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ON THE EQUIVALENCE OF PRIMAL AND DUAL SUBSTRUCTURING
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Abstract. After a short historical review, we present four popular substructuring methods: FETI-1, BDD, FETI-
DP, BDDC, and derive the primal versions to the two FETI methods, called P-FETI-1 and P-FETI-DP, as proposed
by Fragakis and Papadrakakis. The formulation of the BDDC method shows that it is the same as P-FETI-DP and
the same as a preconditioner introduced by Cros. We prove the equality of eigenvalues of a particular case of the
FETI-1 method and of the BDD method by applying a recent abstract result by Fragakis.
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1. Introduction. Substructuring methods are among the most popular and widely used
methods for the solution of systems of linear algebraic equations obtained by finite element
discretization of second order elliptic problems. This paper provides a review of recent results
on the equivalence of several substructuring methods in a common framework, complemented
by some details not published previously.

In Section2 we give a brief review of the history of these methods. After introducing
the basic concepts of substructuring in Section3, we formulate the dual methods, FETI-1 and
FETI-DP in Section4, and derive their primal versions, P-FETI-1 and P-FETI-DP,originally
introduced in [20]. However the derivation was omitted in [20]. Next, in Section5, we
formulate the primal methods, BDD and BDDC . Finally, we study connections between the
methods in Section6. We revisit our recent proof that the P-FETI-DP is in fact thesame
method as the BDDC [35] and the preconditioner by Cros [8]. Next, we translate some of the
abstract ideas from [19, 20] into a framework usual in the domain decomposition literature.
We recall from [20] that for a certain variant of FETI-1, the P-FETI-1 method isthe same
algorithm as BDD. Then we derive a recent abstract result by Fragakis [19] in this special
case to show that the eigenvalues of BDD and that particular version of FETI-1 are the same.
It is notable that this is the variant of FETI-1 devised to deal with difficult, heterogeneous
problems [1].

2. Historical remarks. In this section, we provide a short overview of iterative sub-
structuring, also known as non-overlapping domain decomposition. Rather than attempting
a complete unbiased survey, our review centers on works connected to the BDD and FETI
theory by the second author and collaborators.

Consider a second order, selfadjoint, positive definite elliptic problem, such as the Laplace
equation or linearized elasticity, discretized by finite elements with characteristic element
sizeh. Given sufficient boundary conditions, the global stiffness matrix is nonsingular, and
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its condition number grows asO(h−2) for h → 0. However, if the domain is divided into
substructures consisting of disjoint unions of elements and the interior degrees of freedom of
each substructure are eliminated, the resulting matrix on the boundary degrees of freedom has
a condition number that grows only asO(H−1h−1), whereH ≫ h is the characteristic size
of the substructure. This fact has been known early on; see Keyes and Gropp [22] and, for
a recent rigorous treatment, Brenner [4]. The elimination of the interior degrees of freedom
is also calledstatic condensation, and the resulting reduced matrix is called theSchur com-
plement. Because of the significant decrease of the condition number, one can substantially
accelerate iterative methods by investing some work up front in the Cholesky decomposition
of the stiffness matrix on the interior degrees of freedom, and then just run back substitution
in each iteration. The finite element matrix is assembled separately in each substructure. This
process is calledsubassembly. The elimination of the interior degrees of freedom in each
substructure can be done independently, which is importantfor parallel computing: each sub-
structure can be assigned to an independent processor. The substructures are then treated as
large elements, with the Schur complements playing the roleof the local stiffness matrices of
the substructures; see [22, 43] for more details.

The process just described is the background ofprimal iterative substructuring methods.
Here, the condition that the values of degrees of freedom common to several substructures co-
incide is enforced strongly, by using a single variable to represent them. The improvement of
the condition number fromO(h−2) to O(H−1h−1), straightforward implementation, and the
potential for parallel computing explain the early popularity of iterative substructuring meth-
ods [22]. However, further preconditioning is needed. Perhaps themost basic preconditioner
for the reduced problem is a diagonal one. Preconditioning of a matrix by its diagonal helps
to take out the dependence on scaling and variation of coefficients and grid sizes. But the
diagonal of the Schur complement is expensive to obtain. It is usually better to avoid comput-
ing the Schur complement explicitly and only use multiplication by the reduced substructure
matrices, which can be implemented by solving aDirichlet problem on each substructure.
Probing methods (Chan and Mathew [6]) use such matrix-vector multiplication to estimate
the diagonal entries of the Schur complement.

