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ON THE MODELING OF ENTROPY PRODUCING PROCESSES ∗
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Abstract. A general thermodynamic framework is presented for the study ofthe response of bodies undergoing
entropy producing processes. In general, in such processesthe natural configuration of a body, i.e., the configuration
that the body would take on the removal of all external stimuli,changes. The fact that material symmetry of the body
in these various natural configurations could be different allows one to model the response of bodies that cannot be
described by traditional models that are in place. It is assumed that the processes take place in a manner such that
the rate at which entropy is produced is maximized. Knowing howthe material stores energy, produces entropy,
conducts heat, absorbs or emits radiation, etc., allows one to determine the constitutive equation for the stress and
other relevant quantities. The fact that the body’s naturalconfiguration changes and the form for the stress response
from the natural configuration changes, leads to a lot of challenges with regard to the development of analytical as
well as numerical methods for the study of the response of bodies.
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1. Introduction. The response of bodies to external stimuli is characterizedby the many
ways in which bodies store energy, how they release this energy that is stored, the various
ways in which they produce entropy, how they conduct heat, how they emit and absorb radia-
tion, the structures for their latent heat and latent energy(the difference in the internal energy
associated with the different phases of the body), how much of the working that is supplied is
converted into heat, and in general other pertinent information with regard to the electromag-
netic response of bodies. For instance, a particular body might be able to store the energy that
is supplied to the body in such a manner that all of it can be recovered in a purely mechanical
process (such bodies are usually called elastic), however crystalline bodies with dislocations
are capable of storing energy due to the rearrangement of thedislocation structure, that cannot
be recovered in a purely mechanical process, the energy being recovered in a thermodynamic
process such as annealing. The external stimuli are not restricted to mechanical and thermal
quantities, a body is also stimulated by electrical and magnetic fields or an active chemical
environment; here we shall restrict ourselves to purely mechanical and thermal stimuli.

The configuration that a body takes in the absence of externalstimuli is called a natural
configuration. Given a set of external stimuli, it is possible that different natural configura-
tions might be achieved in the manner in which the external stimuli are removed. The natural
configuration achieved might be different based on whether the external loading is removed
instantaneously or very slowly. In an elastic body the manner in which the external load is
removed is irrelevant and one attains the same stress free configuration. It is however impor-
tant to recognize that a traction free configuration does notnecessarily lead to a stress free
configuration. A simple example for the same is the case of an elastic hemisphere; it could
be traction free in a stress free state or traction free in an everted stressed state. This leads
to the important fact that all equilibrium solutions for elastic bodies cannot be obtained by
requiring that the stored energy be a global minimum.

As the body is undergoing a thermodynamic process, the underlying natural configura-
tion can change, that is the configuration that the body attains on the removal of external
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stimuli, at different actual configurations of the body undergoing a thermodynamic process,
could change. An elastic material is a body that has one natural configuration and thus, on the
removal of external loading from any natural configuration,the body will return to the same
natural configuration. However, an inelastic body, such as the a metal that has been deformed
so that it has “yielded”, has an infinity of natural configurations, and a body that is under-
going solid to solid phase transition has a finite number of natural configurations; see [16]
and [18, 19] for a detailed discussion of the role of natural configurations in thermomechan-
ics. The question then arises as to whether there is some rational means for determining how
the natural configuration changes. It turns out that naturalconfigurations change whenever
entropy production takes place (thus the reason for the natural configuration not changing for
an elastic body, though it is possible that one can constructa mathematical theory wherein
the natural configurations do not change even when entropy isproduced). Eckart [4] seems
to have been the first to recognize the important role that natural configurations play in spec-
ifying the response of materials. For instance, classical plasticity can be viewed as infinity
of response functions from infinity of evolving natural configurations. His work is amongst
the most important studies in the thermomechanics of entropy producing processes and it is
unfortunate that this seminal work has been largely ignoreduntil recently. While Eckart’s
work made a significant advance on the state of entropy producing processes and the notion
of natural configurations, he did not recognize the role of the changing material symmetry
associated with these natural configurations and other related issues; see Rajagopal [16] for
a discussion of the same.

