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ON A MULTILEVEL KRYLOV METHOD FOR THE HELMHOLTZ EQUATION
PRECONDITIONED BY SHIFTED LAPLACIAN *

YOGI A. ERLANGGAT AND REINHARD NABBEN*

Abstract. In Erlangga and Nabben [SIAM J. Sci. Comput., 30 (2008), pg2+3595], a multilevel Krylov
method is proposed to solve linear systems with symmetric anslynametric matrices of coefficients. This mul-
tilevel method is based on an operator which shifts some sngghealues to the largest eigenvalue, leading to
a spectrum which is favorable for convergence acceleratianKrylov subspace method. This shift technique in-
volves a subspace or coarse-grid solve. The multilevel Kryhethod is obtained via a recursive application of
the shift operator on the coarse-grid system. This method s &pplied successfully to 2D convection-diffusion
problems for which a standard multigrid method fails to coneerg

In this paper, we extend this multilevel Krylov method to indié linear systems arising from a discretization of
the Helmholtz equation, preconditioned by shifted Laplaeia introduced by Erlangga, Oosterlee and Vuik [SIAM
J. Sci. Comput. 27 (2006), pp. 1471-1492]. Within the Krylevation and the multilevel steps, for each coarse-grid
solve a multigrid iteration is used to approximately inves #hifted Laplacian preconditioner. Hence, a multilevel
Krylov-multigrid (MKMG) method results.

Numerical results are given for high wavenumbers and showfteetigeness of the method for solving Helm-
holtz problems. Not only can the convergence be made almogieémdient of grid sizé, but also linearly dependent
on the wavenumbeét, with a smaller proportional constant than for the multignidqonditioned version, presented
in the aforementioned paper.

Key words. multilevel Krylov method, GMRES, multigrid, Helmholtz equatioshifted-Laplace precondi-
tioner.
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1. Introduction. Nowadays Krylov subspace methods are the methods of choice f
solving large, sparse linear systems of equations

Au=b,  AeCm, (1.1)

If Ais Hermitian positive definite 1(1) is typically solved by the conjugate gradient method
(CG). The convergence rate of CG can be bounded in terms afaih@ition number of4,
k(A) [18], which in this case is the ratio of the largest eigenvaluénéosmallest one. For an
ill-conditioned system, this convergence rate is oftensoall, so that a preconditioner has
to be incorporated.

For general matrices, convergence bounds are somewhatdiffozelt to establish and
do not express a direct connection with the condition nurobet. It is, however, a common
belief that eigenvalues clustering around a value far fr@ro amprove the convergence.
Therefore, without specifically referring to the conditisamber, it is often sufficient to say
that a nonsingular matrix/ is a good preconditioner if the eigenvaluesidf ' A are more
clustered and farther from zero than thosedof

A class of preconditioners which exploits the detail of thecrum ofA can be based
on projection methods. These methods accelerate the gamea by removing the compo-
nents of the residuals corresponding to the smallest eddees during the iteration. One way
to achieve this is by deflating a number of the smallest eigleles to zero. Nicolaided ]
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showed that by adding eigenvectors related to some smatheadues, the convergence of CG
may be improved. For GMRES, Morgai] also shows that by augmenting the Krylov sub-
space by eigenvectors related to some small eigenvaluese trigenvectors no longer have
components in the residuals, and the convergence bound &ESVtan be made smaller;
thus, a faster convergence may be expected; see also a whigtession on this subject by
Eiermann et al. inJ].

A similar approach is proposed i13], where a matrix resembling deflation of some
small eigenvalues is used as a preconditioner. Supposththasmallest eigenvalues are to
be deflated to zero, and define the deflation matrix as

Pp=I-AZE YT, E=YTAZ, (1.2)

where the columns of the full rank matricgsY € C™*" form the basis of the deflation
subspaces. The matrik € C"*" can generally be considered as tBalerkin (or more
correctly thePetrov-Galerkin matrix associated withl. It can be proved?, 13, 15] that for

a nonsingulard and any full rankZ, Y, the spectrum of°p A containsr zero eigenvalues.
Since the components of the residuals corresponding tcettoeeigenvalues do not enter the
iteration, the convergence rate is now bounded in terms eétfectivecondition number
of Pp A, which for a Hermitian positive definite matriA andY = Z is the ratio between
the largest eigenvalue and the smallest nonzero eigeneélilg A. Furthermore, it can be
shown that a larger leads to a smallegffectivecondition number15]. Hence, with a large
deflation subspace, convergence can be improved conslgerab

A large deflation subspace implies that the maffiin (1.2) is large. It is then possible
that the inversion of2 with direct methods becomes impractical, and thereforet@seto
resort to iterative methods. Related to the computatioR of, it is shown in [L5] that the
convergence of CG wit, deteriorates iff —! is computed inaccurately. We say in this case
that P, is sensitive to an inaccurate computationff'. This means that to retain its fast
convergence, an iterative method can only be applied to #leridn system (i.e., the linear
system associated with the Galerkin matrix) with a suffidjetight termination criterion.
ReferenceZ(] discusses this aspect of deflation in detail with extensiwmerical tests.

As an alternative to the deflation preconditioner, another projection-type precondi-
tioner is proposed by the authors B].[In this new projection preconditioner, small eigenval-
ues are shiftediot towards zerobut towards the largest eigenvalue (in magnitude), instead.
This leads to eigenvalue clustering in a location far fromozelo discuss this method, we
introduce a more general linear system which is equivate(it.f), namely

Aq = b, (1.3)

whereA = M7*AM; !, & = Myu, andb = M;*b. Here, M, and M, are any nonsin-
gular preconditioning matrices. The projection assodiatéh a shift towards the largest
eigenvalue ofd is done via the action of the matrix

Py=1—-AZE" YT + N\, ZEYT, E=YTAZ, (1.4)

on the general systeni.Q). Here, )\, is the maximum eigenvalue (in magnitude) &f

We prefer to use the notatiofh.@), because this allows us to consider a more general class of
problems involving preconditioners. As discussedinfior some problems (e.g., the Poisson
and convection-diffusion equation discretized on unifgmas) the preconditioners!; , M,

are not actually needed, i.e., it suffices to &6t = M, = I. The role of M, and M, may
become important if, e.g., a nonuniform grid is employed] iarthis case the choickl; = I
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and M, = diag(A) is already sufficient. With1(.4), we then solve the left preconditioned
system

Py At = Pgb

with a Krylov method. Even though its derivation is motivditgy projection methods?y; is
not a projection operator, aléj%[ # Pg. In this paper we shall calPy, the shift operator or
matrix, instead.

