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ON A MULTILEVEL KRYLOV METHOD FOR THE HELMHOLTZ EQUATION
PRECONDITIONED BY SHIFTED LAPLACIAN ∗

YOGI A. ERLANGGA† AND REINHARD NABBEN‡

Abstract. In Erlangga and Nabben [SIAM J. Sci. Comput., 30 (2008), pp. 1572–1595], a multilevel Krylov
method is proposed to solve linear systems with symmetric and nonsymmetric matrices of coefficients. This mul-
tilevel method is based on an operator which shifts some small eigenvalues to the largest eigenvalue, leading to
a spectrum which is favorable for convergence accelerationof a Krylov subspace method. This shift technique in-
volves a subspace or coarse-grid solve. The multilevel Krylov method is obtained via a recursive application of
the shift operator on the coarse-grid system. This method has been applied successfully to 2D convection-diffusion
problems for which a standard multigrid method fails to converge.

In this paper, we extend this multilevel Krylov method to indefinite linear systems arising from a discretization of
the Helmholtz equation, preconditioned by shifted Laplacian as introduced by Erlangga, Oosterlee and Vuik [SIAM
J. Sci. Comput. 27 (2006), pp. 1471–1492]. Within the Krylov iteration and the multilevel steps, for each coarse-grid
solve a multigrid iteration is used to approximately invert the shifted Laplacian preconditioner. Hence, a multilevel
Krylov-multigrid (MKMG) method results.

Numerical results are given for high wavenumbers and show the effectiveness of the method for solving Helm-
holtz problems. Not only can the convergence be made almost independent of grid sizeh, but also linearly dependent
on the wavenumberk, with a smaller proportional constant than for the multigrid preconditioned version, presented
in the aforementioned paper.

Key words. multilevel Krylov method, GMRES, multigrid, Helmholtz equation, shifted-Laplace precondi-
tioner.
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1. Introduction. Nowadays Krylov subspace methods are the methods of choice for
solving large, sparse linear systems of equations

Au = b, A ∈ C
n×n. (1.1)

If A is Hermitian positive definite, (1.1) is typically solved by the conjugate gradient method
(CG). The convergence rate of CG can be bounded in terms of thecondition number ofA,
κ(A) [18], which in this case is the ratio of the largest eigenvalue tothe smallest one. For an
ill-conditioned system, this convergence rate is often toosmall, so that a preconditioner has
to be incorporated.

For general matrices, convergence bounds are somewhat moredifficult to establish and
do not express a direct connection with the condition numberof A. It is, however, a common
belief that eigenvalues clustering around a value far from zero improve the convergence.
Therefore, without specifically referring to the conditionnumber, it is often sufficient to say
that a nonsingular matrixM is a good preconditioner if the eigenvalues ofM−1A are more
clustered and farther from zero than those ofA.

A class of preconditioners which exploits the detail of the spectrum ofA can be based
on projection methods. These methods accelerate the convergence by removing the compo-
nents of the residuals corresponding to the smallest eigenvalues during the iteration. One way
to achieve this is by deflating a number of the smallest eigenvalues to zero. Nicolaides [16]
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showed that by adding eigenvectors related to some small eigenvalues, the convergence of CG
may be improved. For GMRES, Morgan [14] also shows that by augmenting the Krylov sub-
space by eigenvectors related to some small eigenvalues, these eigenvectors no longer have
components in the residuals, and the convergence bound of GMRES can be made smaller;
thus, a faster convergence may be expected; see also a unifieddiscussion on this subject by
Eiermann et al. in [3].

A similar approach is proposed in [13], where a matrix resembling deflation of some
small eigenvalues is used as a preconditioner. Suppose thatther smallest eigenvalues are to
be deflated to zero, and define the deflation matrix as

PD = I − AZE−1Y T , E = Y T AZ, (1.2)

where the columns of the full rank matricesZ, Y ∈ C
n×r form the basis of the deflation

subspaces. The matrixE ∈ C
r×r can generally be considered as theGalerkin (or more

correctly thePetrov-Galerkin) matrix associated withA. It can be proved [7, 13, 15] that for
a nonsingularA and any full rankZ, Y , the spectrum ofPDA containsr zero eigenvalues.
Since the components of the residuals corresponding to the zero eigenvalues do not enter the
iteration, the convergence rate is now bounded in terms of the effectivecondition number
of PDA, which for a Hermitian positive definite matrixA andY = Z is the ratio between
the largest eigenvalue and the smallest nonzero eigenvalueof PDA. Furthermore, it can be
shown that a largerr leads to a smallereffectivecondition number [15]. Hence, with a large
deflation subspace, convergence can be improved considerably.

A large deflation subspace implies that the matrixE in (1.2) is large. It is then possible
that the inversion ofE with direct methods becomes impractical, and therefore onehas to
resort to iterative methods. Related to the computation ofE−1, it is shown in [15] that the
convergence of CG withPD deteriorates ifE−1 is computed inaccurately. We say in this case
thatPD is sensitive to an inaccurate computation ofE−1. This means that to retain its fast
convergence, an iterative method can only be applied to the Galerkin system (i.e., the linear
system associated with the Galerkin matrix) with a sufficiently tight termination criterion.
Reference [20] discusses this aspect of deflation in detail with extensivenumerical tests.

As an alternative to the deflation preconditioner (1.2), another projection-type precondi-
tioner is proposed by the authors in [8]. In this new projection preconditioner, small eigenval-
ues are shiftednot towards zero,but towards the largest eigenvalue (in magnitude), instead.
This leads to eigenvalue clustering in a location far from zero. To discuss this method, we
introduce a more general linear system which is equivalent to (1.1), namely

Âû = b̂, (1.3)

whereÂ = M−1
1 AM−1

2 , û = M2u, and b̂ = M−1
1 b. Here,M1 andM2 are any nonsin-

gular preconditioning matrices. The projection associated with a shift towards the largest
eigenvalue ofÂ is done via the action of the matrix

PN̂ = I − ÂZÊ−1Y T + λnZÊ−1Y T , Ê = Y T ÂZ, (1.4)

on the general system (1.3). Here,λn is the maximum eigenvalue (in magnitude) ofÂ.
We prefer to use the notation (1.3), because this allows us to consider a more general class of
problems involving preconditioners. As discussed in [8], for some problems (e.g., the Poisson
and convection-diffusion equation discretized on uniformgrids) the preconditionersM1,M2

are not actually needed, i.e., it suffices to setM1 = M2 = I. The role ofM1 andM2 may
become important if, e.g., a nonuniform grid is employed, and in this case the choiceM1 = I
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andM2 = diag(A) is already sufficient. With (1.4), we then solve the left preconditioned
system

PN̂ Âû = PN̂ b̂

with a Krylov method. Even though its derivation is motivated by projection methods,PN̂ is
not a projection operator, asP 2

N̂
6= PN̂ . In this paper we shall callPN̂ the shift operator or

matrix, instead.
The right preconditioned version of (1.5) can also be defined using the shift matrix

QN̂ = I − ZÊ−1Y T Â + λnZÊ−1Y T . (1.5)

Given (1.5), we then solve the preconditioned system

ÂQN̂ ũ = b̂, û = QN̂ ũ, (1.6)

with a Krylov method.
One advantage of (1.4) over (1.2) is thatPN̂ is insensitive to an inexact inversion of̂E.