We shall find that requiring the thermodynamic processes to proceed according to the
rate of entropy production being maximized, leads naturally to determining the manner in
which the natural configurations evolve. As we shall see, appealing to this idea has been
successful in developing models to describe a disparate class of material responses.

Suppose that the current configuration of the body is denotedby κt, and further suppose
that on the removal of the external stimuli the body attains the configurationκp(t), the pre-
ferred natural configuration of the body amongst the severalnatural configurations that are
available to the body. As mentioned earlier, different natural configurations can be attained
based on the class of allowable thermodynamic processes (itdepends on the way in which the
external stimuli are removed, for instance if the external stimuli are removed instantaneously
the process under consideration would be adiabatic, while if they are removed slowly the
process would be isothermal). Also, a body might have one, a finite number or infinity of nat-
ural configurations associated with it while undergoing a thermodynamic process. Twinning
and solid to solid phase transitions are examples of a body having a finite number of natural
configurations.

Given a body, we have to decide on the set of properties that define the state of each
material point that belongs to the body. For instance, the deformation gradient, temperature,
stress, velocity gradient, the various temporal and spatial derivatives of the above quantities
as well as several other quantities could qualify to define the state of a particle. An important
point to bear in mind is that the set of natural configurationsthat a body can attain will also
be a part of the specification of the state variables. Constitutive relations are in their most
general form implicit relationships between the various state variables. Once the state space
associated with the body can be defined, we can discuss the processes that take the particle
from one state to another. These processes cannot be arbitrary; they have to be such that in
addition to the balance equations the second law of thermodynamics is met. The second law
requires the rate of entropy production to be non-negative.The second law is enforced in
a variety of ways; see Thomson [21], Clausius [2], and Planck [14]. However, at times more
stringent restrictions than the second law are enforced, the reasons for the same being that
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the second law allows for too many possible candidates for the constitutive relations. One
such more stringent requirement is the one introduced by Onsager; see Onsager [12], Pri-
gogine [13], Glansdorff and Prigogine [5]. Onsager’s requirement, which is often referred to
as Onsager’s Principle, does not have the same universalityas the second law and is expected
to hold for only special materials in special processes. Rajagopal and Srinivasa, in a series
of recent papers, require that the rate of entropy production be maximal to choose a subset
of constitutive relations from those that are non-negative. While Ziegler [23] had earlier ap-
pealed to such a requirement, he did not use it to obtain constitutive relations in the manner of
Rajagopal and Srinivasa; see Rajagopal and Srinivasa [18] for a discussion of the differences
between their approach and that of Ziegler. It might seem like the requirement demanded
by Rajagopal and Srinivasa contradicts Onsager’s Principle since they demand that the rate
of entropy production is maximal while the latter demands that it be minimal in equilibrium.
There is no contradiction whatsoever between the demands ofRajagopal and Srinivasa and
that of Onsager as they refer to totally different circumstances.

2. Kinematics and basic equations.An abstract bodyB is a set that has a topological
and measure theoretic structure (a detailed treatment of what is meant by a body can be found
in Truesdell [22]). Let κ be a reference placer that maps the abstract body onto its configu-
rationκ(B) in a three dimensional Euclidean space. Letκt(B) denote the configuration of
the bodyB, at timet. By the motionχ of the body, we mean a one to one mapping at each
instant of timet, that associates a particleX ∈ κ(B) with a particlex ∈ κt(B), i.e.,

x = χκ(X, t).

Properties associated with the body can be defined on the basis of reference configuration
(usually referred to as a Lagrangian representation, though it was introduced by Euler), the
current configuration (usually referred to as Eulerian representation, though it was used earlier
by D’Alembert and Bernoulli), or for that matter any other possible configuration the body
can be placed in, i.e., a propertyϕ can be defined through

ϕ = ϕκ(X, t) = ϕκt
(x, t).