The right preconditioned version af.§) can also be defined using the shift matrix

Qu=1-2ZE'YTA4 )\, ZE7'YT. (1.5)
Given (L.5), we then solve the preconditioned system
AQgiii=b,  a=Qgu, (1.6)

with a Krylov method.

One advantage ofi(4) over (L.2) is that Py is insensitive to an inexact inversion Af
This property allows us to use a large deflation subspaceiftoashmany small eigenvalues
as possible. To obtain an optimal overall computational glexity, the associated Galerkin
system is solved by a (inner) Krylov method with a less tightrtination criterion. The
convergence rate of this inner iteration can be signifigantproved if a shift operator similar
to (1.4) is also applied to the Galerkin system. The action of thif sperator will require
another solve of another Galerkin system, which will beiedrout by a Krylov method. If
this process is done recursively, a multilevel Krylov meti®K) results. The potential of
this multilevel Krylov method is demonstrated i].[

In this paper we extend the application of the multilevel Isyymethod to indefinite lin-
ear systems. In particular, we shall focus on the Helmhaltmé&on. With this application,
this paper can be considered as a continuation of our discuss the multilevel Krylov
method, which was presented i8].[ Therefore, for more theoretical results on the method,
the readers should consufj| Before applying the multilevel Krylov method, the Helnitzo
equation is first preconditioned by the shifted Laplaciagcpnditioner 10]. Since this pre-
conditioner is inverted implicitly by one multigrid iteiah, we never have the Galerkin sys-
tem in an explicit form. We shall demonstrate that with anrapgate approximation to the
Galerkin matrix, multigrid-based preconditioners carmadis incorporated into the multilevel
Krylov framework. We call the resultant method the multderylov-multigrid (MKMG)
method.

In the context of solving the Helmholtz equation, EIman etaddo used Krylov itera-
tions (in their case, GMRESL]) in a multilevel fashion 4]. However, their approach is
basically a multigrid concept specially adapted to the Hellz equation. While at the finest
and coarsest level, standard smoothers still have goodtemg@roperties, at the interme-
diate levels GMRES is employed in place of standard smostheince GMRES does not
have a smoothing property, it plays a role in reducing thersrbutnotin smoothing them.
A substantial number of GMRES iterations at the intermediatels, however, is required to
achieve a significant reduction of errors.

It is worth mentioning that even though the multilevel Knylmethod uses a hierarchy of
linear systems similar to multigrid, the way it treats eag$tem and establishes a connection
between systems differs from multigrigél, [8]. In fact, the multilevel Krylov method is not by
definition an instance of a multigrid method. With regardhe work in #], we shall show
numerically that the multilevel Krylov method can handleelar systems at the intermediate
levels efficiently; i.e., a fast multilevel Krylov convengee can be achieved with only a few
Krylov iterations at the intermediate levels.
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We organize the paper as follows. In Sectiyrwe first revisit the Helmholtz equation
and our preconditioner of choice, tishifted Laplace preconditionerin Section3, some
relevant theoretical results concerning our multileveylgy method are discussed. Some
practical implementations are explained in SectloNumerical results from 2D Helmholtz
problems are presented in Sect@rFinally, in Sectiors, we draw some conclusions.

2. The Helmholtz equation and the shifted Laplace precondibner. The 2D Helm-
holtz equation for heterogeneous media can be written as

0? 0? 2 ; 2
Au = — (x + 92 +k (x,y)) u(z,y) =g(x,y), InQ=(0,1)*  (2.1)

wherek(x,y) is the wavenumber, angis the source term. Dirichlet, Neumann, or Som-
merfeld (non-reflecting) conditions can be applied at thendaries” = 0Q2; see, e.g.,q].
If a discretization is applied to2(1) and the boundary conditions, and if the wavenumber
is high (as usually encountered in realistic applicatiptisd resultant linear system is large
but sparse, and symmetric but indefinite. In most cases, jlicapon of Krylov subspace
methods to iteratively solve the linear system resultsawsionvergence. Standard precon-
ditioners, e.g., ILU-type preconditioners, do not effeely improve the convergencé?).
In[10, 11], for the Helmholtz equation, the shifted Laplacian operat
0? 0? Aoiio -

M= 7@787?427(017]ﬂ)k (I,y)7 J = Vila avﬂeRv (22)
is proposed to accelerate the convergence of a Krylov sebspathod. The preconditioning
matrix M is obtained from discretization o2(2), with the sameboundary conditions as
for (2.1). The solutionu is computed from the (right) preconditioned system

AM Yo =b, w=M"‘aq, (2.3)

whereA and M are the Helmholtz and shifted Laplacian matrices respagtiv

If (o, 3) are well chosen, the eigenvaluesAf/ —! can be clustered around one. In this
paper we shall only consider the pair, 5) = (1,0.5), which in [10] is shown to lead to
an efficient and robust preconditioning operator. Sincetmergence of Krylov methods is
closely related to the spectrum of the given matrix, we gfied some insight on the spectrum
of the preconditioned Helmholtz systeth 3) in the remainder of this section.

The following theorem is a special case of Theorem 3.5, [and holds for thel-
dimensional Helmholtz equation.

THEOREM 2.1 (22)). LetA = L+ jC — K andM = L + jC — (a — B))K
be the discretization matrices ¢2.1) and (2.2), respectively, with., C', and K the nega-
tive Laplacian, the boundary conditions, and the Helmhpiy) term, respectively. Choose
(o, B) = (1,0.5).

(i) For Dirichlet boundary conditionsC' = 0 and the eigenvalues af/ ~! A lie on the
circle in the complex plane with center= (£,0) and radiusk = 1.

(i) For Sommerfeld boundary condition§] # 0 and the eigenvalues dff —' A are
enclosed by the circle with center= (1,0) and radiusk = 1.

Proof. The proof for arbitrary«, 3) can be found inZ2]. O

Sinces(M~tA) = o(AM~1), Theorem2.1 holds also forAM ~!. For the Helmholtz
equation with Dirichlet boundary conditions some detailgdrmation about the spectrum,
e.g., the largest and smallest eigenvalues, can also beedehiVe shall follow the approach
used in [L1], which was based on a continuous formulation of the probléhe results, how-
ever, also hold for the discrete formulation as indicatefilij. For simplicity, we consider
the 1D Helmholtz equation.
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At the continuous level, the eigenvalue problem of the pneédmned system can be
written as

d? 2 &? 32
_ @_k uw=\ —E—(I—O.Sj)k U, (2.4

with A the eigenvalue and now the eigenfunction. By using the ansatz sin(irz), i € N,
from (2.4) we find that

i?m? — k2

)\i = ~ )
22 — (1— 0.5))k2

with

(272 — k2)?
(1272 — k2)2 4 0.25k%"

0.5(i272 — k2)k2

)\i = - .
Re(X) (1272 — k2)2 4 0.25k4

From the above relations, observe that Re()\;) < 1, and therefore

lim Re(\;) = klim Re(\;) = 1.
The real parts are close to zerag3f? are close td:?2. The sign of the imaginary parts depends
on the mode. Also, limy_, . Im(\;) = 0.5 andlim;_, ., Im(\;) = —0.5. By eliminating
i?72 in (2.5), we have
(Re(\;) — 0.5)% + Im()\;)? = 0.25.