This property allows us to use a large deflation subspace to shift as many small eigenvalues
as possible. To obtain an optimal overall computational complexity, the associated Galerkin
system is solved by a (inner) Krylov method with a less tight termination criterion. The
convergence rate of this inner iteration can be significantly improved if a shift operator similar
to (1.4) is also applied to the Galerkin system. The action of this shift operator will require
another solve of another Galerkin system, which will be carried out by a Krylov method. If
this process is done recursively, a multilevel Krylov method (MK) results. The potential of
this multilevel Krylov method is demonstrated in [8].

In this paper we extend the application of the multilevel Krylov method to indefinite lin-
ear systems. In particular, we shall focus on the Helmholtz equation. With this application,
this paper can be considered as a continuation of our discussion on the multilevel Krylov
method, which was presented in [8]. Therefore, for more theoretical results on the method,
the readers should consult [8]. Before applying the multilevel Krylov method, the Helmholtz
equation is first preconditioned by the shifted Laplacian preconditioner [10]. Since this pre-
conditioner is inverted implicitly by one multigrid iteration, we never have the Galerkin sys-
tem in an explicit form. We shall demonstrate that with an appropriate approximation to the
Galerkin matrix, multigrid-based preconditioners can also be incorporated into the multilevel
Krylov framework. We call the resultant method the multilevel Krylov-multigrid (MKMG)
method.

In the context of solving the Helmholtz equation, Elman et al. also used Krylov itera-
tions (in their case, GMRES [19]) in a multilevel fashion [4]. However, their approach is
basically a multigrid concept specially adapted to the Helmholtz equation. While at the finest
and coarsest level, standard smoothers still have good smoothing properties, at the interme-
diate levels GMRES is employed in place of standard smoothers. Since GMRES does not
have a smoothing property, it plays a role in reducing the errors butnot in smoothing them.
A substantial number of GMRES iterations at the intermediate levels, however, is required to
achieve a significant reduction of errors.

It is worth mentioning that even though the multilevel Krylov method uses a hierarchy of
linear systems similar to multigrid, the way it treats each system and establishes a connection
between systems differs from multigrid [9, 8]. In fact, the multilevel Krylov method is not by
definition an instance of a multigrid method. With regard to the work in [4], we shall show
numerically that the multilevel Krylov method can handle linear systems at the intermediate
levels efficiently; i.e., a fast multilevel Krylov convergence can be achieved with only a few
Krylov iterations at the intermediate levels.
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We organize the paper as follows. In Section2, we first revisit the Helmholtz equation
and our preconditioner of choice, theshifted Laplace preconditioner. In Section3, some
relevant theoretical results concerning our multilevel Krylov method are discussed. Some
practical implementations are explained in Section4. Numerical results from 2D Helmholtz
problems are presented in Section5. Finally, in Section6, we draw some conclusions.

2. The Helmholtz equation and the shifted Laplace preconditioner. The 2D Helm-
holtz equation for heterogeneous media can be written as

Au := −
(

∂2

∂x2
+

∂2

∂y2
+ k2(x, y)

)
u(x, y) = g(x, y), in Ω = (0, 1)2, (2.1)

wherek(x, y) is the wavenumber, andg is the source term. Dirichlet, Neumann, or Som-
merfeld (non-reflecting) conditions can be applied at the boundariesΓ ≡ ∂Ω; see, e.g., [5].
If a discretization is applied to (2.1) and the boundary conditions, and if the wavenumber
is high (as usually encountered in realistic applications), the resultant linear system is large
but sparse, and symmetric but indefinite. In most cases, an application of Krylov subspace
methods to iteratively solve the linear system results in slow convergence. Standard precon-
ditioners, e.g., ILU-type preconditioners, do not effectively improve the convergence [12].

In [10, 11], for the Helmholtz equation, the shifted Laplacian operator

M := − ∂2

∂x2
− ∂2

∂y2
− (α − ĵβ)k2(x, y), ĵ =

√
−1, α, β ∈ R, (2.2)

is proposed to accelerate the convergence of a Krylov subspace method. The preconditioning
matrix M is obtained from discretization of (2.2), with the sameboundary conditions as
for (2.1). The solutionu is computed from the (right) preconditioned system

AM−1û = b, u = M−1û, (2.3)

whereA andM are the Helmholtz and shifted Laplacian matrices respectively.
If (α, β) are well chosen, the eigenvalues ofAM−1 can be clustered around one. In this

paper we shall only consider the pair(α, β) = (1, 0.5), which in [10] is shown to lead to
an efficient and robust preconditioning operator. Since theconvergence of Krylov methods is
closely related to the spectrum of the given matrix, we shallgive some insight on the spectrum
of the preconditioned Helmholtz system (2.3) in the remainder of this section.

The following theorem is a special case of Theorem 3.5 in [22], and holds for thed-
dimensional Helmholtz equation.

THEOREM 2.1 ([22]). Let A = L + ĵC − K and M = L + ĵC − (α − βĵ)K
be the discretization matrices of(2.1) and (2.2), respectively, withL, C, andK the nega-
tive Laplacian, the boundary conditions, and the Helmholtz(k2) term, respectively. Choose
(α, β) = (1, 0.5).

(i) For Dirichlet boundary conditions,C = 0 and the eigenvalues ofM−1A lie on the
circle in the complex plane with centerc = (1

2 , 0) and radiusR = 1
2 .

(ii) For Sommerfeld boundary conditions,C 6= 0 and the eigenvalues ofM−1A are
enclosed by the circle with centerc = (1

2 , 0) and radiusR = 1
2 .

Proof. The proof for arbitrary(α, β) can be found in [22].
Sinceσ(M−1A) = σ(AM−1), Theorem2.1 holds also forAM−1. For the Helmholtz

equation with Dirichlet boundary conditions some detailedinformation about the spectrum,
e.g., the largest and smallest eigenvalues, can also be derived. We shall follow the approach
used in [11], which was based on a continuous formulation of the problem. The results, how-
ever, also hold for the discrete formulation as indicated in[11]. For simplicity, we consider
the 1D Helmholtz equation.
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At the continuous level, the eigenvalue problem of the preconditioned system can be
written as

−
(

d2

dx2
− k2

)
u = λ

(
− d2

dx2
− (1 − 0.5ĵ)k2

)
u, (2.4)

with λ the eigenvalue andu now the eigenfunction. By using the ansatzu = sin(iπx), i ∈ N,
from (2.4) we find that

λi =
i2π2 − k2

i2π2 − (1 − 0.5ĵ)k2
,

with

Re(λi) =
(i2π2 − k2)2

(i2π2 − k2)2 + 0.25k4
, Im(λi) = − 0.5(i2π2 − k2)k2

(i2π2 − k2)2 + 0.25k4
.

From the above relations, observe that0 < Re(λi) < 1, and therefore

lim
i→∞

Re(λi) = lim
k→∞

Re(λi) = 1.