We shall use the following notation to represent the derivatives based on referential and
current configurations:

∇ϕ =
∂ϕκ

∂X
, gradϕ =

∂ϕκt

∂x
,

dϕ

dt
=
∂ϕκ

∂t
,

∂ϕ

∂t
=
∂ϕκt

∂t
.

The gradient of the motion (usually called the deformation gradient) is defined through

Fκ =
∂χκ

∂X
, (2.1)

and the velocityv is defined through

v(X, t) =
∂χκ(X, t)

∂t
=⇒ v(x, t) = v(χ−1

κ (x, t), t). (2.2)

Consequently,

dϕ

dt
=
∂ϕ

∂t
+ v · gradϕ.

We also define the Cauchy-Green stretch tensorsBκ andCκ through

Bκ = FκF
T
κ , Cκ = FT

κ Fκ,
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and the velocity gradientL and its symmetric partD through1

L = gradv, D =
1

2

(

L + LT
)

.

It immediately follows from (2.1) and (2.2) that

L =
dFκ

dt
F−1

κ . (2.3)

Analogously to the above setting, we introduce the deformation gradientFκp(t)
as the

measure of the deformation betweenκp(t)(B) andκt(B), and we set

Bκp(t)
= Fκp(t)

FT
κp(t)

, Cκp(t)
= FT

κp(t)
Fκp(t)

.

Finally, we useG to denote the measure of deformation betweenκ(B) andκp(t)(B). Obvi-
ously,Fκ = Fκp(t)

G. Motivated by (2.3), we define

Lκp(t)
=
dG

dt
G−1

and we also set

Dκp(t)
=

1

2

(

Lκp(t)
+ LT

κp(t)

)

.

The minimal kinematical definitions provided above suffice for our discussions here.
Any process undergone by the body has to meet the balance of mass, linear and angular

momentum, and energy which are given by

dρ

dt
= −ρ div v,

ρ
dv

dt
= div T + ρb,

TT = T, (2.4)

ρ
dε

dt
= T · L − div q + ρr,

whereρ denotes the density,T the Cauchy stress,b the specific body force,ε the specific
internal energy,q the heat flux andr the radiant heating.

3. On the modeling of entropy producing process.Finally, we record the second law
of thermodynamics which the body has to meet in every process2

ρ
dη

dt
+ div

(q

θ

)

=
ρr

θ
+ ρξ, ξ ≥ 0,

whereη is the entropy,θ the temperature,q the heat flux, andξ is the rate of entropy pro-
duction. The second law expressed as above is different fromthe usual expression, where

1 It would be more appropriate to refer toL andD asLκt andDκt , but we have dropped the suffixκt from
which these measurements are made for the sake of convenience ofnotation.

2The second law, unlike the other laws that have been postulated, is inviolate. For instance, during radioactivity
the balance of mass is violated. The balance laws, as stated, hold for classical mechanics and have to be restated for
processes such as radioactivity, etc.
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the last term in the above equation is omitted and the equality is replaced by an inequality.
The above approach was used by Green and Nagdhi [6] and more recently by Rajagopal and
Srinivasa (see the review articles by Rajagopal and Srinivasa [18, 19] for a discussion of
its use in a variety of applications) to study the thermodynamic response of bodies, and we
shall find it convenient to use the second law in the above form. It is common practice in
continuum thermodynamics to obtain restrictions on the constitutive response functions by
allowing the body to undergo arbitrary thermodynamic processes. Such a procedure assumes
that the forms assumed for the constitutive response functions are valid in all these arbitrary
processes, but this is not the case as the type of response being modeled might not be possible
in all arbitrary processes. Thus, one would have to ensure that the process the body is subject
to is compatible with the assumed form for the response function.

On combining the balance of energy with the above equation weobtain

T · L − ρ
dε

dt
+ ρθ

dη

dt
−

q · grad θ

θ
= ρθξ =: ζ ≥ 0, (3.1)

where we refer toζ as the rate of dissipation. Usually the rate of dissipation refers to the
product of the density, temperature and the rate of entropy production associated with working
being converted to heat, i.e., energy in its thermal form, but here we shall use it to mean the
product of the density, temperature and the rate of entropy production associated with all
forms of entropy production.