In dual iterative substructuring methods, also called FETI methods, the condition that the
values of degrees of freedom common to several substructures coincide is enforced weakly,
by Lagrange multipliers. The original degrees of freedom are then eliminated, resulting in
a system for the Lagrange multipliers, with the system operator consisting essentially of an
assembly of the inverses of the Schur complements. Multiplication by the inverses of the
Schur complements can be implemented by solving aNeumannproblem on each substructure.
The assembly process is modified to ensure that the Neumann problems are consistent, giving
rise to a natural coarse problem. The system for the Lagrangemultipliers is solved again
iteratively. This is the essence of the FETI method by Farhatand Roux [18], later called
FETI-1. The condition number of the FETI-1 method with diagonal preconditioning grows
asO(h−1) and is bounded independently of the number of substructures; see Farhat, Mandel,
and Roux [17]. For a small number of substructures, the distribution of the eigenvalues of the
iteration operator is clustered at zero, resulting in superconvergence of conjugate gradients;
however, for more than a handful of substructures, the superconvergence is lost and the speed
of convergence is as predicted by theO(h−1) growth of the condition number [17].

For large problems and large number of substructures,asymptotically optimal precon-
ditionersare needed. These preconditioners result typically in condition number bounds of
the formO(logα(1 + H/h)) (the number1 is there only to avoid the valuelog 1 = 0). In
particular, the condition number is bounded independentlyof the number of substructures
and the bounds grow only slowly with the substructure size. Such preconditioners require a
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coarse problem, andlocal preconditioningthat inverts approximately (but well enough) the
diagonal submatrices associated with segments of the interfaces between the subtructures or
the substructure matrices themselves. The role of the localpreconditioning is to slow down
the growth of the condition number ash → 0, while the role of the coarse problem is to pro-
vide global exchange of information in order to bound the condition number independently
of the number of substructures. Many such asymptotically optimal primal methods were de-
signed in the 1980s and 1990s; e.g., Bramble, Pasciak, and Schatz [2, 3], Dryja [11], Dryja,
Smith, and Widlund [13], Dryja and Widlund [14], and Widlund [46]. However, those algo-
rithms require additional assumptions and information that may not be readily available from
finite element software, such as an explicit assumption thatthe substructures form a coarse
triangulation and that one can build coarse linear functions from its vertices.

Practitioners desire methods that work algebraically witharbitrary substructures, even
if a theory may be available only in special cases (first results on extending the theory to
quite arbitrary substructures are given in Dohrmann, Klawonn, and Widlund [10] and Kla-
wonn, Rheinbach, and Widlund [23]). They also prefer methods formulated in terms of the
substructure matrices only, with minimal additional information. In addition, the methods
should be robust with respect to various irregularities of the problem. Two such methods
have emerged in early 1990s: the Finite Element Tearing and Interconnecting (FETI) method
by Farhat and Roux [18], and the Balancing Domain Decomposition (BDD) by Mandel [31].
Essentially, the FETI method (with the Dirichlet preconditioner) preconditions the assembly
of the inverses of the Schur complements by an assembly of theSchur complements, and the
BDD method preconditions assembly of Schur complements by an assembly of the inverses,
with a suitable coarse problem added. Of course, the assembly weights and other details play
an essential role.

The BDD method added a coarse problem to the local Neumann-Neumann precondi-
tioner by DeRoeck and Le Tallec [41], which consisted of the assembly (with weights) of
pseudoinverses of the local matrices of the substructure. Assembling the inverses of the local
matrices is an idea similar to the Element-by-Element (EBE)method by Hughes et al. [21].
The method was called Neumann-Neumann because the preconditioner requires solution of
Neumann problems on all substructures, in contrast to an earlier Neumann-Dirichlet method,
which, for a problem with two substructures, required the solution of a Neumann problem on
one and a Dirichlet problem on the other [46]. The coarse problem in BDD was constructed
from the natural nullspace of the problem (constant for the Laplace equation, rigid body mo-
tions for elasticity) and solving the coarse problem guaranteed consistency of local problems
in the preconditioner. The coarse correction was then imposed variationally, just as the coarse
correction in multigrid methods. TheO(log2(1 + H/h)) bound was then proved [31].