The real parts are close to zero ifi2π2 are close tok2. The sign of the imaginary parts depends
on the modei. Also, limk→∞ Im(λi) = 0.5 andlimi→∞ Im(λi) = −0.5. By eliminating
i2π2 in (2.5), we have

(Re(λi) − 0.5)2 + Im(λi)
2 = 0.25.

Thus,λi lie on the circle with centerc = (1
2 , 0) and radiusR = 1

2 , as suggested by Theo-
rem2.1(i). The largest possible|λi| is approached asi → ∞, where, in this case,Re(λi) → 1
andIm(λi) → 0. Thus,limi→∞ |λi| = 1. This result is true for any choice ofk.

Suppose now that for somei, i2π2 − k2 = ǫ. For ǫ ≪ k, Re(λi) = 4ǫ2/k4 and
Im(λi) = −2ǫ/k2, and hence

|λi| = Re(λi)
2 + Im(λi)

2 =

(
4ǫ2

k4

)2

+

(
2ǫ

k2

)2

≈ 4ǫ2

k4
.

Therefore, while the spectrum ofM−1A is more clustered than the spectrum ofA, some
eigenvalues lie at a distance of orderO(ǫ/k2) from zero. Figure2.1 illustrates this spectral
property for a 1D Helmholtz problem withk = 20 and50. Clearly, the largest eigenvalue for
bothk’s is essentially the same and close to one, but the smallest eigenvalue moves towards
zero ask increases.

Since small eigenvalues may cause problems to a Krylov method, we discuss in the next
section the multilevel Krylov method, used to handle small eigenvalues.

3. Multilevel Krylov method. Consider again the linear system (1.3), where, for our
Helmholtz equation,̂A = AM−1 andb̂ = b. Our objective is to shift some small eigenvalues
in the spectrum of̂A to a fixed point, such that the new linear system has some more favorable
spectrum for convergence acceleration.

As explained in Section1, one way to achieve this is by using some deflation techniques,
in which some small eigenvalues are shifted to zero. Using the multilevel Krylov method,
however, we shift these small eigenvalues to the largest eigenvalue, and this shift is done by
either (1.4) or (1.5). Note that if we setλn = 0 in (1.4) or (1.5) we recover the deflation
preconditioner.
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FIGURE 2.1. Spectrum of a typical 1D Helmholtz problem preconditioned with the shifted Laplacian. The
wavenumberk is 20 (left) and 50 (right).

For (1.5) the following spectral property holds.
THEOREM3.1. Suppose that the eigenvalues ofÂ, λ1, . . . , λn ∈ σ(Â) ⊂ C, are ordered

increasingly in magnitude. LetZ, Y ∈ C
n×r, with r ≪ n, be full rank matrices1 whose

columns are the right and left eigenvectors associated withthe r smallest eigenvalues (in
magnitude) ofÂ. LetQN̂ be defined as in(1.5). Then

σ(ÂQN̂ ) = {λn, . . . , λn, λr+1, . . . , λn}.

Proof. The proof requires the identityPD̂ÂZ = 0, wherePD̂ = I − ÂZÊ−1Y T , which
is easily verified by a direct computation (see, e.g., [13]), and Theorem 3.5 of [8], which
establishes the spectral equivalenceσ(PN̂ Â) = σ(ÂQN̂ ), with PN̂ as in (1.4).

First, for i = 1, . . . , r, we havePN̂ ÂZ = PD̂ÂZ + λnZÊ−1Y T ÂZ = λn. Next, for
r + 1 ≤ i ≤ n, we have that

PN̂ Âzi = Âzi − ÂZÊ−1Y T Âzi + λnZÊ−1Y T Âzi = λizi,

due to orthogonality of eigenvectors. Finally, by using Theorem 3.5 of [8], σ(PN̂ Â) =

{λn, . . . , λn, λr+1, . . . , λn} = σ(ÂQN̂ ).
Thus, after applyingQN̂ to Â, r eigenvalues are no longer small and have been shifted

to λn. The smallest eigenvalue (in magnitude) is nowλr+1, and the rest of the spectrum
remains untouched. Ifλr+1 is of the same order of magnitude asλn, a Krylov subspace
method is expected to converge faster.

The computation of eigenvectors, however, is very expensive for large linear systems.
Furthermore, as eigenvectors,Z andY are dense.

In the following we will consider the deflation and the shift operator under any full rank
Z andY . We start with the deflation operator. Since

ÂQD̂Z = ÂZ − ÂZÊ−1Y T ÂZ = ÂZ − ÂZ = 0,

we obtain

σ(ÂQD̂) := {0, . . . , 0, µr+1, . . . , µn}.

1While the theory only requiresr < n, like in, e.g., multigrid, this condition emphasizes the importance of the
sufficiently small deflation subspace to make the overall methodpractical.
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Thus,ÂQD̂ hasr zero eigenvalues for arbitrary matricesZ andY . In contrast to Theorem3.1,
the remaining eigenvaluesµr+1, . . . , µn are not, in general, eigenvalues ofÂ. Thus, some of
the eigenvalues of̂A are shifted to zero, some of them are shifted to theµi.

The following theorem establishes a spectral relationshipbetween deflation and the shift
operator with any full rankZ andY .

THEOREM 3.2. Let Z, Y ∈ C
n×r be of rankr, Â be nonsingular, and letQD̂ =

I − ZÊ−1Y T Â. If QN̂ is defined as in(1.5), andZ, Y are such that

σ(ÂQD̂) := {0, . . . , 0, µr+1, . . . , µn},

then

σ(ÂQN̂ ) = {λn, . . . , λn, µr+1, . . . , µn}.

Proof. Combine Theorems 3.4 and 3.5 in [8]. Note, that the columns ofZ are the left
eigenvectors of̂AQD̂ corresponding to the eigenvalue equal to zero. Then, we obtain

ÂQN̂Z = λnZ.

Theorem 3.5 in [8] gives

σ(ÂQN̂ ) = σ(PN̂ Â).

Now, if

ÂQD̂xi = µixi,

for r + 1 ≤ i ≤ n and some eigenvectorsxi, we easily obtain

PN̂ Â(QD̂xi) = µi(QD̂xi).

In the above theorem,QD̂ is the right preconditioning version of the deflation precon-
ditioner. The action ofQD̂ on Â shifts r eigenvalues ofÂ to zero. WithQN̂ , these zero
eigenvalues in the spectrum of̂AQD̂ becomeλn in the spectrum of̂AQN̂ . Under the arbi-
trariness ofZ andY , the rest of the eigenvalues is also shifted toµi, i = r + 1, . . . , n, but
these eigenvalues are the same for bothÂQD̂ andÂQN̂ . Their exact values depend on the
choice ofZ andY . In particular,µn 6= λn. However, for anyµn andλn, there exists a con-
stantω ∈ C such thatµn = ωλn. The constantω is called theshift scaling factor. A shift
correction can be incorporated in (1.5) by replacingλn with ωλn. With this scaling, the
spectrum ofÂQD̂ andÂQN̂ differ only in the multiple eigenvalue zero and inλn. If the con-
vergence is only measured by the ratio of the largest and smallest nonzero eigenvalues, which
can be true in the case of symmetric positive definite matrices, a very similar convergence for
both methods can be expected.