Thus, \; lie on the circle with centet = (%, 0) and radiusRk = % as suggested by Theo-
rem2.1(i). The largest possiblg\; | is approached as— oo, where, in this cas&e()\;) — 1
andIm()\;) — 0. Thus,lim; . |A;| = 1. This result is true for any choice &f

Suppose now that for someg i?7? — k? = €. Fore < k, Re()\;) = 4¢2/k* and
Im(\;) = —2¢/k?, and hence

4e2\ 2 2¢\ 2 4¢2
Al = Re(hs)? + Tm(A;)? = <k4> i (w) e

Therefore, while the spectrum df —' A is more clustered than the spectrumAfsome
eigenvalues lie at a distance of ord@(e/k?) from zero. Figure2.1illustrates this spectral
property for a 1D Helmholtz problem with = 20 and50. Clearly, the largest eigenvalue for
both £’s is essentially the same and close to one, but the smaltgstvalue moves towards
zero ask increases.

Since small eigenvalues may cause problems to a Krylov rdethe discuss in the next
section the multilevel Krylov method, used to handle smigieavalues.

3. Multilevel Krylov method. Consider again the linear systeth3), where, for our
Helmholtz equationd = AM ! andb = b. Our objective is to shift some small eigenvalues
in the spectrum ofl to a fixed point, such that the new linear system has some raooesble
spectrum for convergence acceleration.

As explained in Sectiofi, one way to achieve this is by using some deflation technjques
in which some small eigenvalues are shifted to zero. Usiegnthltilevel Krylov method,
however, we shift these small eigenvalues to the largesneajue, and this shift is done by
either (L.4) or (1.5. Note that if we sef\,, = 0 in (1.4) or (1.5 we recover the deflation
preconditioner.
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FIGURE 2.1. Spectrum of a typical 1D Helmholtz problem preconditionéith whe shifted Laplacian. The
wavenumbek is 20 (left) and 50 (right).

For (1.5 the following spectral property holds.

THEOREM3.1. Suppose that the eigenvaluesabf/\l, o A € a(/i) c C, are ordered
increasingly in magnitude. Let,Y ¢ C"*", with r < n, be full rank matrices whose
columns are the right and left eigenvectors associated thigh- smallest eigenvalues (in
magnitude) ofA. LetQ y be defined as i(1.5). Then

7(AQx) = Dy s Ay At -+, An

Proof. The proof requires the identity, AZ = 0, whereP, = I — AZE~'Y™, which
is easily verified by a direct computation (see, e.@3])] and Theorem 3.5 ofg], which
establishes the spectral equivalend® A) = o(AQ ), with Py as in (L.4).

First, fori = 1,...,r, we havePyAZ = Py AZ + \,ZE-'YTAZ = \,. Next, for
r+ 1 <1 < n, we have that

PNAZ7; = AZ,L‘ — AZEilyTAZi + )\n,ZEilyTAZ,' = /\LZZ,

due to orthogonality of eigenvectors. Finally, by using diteen 3.5 of B], a(PN/l) =
s A Argt, - A = 0(AQy). O

Thus, after applying) 5 to A, r eigenvalues are no longer small and have been shifted
to \,. The smallest eigenvalue (in magnitude) is ndw ;, and the rest of the spectrum
remains untouched. &, ; is of the same order of magnitude &s, a Krylov subspace
method is expected to converge faster.

The computation of eigenvectors, however, is very expenv large linear systems.
Furthermore, as eigenvectofs,andY are dense.

In the following we will consider the deflation and the shiftesator under any full rank
Z andY. We start with the deflation operator. Since

AQpZ = AZ — AZEWYTAZ = AZ — AZ =,
we obtain
U(AQf)) = {07 s aO,MT-‘rl) s 7,”71}

1while the theory only requires < n, like in, e.g., multigrid, this condition emphasizes the intance of the
sufficiently small deflation subspace to make the overall meghactical.
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Thus,AQﬁ hasr zero eigenvalues for arbitrary matricésandY . In contrast to Theorem.1,
the remaining eigenvalugs., 1, . .., i, are not, in general, eigenvaluesf Thus, some of
the eigenvalues ofl are shifted to zero, some of them are shifted tosthe

The following theorem establishes a spectral relationsbipreen deflation and the shift
operator with any full rankZ andY".

THEOREM 3.2. Let Z,Y € C"*" be of rankr, A be nonsingular, and leQ) 5, =

I - ZE-'YTA.If Qy is defined as iff1.5), and Z, Y are such that

U(AQf)) ={0,.. ., 0, lri 1y ey fn by

then

o(AQg) = { M-y Al 15+ fin )

Proof. Combine Theorems 3.4 and 3.5 #].[ Note, that the columns of are the left
eigenvectors ofAQ) 5, corresponding to the eigenvalue equal to zero. Then, wérobta

AQ(Z =\ Z.
Theorem 3.5 in§] gives
0(AQy) = o(PgA).
Now, if
AQpri = piws,
for r + 1 < i < n and some eigenvectors, we easily obtain
PyA(Qpri) = 1i(Qpi). [

In the above theorent 5 is the right preconditioning version of the deflation precon
ditioner. The action of)) 5 on A shifts r eigenvalues ofd to zero. With@ , these zero

eigenvalues in the spectrum éﬁ)b become),, in the spectrum ofleN. Under the arbi-
trariness ofZ andY’, the rest of the eigenvalues is also shifteditpi = r + 1,...,n, but
these eigenvalues are the same for bé)(hﬁ and AQN. Their exact values depend on the
choice ofZ andY'. In particular,u,, # \,. However, for any.,, and\,,, there exists a con-
stantw € C such thatu,, = w\,. The constan is called theshift scaling factor A shift
correction can be incorporated ifh.§) by replacing)\,, with w),,. With this scaling, the
spectrum otleD andAQN differ only in the multiple eigenvalue zero andJp. If the con-
vergence is only measured by the ratio of the largest andeshabnzero eigenvalues, which
can be true in the case of symmetric positive definite matriaeery similar convergence for
both methods can be expected.

To construct) 5, we need two components: the largest eigenvajuand the rectangular
matricesZ andY'.