In the FETI method, solving the local problems on the substructures to eliminate the orig-
inal degrees of freedom has likewise required working in thecomplement of the nullspace of
the substructure matrices, which gave a rise to a natural coarse problem. Since the operator
employs inverse of the Schur complement (solving a Neumann problem) an optimal precondi-
tioner employs multiplication by the Schur complement (solving a Dirichlet problem), hence
the preconditioner was called the Dirichlet preconditioner. TheO(log3(1 + H/h)) bound
was proved by Mandel and Tezaur [36], andO(log2(1 + H/h)) for a certain variant of the
method by Tezaur [44]; see also Klawonn and Widlund [25] for further discussion.

Because the interface to the BDD and FETI method required only the multiplication by
the substructure Schur complements, solving systems with the substructure Schur comple-
ments, and information about the substructure nullspace, the methods got quite popular and
widely used. In Cowsar, Mandel, and Wheeler [7], the multiplications were implemented
as solution of mixed problems on substructures. However, neither the BDD nor the FETI
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method worked well for 4th order problems (plate bending). The reason was essentially that
both methods involve “tearing” a vector of degrees of freedom reduced to the interface, and,
for 4th order problems, the “torn” function has energy that grows as negative power ofh,
unlike for 2nd order problems, where the energy grows only asa positive power oflog 1/h.
The solution was to prevent the “tearing” by fixing the function at the substructure corners;
then only its derivative along the interface gets “torn”, which has energy again only of the
order log 1/h. Preventing such “tearing” can be generally accomplished by increasing the
coarse space, since the method runs in the complement to the coarse space. For the BDD
method, this was relatively straightforward, because the algebra of the BDD method allows
arbitrary enlargement of the coarse space. The coarse spacethat does the trick contains
additional functions with spikes at corners, defined by fixing the value at the corner and min-
imizing the energy. With this improvement,O(log2(1+H/h)) condition number bound was
proved and fast convergence was recovered for 4th order problems (Le Tallec, Mandel, and
Vidrascu [28, 29]). In the FETI method, unfortunately, the algebra requiresthat the coarse
space is made of exactly the nullspace of the substructure matrices, so a simple enlargement of
the coarse space is not possible. Therefore, a version of FETI, called FETI-2, was developed
by Mandel, Tezaur, and Farhat [38], with a second correction by coarse functions concen-
trated at corners, wrapped around the original FETI method variationally much like BDD,
and theO(log3(1 + H/h)) bound was proved again. However, the BDD and FETI methods
with the modifications for 4th order problems were rather unwieldy (especially FETI-2), and,
consequently, not as widely used.

The breakthrough came with the Finite Element Tearing and Interconnecting - Dual,
Primal (FETI-DP) method by Farhat et al. [15], which enforced the continuity of the de-
grees of freedom on a substructure corner as in the primal method by representing them
by one common variable, while the remaining continuity conditions between the substruc-
tures are enforced by Lagrange multipliers. The primal variables are again eliminated and
the iterations run on the Lagrange multipliers. The elimination process can be organized as
solution of sparse system and it gives rise to a natural coarse problem, associated with sub-
structure corners. In 2D, the FETI-DP method was proved to have condition number bounded
asO(log2(1 + H/h)) both for 2nd order and 4th order problems by Mandel and Tezaur[37].
However, the method does not converge as well in 3D and averages over edges or faces of
substructures need to be added as coarse variables for fast convergence (Klawonn, Widlund,
and Dryja [27], Farhat, Lesoinne, and Pierson [16]), and theO(log2(1 + H/h)) bound can
then be proved [27].

The Balancing Domain Decomposition by Constraints (BDDC) was developed as a pri-
mal alternative the FETI-DP method by Dohrmann [9]. The BDDC method imposes the
equality of coarse degrees of freedom on corners and of averages by constraints. In the case
of only corner constraints, the coarse basis functions are the same as in the BDD method
for 4th order problems from [28, 29]. The boundO(log2(1 + H/h)) for BDDC was first
proved by Mandel and Dohrmann [33]. The BDDC and the FETI-DP are currently the most
advanced versions of the BDD and FETI families of methods.