To constructQN̂ , we need two components: the largest eigenvalueλn and the rectangular
matricesZ andY .

For λn, we note that in general its computation is expensive. As advocated in [8], it
is sufficient to use an approximation toλn. For example, Gerschgorin’s theorem [23] can
provide a good approximation toλn. For our Helmholtz problems, however, we shall use
results in Section2, i.e., for AM−1, Re(λn(AM−1)) = |λn(AM−1)| = 1. Thus, we set
λn = 1 in QN̂ .

For Z andY , we require that these matrices are sparse to avoid excessive memory re-
quirements. Next, we note thatZ : C

r 7→ C
n, andY T : C

n 7→ C
r, r ≪ n, are linear
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FIGURE 3.1. Interpolation in 1D: piece-wise interpolation (left) and linear interpolation (right).

maps similar to prolongation and restriction operators in multigrid. In multigrid, the matrix
Ê = Y T ÂZ is called the Galerkin coarse-grid approximation ofÂ. Since they are sparse,
these multigrid intergrid transfer operators are good candidates for the deflation matrices.
In [8], we used the piece-wise constant (zeroth-order) interpolation for Z and setY = Z.
This choice is not common in multigrid, but leads to an efficient multilevel Krylov method.
Since at the present time we do not have detailed theoreticalcriteria for the choice ofZ andY ,
we investigate these two possible options by looking at spectral properties and numerical ex-
periments based on a simple 1D problem. In this case, all eigenvalues can be computed easily
and the matricesM andÊ can be inverted exactly. In a 1D finite difference setting, the piece-
wise constant interpolation and multigrid prolongation (in this case, linear interpolation) are
illustrated in Figure3.1.

We first consider the spectra ofAM−1QN̂ , with Z the piece-wise constant interpolation
matrix andY = Z. Following the aforementioned discussion, we setλn = 1. Furthermore,
we setω = 1. The spectra are shown in Figure3.2. Compared to Figure2.1, Figure3.2
clearly shows that small eigenvalues near the origin are no longer present. The action ofQN̂ ,
however, changes the whole spectrum; i.e.,λi, i = r+1, . . . , n, are also shifted. Nevertheless,
this eigenvalue distribution is more favorable for a Krylovmethod as it is now clustered far
from the origin. Figure3.2 also indicates that increasing the deflation vectors (increasingr)
improves the clustering. Fork = 20 andr = n/2 = 50, the eigenvalues ofAM−1QN̂ are
now clustered compactly around one; cf. Figure3.2(c). Fork = 50, a very similar eigenvalue
clustering withk = 20 is observed if we setr = n/2; in this case,r = 125.

Next, we consider the spectra ofÂQN̂ with Z representing thelinear interpolation. Sim-
ilarly, we setY = Z, λn = 1, andω = 1. The spectra fork = 20 and50 are shown in
Figure3.3 for r = n/2. Compared to Figure3.2(c) and (d), the spectra are clustered around
one as well. Thus, either the piece-wise constant interpolation or the linear interpolation lead
to spectrally similar systems, and hence we can expect very similar convergence property for
both choices.

To see how the spectral properties translate to the convergence of a Krylov method, we
perform numerical experiments based on the 1D Helmholtz problem with constant wavenum-
ber. Again,M andÊ are inverted exactly. We apply GMRES to (1.6) and measure the number
of iterations needed to reduce the relative residual by six orders of magnitude. Convergence
results are shown in Table3.1, with Z ∈ C

n×r based on either piece-wise constant interpo-
lation or linear interpolation, and withY = Z. In all cases,r = n/2, wheren = 1/h andh
is the mesh size. The mesh sizeh decreases when the wavenumberk increases, so that the
solutions are solved on grids equivalent to 30, 15, and 8 gridpoints per wavelength2.

For the case without a “two-level” Krylov step (withoutQN̂ ), denoted by “standard”, we
observe convergence, which depends linearly on the wavenumber k. The convergence be-
comes less dependent onk if QN̂ is incorporated. In particular, ifZ is the linear interpolation

2 The use of 8 gridpoints per wavelength on the finest grid is, however, too coarse for a second-order finite-
difference scheme used in this experiment, as the pollution error becomes dominant, see, e.g., [2, 1]. For a second-
order scheme, the rule of thumb is to use at least 12 gridpoints per wavelength. For this reason, this is the only
example where 8 gridpoints per wavelength are used.
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(d) k = 50, r = n/2 = 125

FIGURE 3.2. Spectra of a preconditioned 1D Helmholtz problem,k = 20 and50. The number of grid points
for eachk is n = 100 and250, respectively.Z is obtained from the piece-wise constant interpolation.

matrix, the convergence can be made almost independent ofk, unless the grid is too coarse.
The convergence deterioration is worse in the case of the piece-wise constant interpolation.

TABLE 3.1
Number of preconditioned GMRES iterations for a 1D Helmholtz problem. Equidistant grids equivalent to

30/15/8 gridpoints per wavelength are used, andr = n/2. The relative residual is reduced by six orders of magni-
tude.

k = 20 k = 50 k = 100 k = 200 k = 500

Standard 14/15/15 24/25/26 39/40/42 65/68/78 142/146/157
QN̂ , piece-wise constant 4/5/7 4/6/10 5/7/14 6/10/20 7/15/37
QN̂ , linear interpolation 3/4/5 3/4/7 3/4/8 3/5/10 3/5/12

4. Multilevel Krylov method with approximate Galerkin systems. In Section3 we
saw that the convergence of GMRES preconditioned byM andQN̂ can be made indepen-
dent ofk, provided thatM andÊ are explicitly inverted. In higher dimensions (2D or 3D)
this approach is no longer practical. Particular to our preconditioner, the inverse ofM is
approximately computed by one multigrid iteration. Hence,M−1 is not explicitly available.
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FIGURE 3.3. Spectra of a preconditioned 1D Helmholtz problem,k = 20 and50. The number of grid points
for eachk is n = 100 and250, respectively.Z is obtained from the linear interpolation.

First consider thetwo-levelKrylov method. With any full rankY,Z ∈ C
n×r, the (right)

preconditioning step of a Krylov method can be written as

w = M−1QN̂v = M−1(I − ZÊ−1Y T AM−1 + ωλnZÊ−1Y T )v

= M−1(v − ZÊ−1Y T v′), (4.1)

where

v′ = (AM−1 − ωλnI)v and Ê = Y T ÂZ. (4.2)

In GMRES, the vectorv is the Arnoldi vector, which in turn givesv′ via (4.2). The vector
v′ ∈ C

n is then restricted toCr by Y T as in (4.1), namely

v′

R := Y T v′. (4.3)

With v′

R, the Galerkin problem in (4.1) now reads

vR := Ê−1v′

R ⇐⇒ v′

R = ÊvR. (4.4)

It is important to note here that the operatorQN̂ remains effective for convergence accel-
eration under inexact inversion of̂E; see [8]. Therefore, a Krylov method can be used to ap-
proximately solve (4.4). In general, the accuracy of the solution produced by a Krylov method
depends on the termination criteria. For ill-conditionedÊ it is possible that many Krylov it-
erations are needed for a substantial reduction of residuals/errors. To obtain a large reduction
of residuals/errors within a small number of Krylov iterations, shifting similar to (1.5) can
also be applied to the Galerkin system. This shift will require solving another but smaller
Galerkin system. A recursive application of shifting and iterative Galerkin solution leads to
the multilevel Krylov method. An algorithm of the multilevel Krylov method is presented
in [8].