For \,,, we note that in general its computation is expensive. A®ecabed in §], it
is sufficient to use an approximation 1q,. For example, Gerschgorin’s theore@8] can
provide a good approximation ty,. For our Helmholtz problems, however, we shall use
results in Sectior?, i.e., for AM !, Re(\,(AM 1)) = |\, (AM~1)| = 1. Thus, we set
Ap =11in QN'

For Z andY’, we require that these matrices are sparse to avoid exeas&mory re-
quirements. Next, we note th&@ : C" — C”, andY” : C* — C", r < n, are linear
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FIGURE 3.1. Interpolation in 1D: piece-wise interpolation (left) anidiéar interpolation (right).

maps similar to prolongation and restriction operators uitigrid. In multigrid, the matrix
E = YTAZ is called the Galerkin coarse-grid approximation/of Since they are sparse,
these multigrid intergrid transfer operators are good hatds for the deflation matrices.
In [8], we used the piece-wise constant (zeroth-order) intatfmnl for Z and sety” = Z.
This choice is not common in multigrid, but leads to an efficimultilevel Krylov method.
Since at the present time we do not have detailed theoretitadia for the choice of andY’,
we investigate these two possible options by looking attsalegroperties and numerical ex-
periments based on a simple 1D problem. In this case, alheédiges can be computed easily
and the matrice8/ andE can be inverted exactly. In a 1D finite difference setting,pifece-
wise constant interpolation and multigrid prolongatiamtfiis case, linear interpolation) are
illustrated in Figure3. 1L

We first consider the spectra df\/ ~*Q 5, with Z the piece-wise constant interpolation
matrix andY” = Z. Following the aforementioned discussion, we sgt= 1. Furthermore,
we setw = 1. The spectra are shown in Figuse2. Compared to Figur@.l, Figure3.2
clearly shows that small eigenvalues near the origin aremgdr present. The action §f,
however, changes the whole spectrum; Ae.s = r+1, ..., n, are also shifted. Nevertheless,
this eigenvalue distribution is more favorable for a Krylmethod as it is now clustered far
from the origin. Figure3.2 also indicates that increasing the deflation vectors (a&ingr)
improves the clustering. Fdr = 20 andr = n/2 = 50, the eigenvalues afilM ~'Q, are
now clustered compactly around one; cf. Fig8ra(c). Fork = 50, a very similar eigenvalue
clustering withk = 20 is observed if we set = n/2; in this caser = 125.

Next, we consider the spectra.éf) & With Z representing thénear interpolation. Sim-
ilarly, we setY = Z, A\, = 1, andw = 1. The spectra fok = 20 and50 are shown in
Figure3.3for r = n/2. Compared to Figur.2(c) and (d), the spectra are clustered around
one as well. Thus, either the piece-wise constant intetipolar the linear interpolation lead
to spectrally similar systems, and hence we can expect uailas convergence property for
both choices.

To see how the spectral properties translate to the conveegef a Krylov method, we
perform numerical experiments based on the 1D Helmholtizlpro with constant wavenum-
ber. Again,M andE are inverted exactly. We apply GMRES th) and measure the number
of iterations needed to reduce the relative residual by slrrs of magnitude. Convergence
results are shown in Tablz1, with Z € C™*" based on either piece-wise constant interpo-
lation or linear interpolation, and withh = Z. In all casesy = n/2, wheren = 1/h andh
is the mesh size. The mesh sizelecreases when the wavenumbencreases, so that the
solutions are solved on grids equivalent to 30, 15, and $giids per wavelength

For the case without a “two-level” Krylov step (witho@ty ), denoted by “standard”, we
observe convergence, which depends linearly on the wavieauln The convergence be-
comes less dependent biif () ;; is incorporated. In particular, & is the linear interpolation

2 The use of 8 gridpoints per wavelength on the finest grid isyever, too coarse for a second-order finite-
difference scheme used in this experiment, as the polluti@r becomes dominant, see, e.@,, 1]. For a second-
order scheme, the rule of thumb is to use at least 12 gridpoartsvavelength. For this reason, this is the only
example where 8 gridpoints per wavelength are used.
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FIGURE 3.2. Spectra of a preconditioned 1D Helmholtz probléims= 20 and50. The number of grid points
for eachk isn = 100 and250, respectivelyZ is obtained from the piece-wise constant interpolation.

matrix, the convergence can be made almost independéntunfiess the grid is too coarse.
The convergence deterioration is worse in the case of thoepigse constant interpolation.

TABLE 3.1
Number of preconditioned GMRES iterations for a 1D Helnthploblem. Equidistant grids equivalent to
30/15/8 gridpoints per wavelength are used, ang: n/2. The relative residual is reduced by six orders of magni-
tude.

k=20 k=50 k=100 k=200 k =500

Standard 14/15/15 24/25/26 39/40/42 65/68/78 142/146/157
Q x» piece-wise constant 4/517 4/6/10 5/7/14 6/10/20 7115/37
Q 5 linear interpolation 3/4/5 3/417 3/4/8 3/5/10 3/5/12

4. Multilevel Krylov method with approximate Galerkin systems. In Section3 we
saw that the convergence of GMRES preconditionedbyand @ 5, can be made indepen-
dent ofk, provided that\/ and £ are explicitly inverted. In higher dimensions (2D or 3D)
this approach is no longer practical. Particular to our pnelitioner, the inverse ol is
approximately computed by one multigrid iteration. Henkg; ! is not explicitly available.
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FIGURE 3.3. Spectra of a preconditioned 1D Helmholtz problém+= 20 and50. The number of grid points
for eachk isn = 100 and250, respectivelyZ is obtained from the linear interpolation.

First consider théwo-levelKrylov method. With any full rank’, Z € C™*", the (right)
preconditioning step of a Krylov method can be written as

w=M1Quv=M1I-ZE'YTAM ™ + o)\, ZE'Y T
=M Y(v—ZE'YTY), (4.1)

where
v = (AM~' —wr,I)v and E=YTAZ (4.2)

In GMRES, the vectop is the Arnoldi vector, which in turn gives' via (4.2). The vector
v’ € C" is then restricted t&" by Y7 as in ¢.1), namely

v =Y T (4.3)
With v/, the Galerkin problem in4(1) now reads

vg = B~ <= v = Fug. (4.4)

It is important to note here that the operafpy, remains effective for convergence accel-
eration under inexact inversion &f, see B]. Therefore, a Krylov method can be used to ap-
proximately solve4.4). In general, the accuracy of the solution produced by adrghethod
depends on the termination criteria. For ill-conditiongdt is possible that many Krylov it-
erations are needed for a substantial reduction of resiferadrs. To obtain a large reduction
of residuals/errors within a small number of Krylov iteoats, shifting similar to 1.5) can
also be applied to the Galerkin system. This shift will regusolving another but smaller
Galerkin system. A recursive application of shifting aretative Galerkin solution leads to
the multilevel Krylov method An algorithm of the multilevel Krylov method is presented
in [8].