The convergence properties of the BDDC and FETI-DP methods were quite similar, yet
it came as a surprise when Mandel, Dohrmann, and Tezaur [34] proved that the spectra of
their preconditioned operators are in fact identical, onceall the components are same. This
result came at the end of a long chain of ties discovered between BDD and FETI type method.
Algebraic relations between FETI and BDD methods were pointed out by Rixen et al. [40],
Klawonn and Widlund [25], and Fragakis and Papadrakakis [20]. An important common
bound on the condition number of both the FETI and the BDD method in terms of a single
inequality was given by Klawonn and Widlund [25]. Fragakis and Papadrakakis [20], who
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derived certain primal versions of FETI and FETI-DP preconditioners (called P-FETI-1 and
P-FETI-DP), have also observed that the eigenvalues of BDD and a certain version of FETI
are identical along with the proof that the primal version ofthis particular FETI algorithm
gives a method same as BDD. The proof of equality of eigenvalues of BDD and FETI was
given just recently in more abstract framework by Fragakis [19]. Mandel, Dohrmann, and
Tezaur [34] have proved that the eigenvalues of BDDC and FETI-DP are identical and they
have obtained a simplified and fully algebraic version (i.e., with no undetermined constants)
of a common condition number estimate for BDDC and FETI-DP, similar to the estimate by
Klawonn and Widlund [25] for BDD and FETI. Simpler proofs of the equality of eigenvalues
of BDDC and FETI-DP were obtained by Li and Widlund [30], and by Brenner and Sung [5],
who also gave an example when BDDC has an eigenvalue equal to one but FETI-DP does not.
A primal variant of P-FETI-DP was proposed by Cros [8], giving a conjecture that BDDC and
P-FETI-DP is in fact the same method, which was first shown on asomehow more abstract
level in our recent work [35].

It is interesting to note that the choice of assembly weightsin the BDD preconditioner
was known at the very start from the work of DeRoeck and Le Tallec [41] and before, while
the choice of weights for FETI type method is much more complicated. A correct choice of
weights is essential for the robustness of the methods with respect to scaling the matrix in
each substructure by an arbitrary positive number (the “independence of the bounds on jumps
in coefficients”). For the BDD method, such convergence bounds were proved by Mandel
and Brezina [32], using a similar argument as in Sarkis [42] for Schwarz methods; see also
Dryja, Sarkis, and Widlund [12]. For the FETI methods, a proper choice of weights was
discovered only much later; see Rixen and Farhat [39], Farhat, Lesoinne and Pierson [16] for
a special case, Klawonn and Widlund [25] for a more general case and convergence bounds,
and a detailed discussion in Mandel, Dohrmann, and Tezaur [34].

3. Substructuring components for a model problem.We first show how the spaces
and operators we will work with arise in the standard substructuring theory for a model prob-
lem obtained by a discretization of the second order elliptic problem. Consider a bounded
domainΩ ⊂ R

d decomposed into nonoverlapping subdomains (alternatively called substruc-
tures) denotedΩi, i = 1, ..., N , which form a conforming triangulation of the domainΩ.
Each substructure is a union of a uniformly bounded number ofLagrangeanP1 or Q1 fi-
nite elements, such that the nodes of the finite elements between substructures coincide. The
boundary ofΩi is denoted by∂Ωi. The nodes contained in the intersection of at least two sub-
structures are called boundary nodes. The union of all boundary nodes of all substructures is
called the interfaceΓ, andΓi is the interface of substructureΩi. The space of vectors of local
degrees of freedom onΓi is denoted byWi andW = W1 ×· · ·×WN . LetSi : Wi → Wi be
the Schur complement operator obtained by eliminating all interior degrees of freedom ofΩi,
i.e., those that do not belong to interfaceΓi. We assume that the matricesSi are symmetric
positive semidefinite and consider global vectors and matrices in the block form

w =




w1

...
wN


 , w ∈ W, S =




S1

. . .
SN


 . (3.1)

The problem we wish to solve is the constrained minimizationof energy,

1

2
a(u, u) − 〈r, u〉 → min, subject tou ∈ Ŵ , (3.2)
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whereŴ ⊂ W is the space of all vectors of degrees of freedom on the substructures that
coincide on the interfaces, and the bilinear form

a(u, v) = 〈Su, v〉 , ∀u, v ∈ W,

is assumed to be positive definite on̂W . In the variational form, problem (3.2) can be written
as

u ∈ Ŵ : a(u, v) = 〈r, v〉 , ∀v ∈ Ŵ . (3.3)

The global Schur complement̂S : Ŵ 7→ Ŵ ′ associated witha is defined by

a(u, v) = 〈Ŝu, v〉, ∀u, v ∈ Ŵ .