With respect to the Galerkin solution, one immediate complication arises. SinceM−1 is
only available implicitly (via one multigrid iteration), the Galerkin matrixÊ is not explicitly
available. Aside from computational complexity to do inversion, formingÊ explicitly is also
not advisable because ofM−1, which implies thatÊ is dense. To set up a Galerkin system
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which is conducive to the multilevel Krylov method, we propose the following approxima-
tion. We approximate the inverseM−1 by Z(Y T MZ)−1Y T . This leads to

Ê := Y T ÂZ = Y T AM−1Z

≈ Y T AZ(Y T MZ)−1Y T Z = AHM−1
H BH =: ÂH , (4.5)

where the productsAH := Y T AZ, MH := Y T MZ, andBH := Y T Z are the Galerkin
matrices associated withA, M , andI respectively.

With the approximation (4.5), the Galerkin system (4.4) can now be written as

v′

R = AHM−1
H BHvR, (4.6)

where the solution vectorvR is obtained by using a Krylov subspace method. A fast conver-
gence of a Krylov method for (4.6) can be obtained by applying a projection on (4.6). This
immediately defines our multilevel Krylov method.

To construct a multilevel Krylov algorithm, we shall use notations which incorporate
level identification. For example, for the two-level Krylovmethod discussed above,A, M
andZ are now denoted byA(1), M (1) andZ(1,2), respectively. With these notations, we have

Â(2) = A(2)M (2)−1

B(2),

whereA(2) = Y (1,2)T

A(1)Z(1,2), M (2) = Y (1,2)T

M (1)Z(1,2), andB(2) = Y (1,2)T

I(1)Z(1,2).
The matrixÂ(2) is the second level(j = 2) Galerkin matrix associated witĥA(1) =

A(1)M (1)−1

, etc. If Â(2) is small enough, the Galerkin system

A(2)M (2)−1

B(2)v
(2)
R = (v′

R)(2)

can be solved exactly. Otherwise, we shall use a Krylov method to approximately solve it.
For the latter, we define the shift operator

Q
(2)

N̂
= I − Z(2,3)Â(3)−1

Y (2,3)T

Â(2) + ω(2)λ(2)
n Z(2,3)Â(3)−1

Y (2,3)T

,

with Â(3) = Y (2,3)T

Â(2)Z(2,3), and solve the linear system

A(2)M (2)−1

B(2)Q
(2)

N̂
ṽ
(2)
R = (v′

R)(2),

wherev
(2)
R = Q

(2)

N̂
ṽ
(2)
R , by a Krylov subspace method. In this case, the shift operator QN̂

makes the system better conditioned, improves the convergence on the second level, and
hence reduces iterations needed to solve the Galerkin system. The multilevel Krylov method
is obtained if the same argument is applied toÂ(3).

Suppose thatm levels are used, where at levelm − 1 the associated Galerkin problem
is sufficiently small to be solved exactly. The multilevel Krylov method can be written in an
algorithm as follows.
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Algorithm 1. Multilevel Krylov method with approximate Galerkin matrices
Initialization:
For j = 1, setA(1) := A, M (1) := M , B(1) := I, constructZ(1,2), and chooseλ(1)

n andω(1). With
this information,Â(1) = A(1)M (1)−1

andQ
(1)

N̂
= QN̂ are in principle determined.

For j = 2, . . . , m, chooseZ(j−1,j) andY (j−1,j), and compute

A
(j) = Y

(j−1,j)T

A
(j−1)

Z
(j−1,j)

,

M
(j) = Y

(j−1,j)T

M
(j−1)

Z
(j−1,j)

,

B
(j) = Y

(j−1,j)T

B
(j−1)

Z
(j−1,j)

,

which define

Â
(j) = A

(j)
M

(j)−1

B
(j)

.

For j = 2, . . . , m − 1, setω(j) andλ
(j)
n , and define

Q
(j)

N̂
= I − Z

(j−1,j)
Â

(j)−1

Y
(j−1,j)T `

Â
(j−1)

− ω
(j)

λ
(j)
n I

´
.

Iteration phase:
j = 1

SolveA(1)M (1)−1 eu(1) = b, u(1) = M (1)−1 eu(1) with Krylov iterations by computing
v
(1)
M = M (1)−1

v(1)

s(1) = A(1)v
(1)
M

t(1) = s(1)
− ω(1)λ

(1)
n v(1)

Restriction:(v′
R)(2) = Y (1,2)T

t(1)

If j = m

v
(m)
R = Â(m)−1

(v′
R)(m)

else
j = 2

SolveA(2)M (2)−1

B(2)v
(2)
R = (v′

R)(2) with Krylov iterations by computing

v
(2)
M = M (1)−1

B(2)v(2)

s(2) = A(2)v
(2)
M

t(2) = s(2)
− ω(2)λ

(2)
n v(2)

Restriction:(v′
R)(3) = Y (2,3)T

t(2)

If j = m

v
(m)
R = Â(m))−1

(v′
R)(m)

else
j = 3

SolveA(3)M (3)−1

B(3)v
(3)
R = (v′

R)(3)

. . .

Interpolation:v(2)
I = Z(2,3)v

(3)
R

q(2) = v(2)
− v

(2)
I

w(2) = M (2)−1

B(2)q(2)

p(2) = A(2)w(2)

Interpolation:v(1)
I = Z(1,2)v

(2)
R

q(1) = v(1)
− v

(1)
I

w(1) = M (1)−1

q(1)

p(1) = A(1)w(1)

REMARK 4.1. In solving the Galerkin problems by a Krylov subspace method, a zero
initial guess is always used. With this choice, the initial residual does not have to be computed
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explicitly because it is equal to the right-hand side vectorof the Galerkin system. Hence, we
can save one vector multiplication withA(j)M (j)−1

B(j).

REMARK 4.2. At every levelj, we require an estimate toλ(j)
n . Our numerical results

reveal that withω(j) = 1, j = 1, . . . , n − 1, takingλ
(j)
n = 1 leads to a good method.