With respect to the Galerkin solution, one immediate coogpion arises. Sincgé/ ! is
only available implicitly (via one multigrid iteration)he Galerkin matrixZ is not explicitly
available. Aside from computational complexity to do irsien, formingE explicitly is also
not advisable because &f —!, which implies that? is dense. To set up a Galerkin system
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which is conducive to the multilevel Krylov method, we prgpahe following approxima-
tion. We approximate the inversd —! by Z(YTM Z)~1YT. This leads to

E=YTAZ=YTAM 17
~ YTAZ(YTMZ)'YTZ = AyMy' By =: Ap, (4.5)

where the productsly = YTAZ, My == YTMZ, andBy := YT Z are the Galerkin
matrices associated with, M, andI respectively.
With the approximation4.5), the Galerkin systen¥(4) can now be written as

vy = AgM;;' Bog, (4.6)

where the solution vectary is obtained by using a Krylov subspace method. A fast conver-
gence of a Krylov method for4(6) can be obtained by applying a projection @ngj. This
immediately defines our multilevel Krylov method.

To construct a multilevel Krylov algorithm, we shall use atdns which incorporate
level identification. For example, for the two-level Krylovethod discussed abovd, M
andZ are now denoted by, M (1) andZ (1), respectively. With these notations, we have

A®@) — A(?)]W(Q)AB(?)7

whered® = y(1.2)" A0 z(1.2) ar2) — y(1.2)" jr(1) 7(1,2) gndB®@) = y(1L.2)" 1(1) 7(1,2),
The matrix A is the second levelj = 2) Galerkin matrix associated witA(!) =
AWM O™ ete. IF A is small enough, the Galerkin system

AR AL BEIR) _ (0 )(2)

can be solved exactly. Otherwise, we shall use a Krylov ntethapproximately solve it.
For the latter, we define the shift operator

QE\?]) _ [ ZC3 O YT 4O) 4 ,@2)\0) 703 jO) 7y )T
with A® = v (23" 4(2) 7(2.3) and solve the linear system
A(Q)M(Q)_lB(Q) (2)~(2) _ (7 \(2)
Qy Vg (V)™

wherevg) = Q%a;,?), by a Krylov subspace method. In this case, the shift oper@te
makes the system better conditioned, improves the cormeegen the second level, and
hence reduces iterations needed to solve the Galerkimsy3tee multilevel Krylov method
is obtained if the same argument is applieditd).

Suppose thatn levels are used, where at lewvel — 1 the associated Galerkin problem
is sufficiently small to be solved exactly. The multileveiiav method can be written in an
algorithm as follows.
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Algorithm 1. Multilevel Krylov method with approximate Gakin matrices
Initialization:

Forj = 1, setA® .= A, M™ .= M, BV := I, constructZ ", and choosa "’ andw™. With
this information, A" = AWM~ andQS) = Q are in principle determined.
Forj =2,...,m, chooseZ 17 andY¥~19) and compute

AD) — y =17 401 5G-1.9)
MG — y -1 =1 ZG=1.9)
BYW — yU-1)" gli-1) 7G-1.4)

which define
A0 — A @t gl
Forj=2,...,m— 1, setw® and\Y’, and define
QYW =1- Z(jfl,ﬁA(j)”Y(jfl,wT(Aufl) —wINDT),

Iteration phase:
j=1
Solve AV MDD GM = b, 4 = M FD with Krylov iterations by computing
W) — 7 M
s — A(l)vgé)
M — (1) _ w(l))\g)v(l)
Restriction:(vj)® = y (12" 1)
If5=m
Ugﬂ — A(m)’l(vé)(m)
else
j=2
Solve AP M@ ™" By — (11,)® with Krylov iterations by computing
@ = M7 BRL)
s = AP)@
1@ — (@ L @\@))
Restriction:(vj)® = y 372
If j=m
Wi = A0 () (m)
else
j=3
Solve A® M® ™ B y® = (11,)®

Interpolation:v{® = Z(23)y(®)
¢ = o _
w® = M@ B@ @
P = 4@,
Interpolation:v{") = 712
gV = o — o
w® = 7
P = AW )

REMARK 4.1. In solving the Galerkin problems by a Krylov subspaceho@, a zero
initial guess is always used. With this choice, the initedidual does not have to be computed
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explicitly because it is equal to the right-hand side veofdhe Galerkin system. Hence, we
can save one vector multiplication withf?) A7) ™" B@).

REMARK 4.2. At every levelj, we require an estimate to/). Our numerical results
reveal that withv) =1, =1,...,n — 1, taking)\gf) = 1 leads to a good method.

5. Multilevel Krylov-multigrid method. In Algorithm 1, at each level two precondi-
tioner solutions related t/(?) are required to compute}) andw(). At the levelj = 1,
this solution is approximately determined by one multigtetation. Even though the re-
sultant error reduction factgris not that of the typical text-book multigrid convergenae (
this casep = 0.6), this choice leads to an effective preconditioner for @gence acceler-
ation of Krylov subspace methods for the Helmholtz equajicdh. Since the size of (),

1 < 7 < m, may also be large, we shall use one multigrid iteration fgraximately com-
pute M @),

A multigrid method consists of a recursive application oégmoothing, restriction,
coarse-grid correction, interpolation and defect cofoectand postsmoothing. Both pre-
and postsmoothing are carried out by basic iterative mathed., damped Jacobi or Gauss-
Seidel, which smooth the error. The smooth errors are thsimicted to the coarse-grid
subspace, where a coarse-grid system is solved to furtinexotadhe errors. This correction
is then added to the error in the fine-grid subspace, aftantarpolation process. For further
reading on multigrid, we refer to, e.®J]. What is important to us is the multigrid restriction
and interpolation process, and the coarse-grid correstiem

Assume that a sequence of fine and coarse §tidg = 1,...,m, Q' D Q... > Q™
are given. The multigrid transfer operators between twdsg2¥/ and<)’*+!, denoted by
I gy = gty I Gt - g, (5.1)

are associated with the restriction and interpolation ¢otgmgation) process, respectively,
and are given as well. For the Galerkin coarse-grid cowactihe coarse-grid system is
associated with the Galerkin coarse-grid matrix defined as

o
My =My T (5.2)

The processes5(1) are algebraically the same as whatand Y7, respectively, do in the
multilevel Krylov method, and4.2) is similar to£. In multigrid, however, the matrice’§+1

andef 41 Should represent a sufficiently accurate interpolation aespectively, restriction
of smooth functions. Since the multilevel Krylov method slo®t necessarily require this
criterion, the matriceij“ ande?H are in general not the same ZsandY 7', respectively.