DefiningR as the natural embedding of the spaceŴ into the spaceW , i.e.,

R : Ŵ → W, R : u ∈ Ŵ 7−→ u ∈ W, (3.4)

we can write (3.3) equivalently as the system of linear algebraic equations

Ŝu = r, whereŜ = RT SR. (3.5)

The BDDC and FETI-DP, as the two-level preconditioners, arecharacterized by the se-
lection of certaincoarse degrees of freedom, such as values at the corners and averages over
edges or faces of substructures; for their general definition see, e.g., [26]. So, we define
W̃ ⊂ W as the subspace of all functions such that the values of any coarse degrees of free-
dom have a common value for all relevant substructures and vanish on∂Ω, and such that

Ŵ ⊂ W̃ ⊂ W.

The spacẽW has to be selected in the design of the preconditioner so thatthe bilinear form
a(·, ·) is positive definite oñW . The operator̃S : W̃ → W̃ ′ associated witha is defined by

a(u, v) = 〈S̃u, v〉, ∀u, v ∈ W̃ .

REMARK 3.1. The idea to restrict the bilinear forma(·, ·) from the spaceW into the
subspacẽW is closely related to the concept of subassembly, as employed in [30].

In formulation of dual methods from the FETI family, we introduce the matrix

B = [B1, . . . , BN ] ,

which enforces the continuity across substructure interfaces and it is defined as follows: each
row B corresponds to a degree of freedom common to a pair of substructuresi andj. The
entries of the row are zero except for one+1 in the blocki and one−1 in the blockj, so that
the condition

Bu = 0 ⇐⇒ u ∈ Ŵ ,

and using (3.4), clearly

BR = 0. (3.6)
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An important ingredient of substructuring methods is the averaging operatorE : W → Ŵ
defined as

E = RT DP ,

whereDP : W → W is a given weight matrix such that the decomposition of unityproperty
holds,

ER = I. (3.7)

In terms of substructuring,E is an averaging operator that maps the substructure local degrees
of freedom to global degrees of freedom.

The last ingredient is the matrixBD constructed fromB as

BD = [DD1B1, . . . ,DDNBN ] ,

where the matricesDDi are determined fromDP ; see [27, 34] for details.
Finally, we shall assume (cf. [34, equation (10)]) that

BT

DB + RE = I, (3.8)

which easily impliesEBT

D
B = E(I − RE) = E − ERE = 0, and so

BT BDET = 0. (3.9)

4. P-FETI family of methods. We review the FETI-1 and FETI-DP preconditioners
followed in each case by a formulation of their primal versions denoted as P-FETI-1 and
P-FETI-DP, respectively.

4.1. P-FETI-1. In the case of the FETI-1 method, the problem (3.2) is formulated as
minimization of total subdomain energy subject to the continuity condition

1

2
a(w,w) − 〈f, w〉 → min, subject tow ∈ W, Bw = 0, (4.1)

which is equivalent to a saddle point system: find(w, λ) ∈ W × Λ such that

Sw + BT λ = f,

Bw = 0.
(4.2)

First, note thatS is invertible onnullB andλ is unique up to a component innullBT , soΛ
is selected to berange B. Let Z be matrix with linearly independent columns, such that

range Z = nullS. (4.3)

SinceS is semi-definite, it must hold for the first equation to be solvable that

f − BT λ ∈ range S = (nullS)
⊥

= (rangeZ)
⊥

= nullZT ,

so, equivalently, we require that

ZT (f − BT λ) = 0. (4.4)

Eliminatingw from the first equation of (4.2) as

w = S+(f − BT λ) + Za, (4.5)
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substituting in the second equation of (4.2) and rewriting (4.4), we get

BS+BT λ − BZa = BS+f,

−ZT BT λ = −ZT f.

DenotingG = BZ andF = BS+BT this system becomes

Fλ − Ga = BS+f,

−GT λ = −ZT f.
(4.6)

Multiplying the first equation by(GT QG)−1GT Q, whereQ is some symmetric and positive
definite scaling matrix, we can computea as

a = (GT QG)−1GT Q(Fλ − BS+f). (4.7)

The first equation in (4.6) thus becomes

Fλ − G(GT QG)−1GT Q(Fλ − BS+f) = BS+f. (4.8)

Introducing

P = I − QG(GT QG)−1GT ,

as theQ-orthogonal projection ontonullGT , we get that (4.8) corresponds to the first equa-
tion in (4.6) multiplied by PT . So, the system (4.6) can be written in the decoupled form
as

PT Fλ = PT BS+f,

GT λ = ZT f.