5. Multilevel Krylov-multigrid method. In Algorithm 1, at each level two precondi-
tioner solutions related toM (j) are required to computev(j)

M andw(j). At the levelj = 1,
this solution is approximately determined by one multigriditeration. Even though the re-
sultant error reduction factorρ is not that of the typical text-book multigrid convergence (in
this case,ρ = 0.6), this choice leads to an effective preconditioner for convergence acceler-
ation of Krylov subspace methods for the Helmholtz equation[12]. Since the size ofM (j),
1 < j < m, may also be large, we shall use one multigrid iteration to approximately com-
puteM (j)−1

.
A multigrid method consists of a recursive application of presmoothing, restriction,

coarse-grid correction, interpolation and defect correction, and postsmoothing. Both pre-
and postsmoothing are carried out by basic iterative methods, e.g., damped Jacobi or Gauss-
Seidel, which smooth the error. The smooth errors are then restricted to the coarse-grid
subspace, where a coarse-grid system is solved to further correct the errors. This correction
is then added to the error in the fine-grid subspace, after an interpolation process. For further
reading on multigrid, we refer to, e.g, [21]. What is important to us is the multigrid restriction
and interpolation process, and the coarse-grid correctionstep.

Assume that a sequence of fine and coarse gridsΩj , j = 1, . . . ,m, Ω1 ⊃ Ω2 · · · ⊃ Ωm

are given. The multigrid transfer operators between two gridsΩj andΩj+1, denoted by

Ij+1
j : G(Ωj) 7→ G(Ωj+1), Ij

j+1 : G(Ωj+1) 7→ G(Ωj), (5.1)

are associated with the restriction and interpolation (or prolongation) process, respectively,
and are given as well. For the Galerkin coarse-grid correction, the coarse-grid system is
associated with the Galerkin coarse-grid matrix defined as

M
(j)
MG = Ij+1

j M
(j+1)
MG Ij

j+1. (5.2)

The processes (5.1) are algebraically the same as whatZ andY T , respectively, do in the
multilevel Krylov method, and (5.2) is similar toE. In multigrid, however, the matricesIj+1

j

andIj
j+1 should represent a sufficiently accurate interpolation and, respectively, restriction

of smooth functions. Since the multilevel Krylov method does not necessarily require this
criterion, the matricesIj+1

j andIj
j+1 are in general not the same asZ andY T , respectively.

This implies that, in general,M (j) 6= M
(j)
MG, j > 1. But it is not a problem for the multilevel

Krylov method to haveZ = Ij+1
j andY T = Ij

j+1, as the conditions in Theorem3.2are met.

In this case,M (j) = M
(j)
MG.

We comment on the choiceZ = Ij+1
j andY T = Ij

j+1. First, as shown for the 1D
example in Section3, with Z based on multigrid linear interpolation the convergence of
thetwo-level Krylov method is faster than with the piece-wise constant interpolation. We can
expect that this convergence property also holds for themulti-level Krylov method. Secondly,
since nowM (j) = M

(j)
MG, both the multilevel Krylov method and the multigrid steps for the

preconditioner solves use the same components. This avoidsadditional storage for multigrid
components. Furthermore, all coarse-grid information used by the multilevel Krylov and
multigrid parts are computed only once during the initialization phase of the multilevel Krylov
method. This will save the cost of the initialization phase.
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A multigrid algorithm for solving, e.g.,v(j)
M = M (j)−1

v
(j)
B in Algorithm 1, withv

(j)
B =

B(j)v(j), can be written as follows.

Algorithm 2. Multigrid with (j − m + 1) levels

Givenv
(j)
M,ℓ

Presmoothing:v(j)
M,ℓ+1/3 = smooth(M (j), v

(j)
M,ℓ, v

(j)
B )

r(j) = v
(j)
B − M (j)v

(j)
M,ℓ+1/3

Restriction:r(j+1) = Y (j,j+1)T

r(j)

Coarse-grid problem:
if j = m solvee(m) = M (m)−1

r(m)

else
. . .

endif
Prolongation:d(j) = Z(j,j+1)e(j+1)

Defect correction:v(j)
M,ℓ+2/3 = v

(j)
M,ℓ+1/3 + d(j)

Post-smoothing:v(j)
M,ℓ+1 = smooth(M (j), v

(j)
M,ℓ+2/3, v

(j)
B )

Incorporating Algorithm 2 in Algorithm 1, the multilevel Krylov-multigrid method (MKMG)
results. Note that in Algorithm 2, the finest multigrid levelis always the same as the current
level in the multilevel Krylov step. Hence, for the action ofQ

(j)

N̂
done at levelj = J < m,

multigrid with J − m grid levels is used to approximate the action of preconditionerM (J).
Figure5.1 illustrates one MKMG cycle withm = 5 levels. The white circles indicate

the pre- and postsmoothing process in multigrid applied toM , while the black circles cor-
respond to the multilevel steps. In this figure, the multigrid step is shown with V-cycle, but
this can in principle be replaced by other multigrid cycles.At the levelj of the multilevel
Krylov method, multigrid withm − j levels is called to approximately invertM (j) with the
corresponding coarse-grid matricesM (j+1), . . . ,M (m). Once the multilevel Krylov method
reaches the levelj = m − 1, the Galerkin problem at levelj = m is solved exactly.

1

2

3

4

5

IT+1IT

FIGURE 5.1. Multilevel Krylov-multigrid cycle withm = 5. “ •”: multilevel Krylov step; “◦”: multigrid step.

6. Numerical experiments. In this section we present convergence results for the 1D
and 2D Helmholtz equation. We compare performance of the multilevel Krylov-multigrid
method (denoted by MKMG) with that of Krylov preconditionedby shifted Laplacian (de-
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noted by MG). For both methods, we employ one multigrid iteration to invert the shifted
Laplacian, with F-cycle and one pre- and postsmoothing. Following [10], Jacobi with un-
derrelaxation (ωR = 0.5) is used as a smoother. This value was found via the Local Fourier
Analysis (LFA), and appeared to be optimal for problems considered there for a wide range
of wavenumbers. The coarsest level for both MKMG and MG consists of only one interior
grid point.

At each levelj > 1 of MKMG, GMRES [17] is applied to the preconditioned Galerkin
system. Since in this case the preconditioners are not fixed,a flexible version of GMRES,
called FGMRES, is employed. Forj = 1, the finest level, FGMRES is used for MKMG and
MG. Convergence for MKMG and MG is declared if the initial relative residual is reduced
by six orders of magnitude.

In principle it is not necessary to use the same number of FGMRES iterations at each
level. The notation MKMG(6,2,2), for instance, indicates that 6 FGMRES iterations are
employed at levelj = 2, 2 at levelj = 3 and 2 at levelj = 4, . . . ,m − 1. At level j = m
the coarse-grid problem is solved exactly. As observed in [8], it is the accuracy of solving the
Galerkin system at the second level which is of importance.

6.1. 1D Helmholtz. In this section, we use the same problem as in Section 3. Conver-
gence results are shown in Tables6.1–6.3.

Results in Tables6.1–6.3suggest that the convergence of MKMG is only mildly depen-
dent on the grid sizeh. Furthermore, the number of iterations to reach convergence increases
only mildly with an increase in the wavenumberk. These results are worse than the ideal
situation where the Galerkin system at the second level is solved exactly; cf. Table3.1. The
multilevel Krylov step in MKMG, however, improves the convergence of MG (shown in Ta-
ble6.1).