This implies that, in general\/ (/) £ M](VJI)GJ > 1. But it is not a problem for the multilevel
Krylov method to haveZ = /" andy” = I/, , as the conditions in Theorefi2are met.
In this caseM @) = M)

We comment on the choic& = ij“ andY? = Ijﬂ. First, as shown for the 1D
example in Sectior8, with Z based on multigrid linear interpolation the convergence of
thetwo-level Krylov method is faster than with the piece-wise dansinterpolation. We can
expect that this convergence property also holds fonthki-level Krylov method. Secondly,
since now) ) = M{?)., both the multilevel Krylov method and the multigrid steps the
preconditioner solves use the same components. This axddigonal storage for multigrid
components. Furthermore, all coarse-grid informatiordusg the multilevel Krylov and
multigrid parts are computed only once during the initiatian phase of the multilevel Krylov
method. This will save the cost of the initialization phase.
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A multigrid algorithm for solving, e.g4%) = M@ ~"») in Algorithm 1, with v =
By can be written as follows.

Algorithm 2. Multigrid with (j — m + 1) levels

Given vz(\jf p

Presmoothingvﬁj})ﬁrl/3 = smooth{ M () | “5\2@ Ug))
r) = Ug) - Mm”%?,@rl/?,

Restriction:r(+1) = y G+ ()
Coarse-grid problem:
if 5 = m solvee(™ = M)~ p(m)

else

endif
Prolongation:d?) = _Z(jvj“)e(jfl)
Defect correctionv.](\j)’eﬁ/3 = UI(\'J'T),Z+1/3 + d'(j) |
Post-smoothingv ), , = smooth{31 (), “5\]4),”2/3’ o)

Incorporating Algorithm 2 in Algorithm 1, the multilevel Klov-multigrid method (MKMG)
results. Note that in Algorithm 2, the finest multigrid levglalways the same as the current

level in the multilevel Krylov step. Hence, for the action@%) done at levelj = J < m,

multigrid with .J — m grid levels is used to approximate the action of preconaiéid./ (7).

Figure5.lillustrates one MKMG cycle withn = 5 levels. The white circles indicate
the pre- and postsmoothing process in multigrid applied/#towhile the black circles cor-
respond to the multilevel steps. In this figure, the multiggiep is shown with V-cycle, but
this can in principle be replaced by other multigrid cycléd.the levelj of the multilevel
Krylov method, multigrid withm — j levels is called to approximately invelt /) with the
corresponding coarse-grid matrick&7tY) ... M (™). Once the multilevel Krylov method
reaches the level = m — 1, the Galerkin problem at levgl= m is solved exactly.

IT IT+1
o ® Q ® L
> ¢ O o o ¢ o O 2
O P O 0 O ¢ o D O o ¢ 3
oo oo b O6 o0 OO ooy o) 4
o o 0 d 0 o 0 G 5

FIGURE 5.1. Multilevel Krylov-multigrid cycle withn = 5. “ e": multilevel Krylov step; “o”: multigrid step.

6. Numerical experiments. In this section we present convergence results for the 1D
and 2D Helmholtz equation. We compare performance of theilewdl Krylov-multigrid
method (denoted by MKMG) with that of Krylov preconditionbg shifted Laplacian (de-
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noted by MG). For both methods, we employ one multigrid tierato invert the shifted
Laplacian, with F-cycle and one pre- and postsmoothinglotatg [10], Jacobi with un-
derrelaxationr = 0.5) is used as a smoother. This value was found via the Localiérour
Analysis (LFA), and appeared to be optimal for problems wered there for a wide range
of wavenumbers. The coarsest level for both MKMG and MG iagf only one interior
grid point.

At each levelj > 1 of MKMG, GMRES [17] is applied to the preconditioned Galerkin
system. Since in this case the preconditioners are not fxdiéxible version of GMRES,
called FGMRES, is employed. Fgr= 1, the finest level, FGMRES is used for MKMG and
MG. Convergence for MKMG and MG is declared if the initialatVe residual is reduced
by six orders of magnitude.

In principle it is not necessary to use the same number of FE®Rerations at each
level. The notation MKMG(6,2,2), for instance, indicatésit 6 FGMRES iterations are
employed at levej = 2,2 atlevelj = 3and 2 atlevelj =4,....,m — 1. Atlevelj = m
the coarse-grid problem is solved exactly. As observed]irit[is the accuracy of solving the
Galerkin system at the second level which is of importance.

6.1. 1D Helmholtz. In this section, we use the same problem as in Section 3. Gonve
gence results are shown in Tab&4§-6.3.

Results in Table§.1-6.3 suggest that the convergence of MKMG is only mildly depen-
dent on the grid sizé. Furthermore, the number of iterations to reach convergenweases
only mildly with an increase in the wavenumbler These results are worse than the ideal
situation where the Galerkin system at the second leveliedexactly; cf. Tabl&.1. The
multilevel Krylov step in MKMG, however, improves the comgence of MG (shown in Ta-
ble 6.1).

TABLE 6.1
Number of GMRES iterations for 1D Helmholtz problems withstant wave number. g/w stands for “# of
grid points per wavelength”. Multilevel Krylov method withKMG(6,2,2). MG is shown in parentheses.

gw | k=20 k=50 k=100 k=200 k=500

15 | 11(19) 11(29) 11(43) 15(66) 25 (138)
30 | 9(18) 11(28) 12(42) 14(68) 22 (136)
60 | 9(18) 9(28) 12(43) 12(68) 19 (141)

TABLE 6.2
Number of GMRES iterations for 1D Helmholtz problems withstant wave number. g/w stands for “# of
grid points per wavelength”. Multilevel Krylov method withKMG(8,2,2) and MKMG(8,2,1) (in parentheses).

gw | k=20 k=50 k=100 k=200 k=500

15 | 11(11) 15(16) 19(18) 22(21) 33(33)
30 | 10(10) 13(13) 13(13) 15(15) 20(20)
60 | 9(9) 13(13) 10(12) 14(14) 17(18)

The significance of the number of iterations at the seconel ie’vVMKMG can also be
seen in Table$.1-6.3. While the convergence for MKMG(8,2,2) is slightly betteath
MKMG(6,2,2), no significant improvement is gained with MKNI&4,2) (Table6.3). We
also observe thaineFGMRES iteration at level > 4 is sufficient for fast convergence; see
figures in parentheses in Talie

Our last convergence results for the 1D Helmholtz test probére associated with the
quality of the approximate solution produced by FGMRES atveogence. Here we com-
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TABLE 6.3
Number of GMRES iterations for 1D Helmholtz problems withstant wave number. g/w stands for “# of
grid points per wavelength”. Multilevel Krylov method withKMG(6,4,2). The/> norm of errors are shown in
parentheses.

gw | k=20 k =50 k= 100 k = 200 k = 500
15 | 11 (2.42E-8) 15 (6.87E-8) 20 (6.68E-8) 23 (L.29E—7) 36 @-8)
30 | 10(6.35E-8) 13 (4.83E-8) 13 (3.39E-8) 14 (1.02E-7) 19 @77
60 | 9(1.17E-7) 16 (1.24E-7) 12(6.78E-8) 16 (1.16E-6) 19 (4-39E

pute the error between the approximate solution of MKMG aitveogence and the solution
obtained from a sparse direct method. The&orms of the error are shown in parentheses in
Table6.3. For all cases, thé, norms of the error fall below0~°.