On introducing the specific Helmholtz potential

ψ = ε− θη,

we can rewrite the above equation as

T · L − ρ
dψ

dt
− ρη

dθ

dt
−

q · grad θ

θ
= ζ. (3.2)

If one further assumes that the rate of entropy productionζ can be expressed additively
(it is not necessary to make this assumption and one can deal with more complicated forms
of entropy production) as

ζ = ζc + ζd,

whereζc is the rate of entropy production due to conduction andζd the rate of entropy pro-
duction due for the various other entropy producing processes, and if we further assume that

ζc = −
q · grad θ

θ
≥ 0,

then we are left with (using also (2.4))

T · D − ρ
dψ

dt
− ρη

dθ

dt
= ζd ≥ 0.

Now, depending on the problem under consideration we will have to assume appropriate
forms for the specific Helmholtz potentialψ, the rate of entropy productionζd, and the en-
tropy η. It is worth observing a definite advantage of the above approach, compared to the
usual assumption for the constitutive relation for the stress, namely that of making assump-
tions concerning two scalar functions instead of six scalarfunctions for the components of
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the stress. Let us consider, for the sake of illustration, isothermal3 processes. In this case,
equation (3.2) will further simplify to

T · D − ρ
dψ

dt
= ζd ≥ 0. (3.3)

It is important to bear in mind that the specific Helmholtz potential was introduced to
simplify the mathematical manipulations. Thus, in general, one has to prescribe constitutive
relations for the specific internal energy and the specific entropy.

The crux of the idea is to maximize the rate of entropy production subject to the second
law expressed in the form (3.3) (or in the more general case (3.1)) enforced as a constraint.
If any other constraints such as those of incompressibilityare to be enforced, then one has
to incorporate them into the function which is being maximized by introducing the appro-
priate Lagrange multipliers. A few words concerning the rationale for the maximization are
warranted. In an isolated system, the entropy of the system tends to a maximum and the
system attains equilibrium. The quickest way for the systemto attain the maximal value of
entropy is to undergo processes that produce the maximal rate of entropy. Though this might
seem a reasonable expectation for closed (isolated) systems we shall also require this to open
systems. It is important to bear in mind that the above requirement of the maximal rate of
entropy production is not a “principle” of thermodynamics,only a plausible and reasonable
assumption. Ziegler [23] appealed to such an assumption, but from a different perspective;
see Rajagopal and Srinivasa [18] for a detailed discussion of the distinction between Ziegler’s
approach and the one advocated here.

It is also important to discuss another idea in thermodynamics that is used a great deal,
especially when dealing with linear constitutive relations, namely the Onsager’s “principle”.
This “principle” requires that the rate of entropy production be minimal. This requirement
seems to contradict the requirement advocated earlier, butit is not so. The rate of entropy
production is a Liapunov function. The procedure of maximizing the rate of entropy pro-
duction picks one (or more) amongst numerous possible contenders for the choice of the rate
of entropy production. Once a choice for the rate of entropy production is made, as it is a
Liapunov function, it decreases to a minimal value with respect to time, and it is to this mini-
mality Onsager’s “principle” refers to; see Onsager [12], de Groot and Mazur [3], Glansdorff
and Prigogine [5]. A detailed discussion of the differences between the requirement of maxi-
mal rate of entropy production, for the choice of the rate of entropy production function, and
Onsager’s “principle” can be found in the paper by Rajagopaland Srinivasa [20]. In fact,
Rajagopal and Srinivasa [20] also provide a way for generalizing Onsager’s “principle”to
non-linear phenomenological laws. For the special case of the rate of entropy production be-
ing quadratic in an appropriate variable, one obtains linear phenomenological relations such
as Fourier’s law of heat conduction, Darcy’s law or Fick’s laws. The linear phenomenolog-
ical relations satisfy Onsager’s relations and, as the rateof entropy productions is quadratic
and a Liapunov function, it attains a minimum with time. However, when the rate of entropy
production is not quadratic, one does not obtain linear phenomenological relations, and one
cannot apply Onsagers’s relations. Rajagopal and Srinivasa [20] show how one can deal with
a rate of entropy production that is not quadratic and leads to non-linear phenomenological
relations. We shall not discuss these issues in detail here,but refer the interested reader to the
paper by Rajagopal and Srinivasa [20], where all the relevant issues are discussed at length.