TABLE 6.1
Number of GMRES iterations for 1D Helmholtz problems with constant wave number. g/w stands for “# of

grid points per wavelength”. Multilevel Krylov method withMKMG(6,2,2). MG is shown in parentheses.

g/w k = 20 k = 50 k = 100 k = 200 k = 500
15 11 (19) 11 (29) 11 (43) 15 (66) 25 (138)
30 9 (18) 11 (28) 12 (42) 14 (68) 22 (136)
60 9 (18) 9 (28) 12 (43) 12 (68) 19 (141)

TABLE 6.2
Number of GMRES iterations for 1D Helmholtz problems with constant wave number. g/w stands for “# of

grid points per wavelength”. Multilevel Krylov method withMKMG(8,2,2) and MKMG(8,2,1) (in parentheses).

g/w k = 20 k = 50 k = 100 k = 200 k = 500
15 11 (11) 15 (16) 19 (18) 22 (21) 33 (33)
30 10 (10) 13 (13) 13 (13) 15 (15) 20 (20)
60 9 (9) 13 (13) 10 (12) 14 (14) 17 (18)

The significance of the number of iterations at the second level in MKMG can also be
seen in Tables6.1–6.3. While the convergence for MKMG(8,2,2) is slightly better than
MKMG(6,2,2), no significant improvement is gained with MKMG(6,4,2) (Table6.3). We
also observe thatoneFGMRES iteration at levelj ≥ 4 is sufficient for fast convergence; see
figures in parentheses in Table6.2.

Our last convergence results for the 1D Helmholtz test problem are associated with the
quality of the approximate solution produced by FGMRES at convergence. Here we com-
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TABLE 6.3
Number of GMRES iterations for 1D Helmholtz problems with constant wave number. g/w stands for “# of

grid points per wavelength”. Multilevel Krylov method withMKMG(6,4,2). Theℓ2 norm of errors are shown in
parentheses.

g/w k = 20 k = 50 k = 100 k = 200 k = 500
15 11 (2.42E–8) 15 (6.87E–8) 20 (6.68E–8) 23 (1.29E–7) 36 (4.80E–8)
30 10 (6.35E–8) 13 (4.83E–8) 13 (3.39E–8) 14 (1.02E–7) 19 (1.27E–7)
60 9 (1.17E–7) 16 (1.24E–7) 12 (6.78E–8) 16 (1.16E–6) 19 (4.39E–7)

pute the error between the approximate solution of MKMG at convergence and the solution
obtained from a sparse direct method. Theℓ2 norms of the error are shown in parentheses in
Table6.3. For all cases, theℓ2 norms of the error fall below10−5.

6.2. 2D Helmholtz. In this section, 2D Helmholtz problems in a square domain with
constant wavenumbers are presented. At the boundaries, thefirst-order approximation to
the Sommerfeld (non-reflecting) condition due to Engquist and Majda [6] is imposed. We
consider problems where a source is generated in the middle of the domain.

Following the 1D case, the deflation subspaceZ is chosen to be the same as the in-
terpolation matrix in multigrid. For 2D cases, however, care is needed in constructing the
interpolation matrixZ. Consider a set of fine grid points defined by

Ωh := {(x, y) | x = xix
= ixh, y = yiy

= iyh, ix = 1, . . . , Nx,h, iy = 1, . . . , Ny,h},

associated with the grid points on levelj = 1. The set of grid pointsΩH corresponding to the
coarse-grid levelj = 2 is determined as follows. We assume that(x1, y1) ∈ ΩH coincides
with (x1, y1) ∈ Ωh, as illustrated in Figure6.1 (left). Starting from this point, the complete
set of coarse-grid points is then selected according to the standard multigrid coarsening, i.e.,
by doubling the mesh size. This results in the coarse grid, for H = 2h,

ΩH := {(x, y) | x = xix
= (2ix − 1)h, y = yiy

= (2iy − 1)h,

ix = 1, . . . , Nx,H , iy = 1, . . . , Ny,H}.

As shown in [12], this coarsening strategy leads to a good multigrid methodfor the shifted
Laplacian preconditioner. Moreover, from a multilevel Krylov method point of view, this
coarsening strategy results in larger projection subspaces than if, e.g.,(x1, y1) ∈ ΩH coin-
cides with(x2, y2) ∈ Ωh; see Figure6.1 (right). As shown in Figure6.1, for example, with
7 × 7 grid points at the finest level, the latter coarsening approach leads to only 9 deflation
vectors, i.e.,r = 9. In contrast, the earlier approach results in 16 deflation vectors (r = 16),
which eventually shift 16 small eigenvalues.

Both approaches, however, produce the same number of deflation vectors if an even
number of grid points is used in each direction.

Having defined the coarse-grid points according to Figure6.1(left), the deflation vectors
are determined by using the bilinear interpolation processof coarse-grid value into the fine
grid as follows [21], for level 2 to level 1 (see Figure6.3(a) for the meaning of the symbols):

Ih
Hv(1)(x, y) =





v(2)(x, y), for •,
1
2 [v(2)(x, y − h) + v(2)(x, y + h)], for �,
1
2 [v(2)(x − h, y) + v(2)(x + h, y)], for △,
1
4 [v(2)(x − h, y − h) + v(2)(x − h, y + h)

+ v(2)(x + h, y − h) + v(2)(x + h, y + h)], for ◦ .
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FIGURE 6.1. Fine (white circles) and coarse (black circles) grid selections in 2D multigrid. Black circles also
coincide with the fine grids. Coarsening as depicted in the left figure leads to both better multigrid methods for the
shifted Laplacian and larger projection subspaces.

In some cases, however, such a coarsening may result in the last-indexed coarse-grid
points which do not coincide with the last-indexed fine-gridpoints. This is illustrated in
Figure6.2. There are three possible situations for such coarse-grid points, which are sum-
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FIGURE 6.2. Fine (white circles) and coarse (black circles) grid selections in 2D multigrid, where the last
indexed gridpoints do not coincide.

marized in Figure6.3 (b)–(d). The interpolation associated with(Nx,hh, jh), (ih,Ny,hh),
(Nx,hh,Ny,hh) ∈ Ωh are given as follows.

• For fine-grid points(x = Nx,hh, y = iyh) (Figure6.3(b))

Ih
Hv(1)(x, y) =





v(2)(x, y), for •,
1
2 [v(2)(x, y − h) + v(2)(x, y + h)], for �,

v(2)(x − h, y), for △,
1
2 [v(2)(x − h, y − h) + v(2)(x − h, y + h)], for ◦ .
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• For fine-grid points(x = ixh, y = Ny,hh) (Figure6.3(c))

Ih
Hv(1)(x, y) =





v(2)(x, y), for •,
v(2)(x, y − h), for �,
1
2 [v(2)(x − h, y) + v(2)(x + h, y)], for △,
1
2 [v(2)(x − h, y − h) + v(2)(x + h, y − h)], for ◦ .

• For fine-grid points(x = Nx,hh, y = Ny,hh) (Figure6.3(d))

Ih
Hv(1)(x, y) =





v(2)(x, y), for •,
v(2)(x, y − h), for �,

v(2)(x − h, y), for △,

v(2)(x − h, y − h), for ◦ .