6.2. 2D Helmholtz. In this section, 2D Helmholtz problems in a square domairn wit
constant wavenumbers are presented. At the boundariesirghierder approximation to
the Sommerfeld (non-reflecting) condition due to Engquist &ajda f] is imposed. We
consider problems where a source is generated in the miélthe domain.

Following the 1D case, the deflation subsp&tés chosen to be the same as the in-
terpolation matrix in multigrid. For 2D cases, however,ecer needed in constructing the
interpolation matrixZ. Consider a set of fine grid points defined by

O ={(z,y) |z =245, =ich, y=yi, = iyh, iz = 1,..., Nop, iy =1,..., Ny p},

associated with the grid points on leyek 1. The set of grid point§ 5 corresponding to the
coarse-grid levej = 2 is determined as follows. We assume that, y1) € Qy coincides
with (z1,41) € Q4, as illustrated in Figuré.1 (left). Starting from this point, the complete
set of coarse-grid points is then selected according totdrelard multigrid coarsening, i.e.,
by doubling the mesh size. This results in the coarse gridiife= 2,

io=1,...,Nog,iy=1,....Nyu}.

As shown in [LZ], this coarsening strategy leads to a good multigrid mefioodhe shifted
Laplacian preconditioner. Moreover, from a multilevel Ky method point of view, this
coarsening strategy results in larger projection subspteamn if, e.g.(z1,y1) € Qg coin-
cides with(z2,y2) € Qp; see Figures.1 (right). As shown in Figuré.1, for example, with
7 x 7 grid points at the finest level, the latter coarsening apgrdeads to only 9 deflation
vectors, i.e.; = 9. In contrast, the earlier approach results in 16 deflatiators ¢ = 16),
which eventually shift 16 small eigenvalues.

Both approaches, however, produce the same number of deflatictors if an even
number of grid points is used in each direction.

Having defined the coarse-grid points according to Figut€left), the deflation vectors
are determined by using the bilinear interpolation proaédssoarse-grid value into the fine
grid as follows P1], for level 2 to level 1 (see Figur@.3(a) for the meaning of the symbols):

v® (2, y), for e,
%[v(z)(m,y— h) 4+ v®(z,y + h)], for OJ,

oM (z,y) = L@ (z — h,y) +v@ (2 + h,y)], for A,
1@ (z—hy—h)+v@(z — h,y+h)

+v®(z+h,y —h)+v® (x4 h,y+h)], foro.



ETNA

Kent State University
http://etna.math.kent.edu

MULTILEVEL KRYLOV METHOD FOR HELMHOLTZ EQUATION 419
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FIGURE 6.1. Fine (white circles) and coarse (black circles) grid selens in 2D multigrid. Black circles also
coincide with the fine grids. Coarsening as depicted in tifigfigure leads to both better multigrid methods for the
shifted Laplacian and larger projection subspaces.

In some cases, however, such a coarsening may result inghandeexed coarse-grid
points which do not coincide with the last-indexed fine-gumints. This is illustrated in
Figure6.2. There are three possible situations for such coarse-giittgy which are sum-

8
74

6
53

4
32
2

11
2 3 4
1 2 3 4 5 6 7

FIGURE 6.2. Fine (white circles) and coarse (black circles) grid seleas in 2D multigrid, where the last
indexed gridpoints do not coincide.

marized in Figures.3 (b)—(d). The interpolation associated witlV, »h, jh), (ih, Ny ph),
(Ng.nh, Ny ph) € Q, are given as follows.

e For fine-grid point§z = N, ,h,y = i,h) (Figure6.3 (b))

o™ (2, ) = 1@ (z,y — h) +v@(z,y + h)], for O,
H ’ v® (z — h,y), for A\,

1@ (z—h,y—h)+ 0@ (z—h,y+h)], foro.
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e For fine-grid point§z = i, h,y = N, »h) (Figure6.3(c))

v (z,y), fore,
@) (z,y — h) for O
W g,y =¥ DY =N, 7
mv (@,y) L@ (z = h,y) +v® (z + h,y)], for A,

1 (z—hy—h)+vP(z+h,y—h)], foro.

e For fine-grid point§z = N, ,h,y = N, »,h) (Figure6.3(d))

v @ (z,y), for e,
(2) _
h (1 _ v (I7 Yy h)7 for D7
IHU( )(Jc,y) ) 0@ (x — h,y), for A,
(

Based on the interpolation matri¥;, we setZ( ») = Z(, ) = I}y andR}! = (I}))".

Iy,H+l |

VH. v Ny Ny H

l.H Ixp +1 e N H lx,H entd N H
(a) (b) (c) (d)

FIGURE 6.3. Fine (white colored) and coarse (black colored) grid sefettindicating the bilinear interpola-
tion in 2D multigrid. Black circles€) coincide with the fine grids.

Convergence results are shown in Talies-6.8 for various wavenumbers. From these
tables, for low grid resolutions (e.g., 15 grid points pexrglangth) we observe convergence
of MKMG which is mildly dependent on the wavenumbler The convergence becomes
less dependent oh if the grid sizeh is smaller; see also Figuré&s4-6.6 for comparisons
with MG.

