matrices are dense, such a chasing step involvesO(n)
operations, leading to a global complexity ofO(n2) for performing one step of the shifted
QH method.

We will show only the final step. Assume we have our matrixZ4 in the following form.

➊ � × × × × ×
➋ �

�

× × × ×
➌ �

�

× × ×
➍ �

�

× ×
➎

�

⊗ ×
4 3 2 1

We choose the similarity Givens transformatioňG4 to annihilate the element in position
(5, 4). Applying this transformation results in the lower left figure. Now, instead of applying
the shift-through lemma, we only need to combine the Givens transformations in position4
and5, resulting in a Hessenberg-like matrix as we wanted. Moreover, we immediately have
the new representation of this Hessenberg-like matrix, andtherefore we can immediately
perform a new step of the iteration.
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× ×
➎

�

×
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The resulting diagonal isD5 = diag([d2, d3, . . . , dn, β]), whereβ is freely chosen.
Based on the implicitQ-theorems, we know that we have now implicitly performed a

step of the shiftedQH method.

6. TheQR iteration on Hessenberg matrices is a disguisedQH iteration. In the pre-
vious part of the paper, we constructed aQH factorization to make theQH method suitable
for Hessenberg-like and Hessenberg-like plus diagonal matrices. Let us now compute the
QH factorization of a Hessenberg matrix, based on a sequence ofdescending Givens trans-
formations. We remark that the strictly lower triangular part of a Hessenberg matrix already
has semiseparability rank1. Hence, the descending sequence of Givens transformationsis
constructed in such a way as to expand the strictly lower triangular rank structure to include
the diagonal. Let us first consider the structure of the Givens transformations involved.

COROLLARY 6.1. Suppose the row[e, f ] and the following2 × 2 matrix are given

A =

[

a b
c d

]

.

Then there exists a Givens transformation

G =
1√

1 + t2

[

t̄ −1
1 t

]

, (6.1)

such that the second row of the matrixGHA, and the row[e, f ] are linearly dependent. The
value oft in the Givens transformationG as in(6.1), is defined as

t =
af − be

cf − de
,
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under the assumption thatcf − de 6= 0; otherwise, one may chooseG = I2.
Proof. The proof involves straightforward computations.
Hence, we want to apply a sequence of Givens transformationsto the Hessenberg matrix

H to obtain theQH factorization. Denote the diagonal elements of the Hessenberg matrix as
[a1, . . . , an] and the subdiagonal elements as[b1, . . . , bn−1]. The first Givens transformation
acts on rows1 and2 and only the first two columns are important, and so, as in the corollary,
we consider the matrix

A =

[

a1 h1,2

b1 a2

]

, (6.2)

and we want to make the last row dependent of[0, b2]. A Givens transformation witht defined
ast = a1b2

b1b2
= a1

b1
, is found (assumingb1 andb2 to be different from zero). Computing the

productGHA gives us

GHA =
1√

1 + t2

[

t̄ 1
−1 t

]

,

[

a1 b1

b1 a2

]

, =

[

× ×
0 ×

]

.

One can continue this process, and as a result we obtain

H = Q̌Ž = QR.

The Hessenberg-like matrix̌Z becomes an upper triangular matrix. Hence, in this case,
theQH factorization coincides with the traditionalQR factorization, and therefore theQR
algorithm for Hessenberg (as well as tridiagonal) matricesalso fits into this framework in
a certain sense. Better, one can see theQH method as an extension of the traditionalQR
method.

7. Numerical experiments. In this section, we illustrate the speed and accuracy of the
proposed method by various numerical experiments.

7.1. Comparison with the traditional QR method for symmetric semiseparable ma-
trices. In the following experiment, we constructed arbitrary symmetric semiseparable matri-
ces and computed their eigenvalues via the traditionalQR method for semiseparable matrices
(the implementation from [23] was used). These eigenvalues were compared with those com-
puted by the algorithm described in this paper. Both sets of eigenvalues were compared with
the eigenvalues computed by the MATLAB routineeig. The following relative error norm
was used: denote the vectors containing the eigenvalues asΛ, ΛQH , andΛQR for respectively
eig, theQH , and theQR method. The plotted error value, shown in Figure7.1, equals

‖Λ − ΛQH‖
‖Λ‖ and

‖Λ − ΛQR‖
‖Λ‖ ,

for both methods. Five experiments were performed, and the line denotes the average accu-
racy of all five experiments combined. Thex-axis denotes the problem sizes, ranging from
100 to 700 in steps of size50. The cut-off criterion was chosen equal to10−8. In Figures7.1
and7.2circles denote the results of individual experiments of theQR iteration, whereas stars
denote the results for theQH iteration.

Figure7.2 shows the average number of iterations and the CPU times (in seconds) for
both methods. We see that the new method needs, on average, fewer iterations than theQR
method.
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FIGURE 7.1.Accuracy comparison.
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FIGURE 7.2.CPU times (left) and iteration count (right).

7.2. Comparison with nonsymmetric complex matrices.In this section, we describe
the results of a similar experiment to the one described above, but for complex, not necessarily
symmetric, matrices. The examples range from100 to 700 in steps of size50, and the cut-off
criterion is set to10−14 now.

Figure7.3compares the accuracy of theQR andQH methods, and Figure7.4shows the
average number of iterations and the CPU times (in seconds) for both methods. We see that
the new method needs on average much fewer iterations than theQR method.

8. Conclusions. In this paper, we proposed a new method for computing the eigenvalues
of Hessenberg-like and Hessenberg-like plus diagonal. Thecomplexity of the methods is half
that of the traditionalQR methods. Moreover, the new iteration converges in fewer steps than
the correspondingQR method.
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