In the case of isothermal processes, we are then required to maximize the rate of entropy
productionζd subject to the constraint (3.3). Thus, we maximize the function

3A fully thermodynamic theory that allows for phase transformations, conduction, radiation, etc., can be found
in the papers by Kannan et al. [7], Rao and Rajagopal [15] and Rajagopal and Srinivasa [19].
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Φ = ζd + λ1

(

ζd − T · D + ρ
dψ

dt

)

.

If in addition the body under consideration is incompressible, then we have to also take
into consideration that

I · D = divv = 0,

and thus we have to maximize

Φ = ζd + λ1

(

ζd − T · D + ρ
dψ

dt

)

+ λ2 I · D.

3.1. An example: viscoelastic fluids.In order to illustrate the efficacy of the idea we
apply our ideas to viscoelastic fluids. Suppose the specific Helmholtz potential and the rate
of entropy production are given by

ψ =
µ

2

(

I · Bκp(t)
− 3

)

,

and

ζd = ηD · Bκp(t)
D,

whereµ andη are constants.
A straightforward application of the procedure (see Rajagopal and Srinivasa [17] for

details) leads to the following representation for the Cauchy stress for the fluid

T = −pI + µBκp(t)
,

where

−
1

2

[

d

dt
Bκp(t)

− LBκp(t)
− Bκp(t)

LT

]

=
µ

η

[

Bκp(t)
− λI

]

and

λ =
3

(

I · B−1
κp(t)

) .

The above model is a generalization of the non-linear Maxwell model. Such a fluid
stores energy like a non-linear neo-Hookean solid and dissipates it like a viscous fluid that
takes into account the change in the underlying natural configuration. If one assumes that the
elastic response is that of a linearized elastic solid, thenone obtains the three dimensional
generalization of the one dimensional model developed by Maxwell [11] in his seminal paper
on the viscoelastic response of bodies. Different choices for the stored energy and the rate
of entropy production will lead to different models for viscoelastic fluids. The reader can
find how one could obtain models for different rate type viscoelastic fluids in Rajagopal and
Srinivasa [17].

The above procedure does not apply to merely viscoelastic fluids. Appropriate choices
for the stored energy and the rate of entropy production leadto all the known models for the
inelastic response of solids in addition to leading to new useful models, including models
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within the context of finite deformations. An important point to observe is that the methodol-
ogy automatically provides the “yield condition” and thereis no need to make additionalad
hocassumptions for the “yield condition”.

It is also worth mentioning that the procedure has been used to develop implicit constitu-
tive models. For example, Ḿalek and Rajagopal [8] develop models for incompressible fluids
wherein the viscosity depends on the pressure (the mean normal stress) and the symmetric
part of the velocity gradient (the model being a special implicit fluid model).

The above thermodynamic framework is able to describe a plethora of diverse phenom-
ena of materials: viscoelasticity, traditional inelasticresponse, twinning, solid to solid transi-
tions in shape memory alloys (see Rajagopal and Srinivasa [18, 19]), crystallization of poly-
mers (Rao and Rajagopal [15]), shape memory polymers (Barot et al. [1]), granular materials
(Málek and Rajagopal [9]), mixtures (Ḿalek and Rajagopal [10]), etc. The procedure seems
to have a lot of promise, but it is important to recognize thatthe procedure is not universal;
there are probably responses of bodies that cannot be described within the purview of the
above thermodynamic framework. However, the fact that it yields most of the known forms
of materials response provides a certain amount of assurance as to its applicability.
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