TABLE 6.4

Number of GMRES iterations for 2D Helmholtz problems withstant wave number. g/w stands for “# of
grid points per wavelength”. Multilevel Krylov method withKkMG(4,2,1).

g/W‘k:2O k=40 k=60 k=80 k=100 k=120 k=200 Fk =300

15 11 14 15 17 20 22 39 64
20 12 13 15 16 18 21 30 45
30 11 12 12 13 13 15 24 39

From Tables5.4-6.8, it is apparent that MKMG(8,2,1) is the most efficient methsd
far, in terms of the number of iterations; it converges fafte all £ andh used. If one is
more concerned with the number of MKMG iterations to reachveogence, one can use
more iterations at the levgl= 3 (e.g., MKMG(8,3,1), not shown), but this setting does not
lead to a further reduction in CPU time.
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TABLE 6.5

Number of GMRES iterations for 2D Helmholtz problems withstant wave number. g/w stands for “# of
grid points per wavelength”. Multilevel Krylov method witfiKMG(5,2,1).

g/W‘k:2O k=40 k=60 k=80 k=100 k=120 k=200 £k =300

15 11 14 15 18 19 21 31 52

20 12 13 15 15 16 18 25 37

30 11 12 12 13 13 14 18 28
TABLE 6.6

Number of GMRES iterations for 2D Helmholtz problems withstant wave number. g/w stands for “# of
grid points per wavelength”. Multilevel Krylov method witiKMG(6,2,1).

g/W‘k:2O k=40 k=60 k=80 k=100 k=120 k=200 £k =300

15 11 14 14 18 18 20 28 47

20 12 13 15 15 16 17 25 36

30 11 12 12 13 13 14 16 25
TABLE 6.7

Number of GMRES iterations for 2D Helmholtz problems withstant wave number. g/w stands for “#grid
points per wavelength”. Multilevel Krylov method with MKN&32,1).

g/W‘k:2O k=40 k=60 k=80 k=100 k=120 k=200 £k =300

15 11 14 14 17 18 21 27 39

20 12 13 15 14 15 16 20 28

30 11 12 12 12 13 14 15 19
TABLE 6.8

Number of GMRES iterations for 2D Helmholtz problems withstant wave number. g/w stands fostands for
“#grid points per wavelength”. Multilevel Krylov method thiMKMG(4,3,1).

g/W‘k:20 k=40 k=60 k=80 k=100 k=120 k=200 £k =300

15 11 14 15 18 20 22 40 66
20 12 14 15 16 17 20 29 39
30 11 12 12 14 14 15 23 35

In order to gain insight onto the total arithmetic operasioreeded by MKMG, in Fig-
ures6.4-6.6, we compare CPU time needed by MKMG and MG to reach conveggeWe
measure the elapsed time on a Pentium 4 machine for thelizdtian and iteration phase
with the MATLAB commandg i ¢/ t oc. Since thef or loop is used in most parts of the
initialization phase, the measured time is too pessimistic

From Figures5.4-6.6 we observe that, for low wavenumbers, MG is still faster taap
MKMG methods. MKMG only outperforms MG when the wavenumbecdmes sufficiently
large. For instance, MKMG(8,2,1) is faster than MG for> 150, in terms of number of
iterations and CPU time.

For k = 300, we were unable to run MG until convergence because of thesske
memory used to keep all Arnoldi vectors. With 30 gridpoings avelength, the solution
vector alone hag.25 x 10 complex-valued entries. In this case, restarting GMRES doe
not help. With full GMRES, we have to terminate the iteratafter 86 iterations with the
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computed residual onl§.55 x 10~4, and with about 2.8310* seconds of CPU time. Even
though for MKMG the initialization phase also consists ofuting coarse-grid information
associated with matrice$’) and B, and not onlyM () as in MG, the extra computation
does not significantly contribute to the total initializatitime, as shown in the lower part of
Figuress.4-6.6(right). With nearly wavenumber-independent convergeNt€MG requires
far less memory than MG for high wavenumbers.

250 ] 10
A MG-MK(4,2,1) Iteration Time
—e— MG-MK(6,2,1)
200 )
——MG-MK(8,2,1) 10" ¢
—— MG
.S 150 g
5 ¢ 10
= £
# 100 =
o Multigrid/Multilevel
10 Setup Time
501
0 10
0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350
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FIGURE 6.4. Number of iterations and CPU time for GMRES with multigricobgd to the shifted Laplacian
preconditioner (MG) and multigrid-multilevel Krylov metth (MKMG). 15 grid points per wavelength.

160 ‘ 10
140! —2—MG-MK(4,2,1) o
—— MG-MK(6,2,1) 10° Iteration Time
120f —x— MG-MK(8,2,1)
—— MG
1001 2
S -
A g
= £
3 F 10t
60/ 10
Multigrid/Multilevel
40 o Setup Time
10 ¢
201
0 10
0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350
Wavenumber, k Wavenumber, k

FIGURE 6.5. Number of iterations and CPU time for GMRES with multigricobed to the shifted Laplacian
preconditioner (MG) and the multigrid-multilevel Krylovetthod (MKMG). 20 grid points per wavelength.

7. Conclusions. In this paper, we have discussed a new multilevel Krylov métfor
solving the 2D Helmholtz equation. This MKMG method is baseda multilevel Krylov
method applied to the Helmholtz equation preconditionethkyshifted Laplacian. With this
method, small eigenvalues of the original preconditionedesn and the associated Galerkin
(coarse-grid) systems are shifted to one, leading to féNerspectra for the convergence of
Krylov subspace methods. At every level in the MKMG methoteva Krylov iterations are
used to solve the projected Galerkin (coarse-grid) preitioned problems. The precondi-
tioner solves are done by one multigrid iteration, whoseimarn level is reduced according
to the projection level.



ETNA
Kent State University
http://etna.math.kent.edu

MULTILEVEL KRYLOV METHOD FOR HELMHOLTZ EQUATION 423
160 ‘ 10*
140 —2—MG-MK(4,2,1) Iteration Time
—o— MG-MK(6,2,1) 10°
120 ——MG-MK(8,2,1)
——MG
< 100 9 102
g )
5 80 <
= £t Multigrid/Multlevel
60 Setup Time
40
10°
20
0 107"
0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350
Wavenumber, k Wavenumber, k

FIGURE 6.6. Number of iterations and CPU time for GMRES with multigrigohgd to the shifted Laplacian
preconditioner (MG) and multigrid-multilevel Krylov meith (MKMG). 30 grid points per wavelength.

Numerical experiments have been performed on the 1D and 2bdétz equation
with constant wavenumber. The MKMG method leads to only inifddependent and-
dependent convergence. This considerable improvemetiteircanvergence rate leads to
a speed up in CPU time when compared to Krylov methods withignid-based precondi-
tioner alone.

Finally, this multilevel Krylov method consists of sevenagjredients: a preconditioner
for Krylov iterations, restriction and prolongation optna, an approximation of the maxi-
mum eigenvalue, and an approximation to the Galerkin malimixhis paper, we have chosen
a specific choice of all these ingredients, some of which la@esame as and have been the
integral parts of a multigrid-based preconditioning methar the Helmholtz equation. Nev-
ertheless, other choices or new developments in those dgetam be easily implemented in
our multilevel Krylov framework to obtain an even faster eergence.
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