Based on the interpolation matrixIh
H , we setZ(1,2) = Z(h,H) = Ih

H andRH
h = (Ih

H)T .

x,H Nx,Hi
Ny,H Ny,H

x,HNi

(a) (b) (c) (d)

y,Hi    +1 i    +1y,H

iy,H iy,H
i     +1x,H x,H x,Hi    +1

FIGURE 6.3. Fine (white colored) and coarse (black colored) grid selection indicating the bilinear interpola-
tion in 2D multigrid. Black circles (•) coincide with the fine grids.

Convergence results are shown in Tables6.4–6.8 for various wavenumbers. From these
tables, for low grid resolutions (e.g., 15 grid points per wavelength) we observe convergence
of MKMG which is mildly dependent on the wavenumberk. The convergence becomes
less dependent onk if the grid sizeh is smaller; see also Figures6.4–6.6 for comparisons
with MG.

TABLE 6.4
Number of GMRES iterations for 2D Helmholtz problems with constant wave number. g/w stands for “# of

grid points per wavelength”. Multilevel Krylov method withMKMG(4,2,1).

g/w k = 20 k = 40 k = 60 k = 80 k = 100 k = 120 k = 200 k = 300
15 11 14 15 17 20 22 39 64
20 12 13 15 16 18 21 30 45
30 11 12 12 13 13 15 24 39

From Tables6.4–6.8, it is apparent that MKMG(8,2,1) is the most efficient method, so
far, in terms of the number of iterations; it converges faster for all k andh used. If one is
more concerned with the number of MKMG iterations to reach convergence, one can use
more iterations at the levelj = 3 (e.g., MKMG(8,3,1), not shown), but this setting does not
lead to a further reduction in CPU time.
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TABLE 6.5
Number of GMRES iterations for 2D Helmholtz problems with constant wave number. g/w stands for “# of

grid points per wavelength”. Multilevel Krylov method withMKMG(5,2,1).

g/w k = 20 k = 40 k = 60 k = 80 k = 100 k = 120 k = 200 k = 300
15 11 14 15 18 19 21 31 52
20 12 13 15 15 16 18 25 37
30 11 12 12 13 13 14 18 28

TABLE 6.6
Number of GMRES iterations for 2D Helmholtz problems with constant wave number. g/w stands for “# of

grid points per wavelength”. Multilevel Krylov method withMKMG(6,2,1).

g/w k = 20 k = 40 k = 60 k = 80 k = 100 k = 120 k = 200 k = 300
15 11 14 14 18 18 20 28 47
20 12 13 15 15 16 17 25 36
30 11 12 12 13 13 14 16 25

TABLE 6.7
Number of GMRES iterations for 2D Helmholtz problems with constant wave number. g/w stands for “#grid

points per wavelength”. Multilevel Krylov method with MKMG(8,2,1).

g/w k = 20 k = 40 k = 60 k = 80 k = 100 k = 120 k = 200 k = 300
15 11 14 14 17 18 21 27 39
20 12 13 15 14 15 16 20 28
30 11 12 12 12 13 14 15 19

TABLE 6.8
Number of GMRES iterations for 2D Helmholtz problems with constant wave number. g/w stands fostands for

“#grid points per wavelength”. Multilevel Krylov method with MKMG(4,3,1).

g/w k = 20 k = 40 k = 60 k = 80 k = 100 k = 120 k = 200 k = 300
15 11 14 15 18 20 22 40 66
20 12 14 15 16 17 20 29 39
30 11 12 12 14 14 15 23 35

In order to gain insight onto the total arithmetic operations needed by MKMG, in Fig-
ures6.4–6.6, we compare CPU time needed by MKMG and MG to reach convergence. We
measure the elapsed time on a Pentium 4 machine for the initialization and iteration phase
with the MATLAB commandstic/toc. Since thefor loop is used in most parts of the
initialization phase, the measured time is too pessimistic.

From Figures6.4–6.6we observe that, for low wavenumbers, MG is still faster thanany
MKMG methods. MKMG only outperforms MG when the wavenumber becomes sufficiently
large. For instance, MKMG(8,2,1) is faster than MG fork > 150, in terms of number of
iterations and CPU time.

For k = 300, we were unable to run MG until convergence because of the excessive
memory used to keep all Arnoldi vectors. With 30 gridpoints per wavelength, the solution
vector alone has2.25 × 106 complex-valued entries. In this case, restarting GMRES does
not help. With full GMRES, we have to terminate the iterationafter 86 iterations with the
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computed residual only6.55 × 10−4, and with about 2.3×104 seconds of CPU time. Even
though for MKMG the initialization phase also consists of computing coarse-grid information
associated with matricesA(j) andB(j), and not onlyM (j) as in MG, the extra computation
does not significantly contribute to the total initialization time, as shown in the lower part of
Figures6.4–6.6(right). With nearly wavenumber-independent convergence, MKMG requires
far less memory than MG for high wavenumbers.
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FIGURE 6.4. Number of iterations and CPU time for GMRES with multigrid applied to the shifted Laplacian
preconditioner (MG) and multigrid-multilevel Krylov method (MKMG). 15 grid points per wavelength.
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FIGURE 6.5. Number of iterations and CPU time for GMRES with multigrid applied to the shifted Laplacian
preconditioner (MG) and the multigrid-multilevel Krylov method (MKMG). 20 grid points per wavelength.

7. Conclusions. In this paper, we have discussed a new multilevel Krylov method for
solving the 2D Helmholtz equation. This MKMG method is basedon a multilevel Krylov
method applied to the Helmholtz equation preconditioned bythe shifted Laplacian. With this
method, small eigenvalues of the original preconditioned system and the associated Galerkin
(coarse-grid) systems are shifted to one, leading to favorable spectra for the convergence of
Krylov subspace methods. At every level in the MKMG method, afew Krylov iterations are
used to solve the projected Galerkin (coarse-grid) preconditioned problems. The precondi-
tioner solves are done by one multigrid iteration, whose maximum level is reduced according
to the projection level.
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FIGURE 6.6. Number of iterations and CPU time for GMRES with multigrid applied to the shifted Laplacian
preconditioner (MG) and multigrid-multilevel Krylov method (MKMG). 30 grid points per wavelength.

Numerical experiments have been performed on the 1D and 2D Helmholtz equation
with constant wavenumber. The MKMG method leads to only mildly h-dependent andk-
dependent convergence. This considerable improvement in the convergence rate leads to
a speed up in CPU time when compared to Krylov methods with multigrid-based precondi-
tioner alone.

Finally, this multilevel Krylov method consists of severalingredients: a preconditioner
for Krylov iterations, restriction and prolongation operators, an approximation of the maxi-
mum eigenvalue, and an approximation to the Galerkin matrix. In this paper, we have chosen
a specific choice of all these ingredients, some of which are the same as and have been the
integral parts of a multigrid-based preconditioning method for the Helmholtz equation. Nev-
ertheless, other choices or new developments in those methods can be easily implemented in
our multilevel Krylov framework to obtain an even faster convergence.
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