The initial value ofλ is chosen to satisfy the second equation in (4.6), so

λ0 = QG(GT QG)−1ZT f. (4.9)

Substitutingλ0 into (4.7) gives initial value ofa as

a0 = (GT QG)−1GT Q(Fλ0 − BS+f). (4.10)

Since we are looking forλ ∈ nullGT , the FETI-1 method is a preconditioned conjugate
gradient method applied to the system

PT FPλ = PT BS+f. (4.11)

In the primal version of the FETI-1 preconditioner, the assembled and averaged solutionu is
obtained from (4.5), using equations (4.10) and (4.9), as

u = Ew

= E
[
S+(f − BT λ0) + Za0

]

= E
[
S+(f − BT λ0) + Z(GT QG)−1GT Q(Fλ0 − BS+f)

]

= E
[
S+(f − BT λ0) + Z(GT QG)−1GT Q(BS+BT λ0 − BS+f)

]

= E
[
I − Z(GT QG)−1GT QB

]
S+(f − BT λ0)

= E
[
(I − Z(GT QG)−1GT QB)S+(I − BT QG(GT QG)−1ZT )

]
ET r

= EHT S+HET r

= MP-FETIr,
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where we have denoted by

H = I − BT QG(GT QG)−1ZT , (4.12)

and so

MP-FETI = EHT S+HET , (4.13)

is the associated primal preconditioner P-FETI-1, same as [20, equation (79)].

4.2. P-FETI-DP. In the case of the FETI-DP, the problem (3.2) is formulated as mini-
mization of total subdomain energy subject to the continuity condition

1

2
a(w,w) − 〈f, w〉 → min, subject tow ∈ W̃ , Bw = 0. (4.14)

Compared to the formulation of FETI-1 in (4.1), we have now used the subspacẽW ⊂ W

such that the operator̃S associated witha(·, ·) on the spacẽW is positive-definite. In this
case, (4.14) is equivalent to setting up a saddle point system: find(w, λ) ∈ W̃ × Λ such that

S̃w + BT λ = f,

Bw = 0.
(4.15)

Since S̃ is invertible onW̃ , solving for w from the first and substituting into the second
equation of (4.15), we get

BS̃−1BT λ = BS̃−1f,

which is the dual system to be solved by preconditioned conjugate gradients, with the Dirich-
let preconditioner defined by

MFETI-DP = BDS̃BT

D.

Next, we will derive the P-FETI-DP preconditioner using theoriginal paper by Farhat et.
al. [15] in order to verify the P-FETI-DP algorithm given in [20, equation (90)] for the corner
constraints. We split the global vector of degrees of freedom u into the vector of global coarse
degrees of freedom, denoted byuc, and the vector of remaining degrees of freedom, denoted
by ur. We note that we could perform a change of basis (cf. [24, 26, 30]) to make all primal
constraint (such as averages over edges or faces) explicit,i.e., each coarse degrees of freedom
would correspond to an explicit degree of freedom in the vector uc. Thus, we decompose the
spacẽW as (cf. [34, Remark 5])

W̃ = W̃c ⊕ W̃r, (4.16)

where the spacẽWc consists of functions that are continuous across interfaces, have a nonzero
value at one coarse degree of freedom at a time, and zero at other coarse degrees of freedom,
and the spacẽWr consists of functions with coarse degrees of freedom equal to zero. The
solution splits into the solution of the global coarse problem in the spacẽWc and the solution
of independent subdomain problems on the spaceW̃r.

Let R(i)
c be a map of global coarse variables to its subdomain component, i.e.,

R(i)
c uc = u(i)

c , Rc =




R
(1)
c

...

R
(N)
c


 ,
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let Br be an operator enforcing the interface continuity ofur by

Brur = 0, Br =
[
B

(1)
r . . . B

(N)
r

]
,

and let the mappingsET
r andET

c distribute the primal residualr to the subdomain forces and
to the global coarse problem right-hand side, respectively.

The equations of equilibrium can now be written (cf. [15, equation (9)–(10)]) as

S(i)
rr w(i)

r + S(i)
rc R(i)

c wc + B(i)T
r λ = f (i)

r ,

N∑

i=1

R(i)T
c S(i)T

rc w(i)
r +

N∑

i=1

R(i)T
c S(i)

cc R(i)
c wc = fc,

N∑

i=1

B(i)
r w(i)

r = 0,

where the first equation corresponds to independent subdomain problems, second corre-
sponds to the global coarse problem and the third enforces the continuity of local problems.
This system can be re-written as




Srr SrcRc BT
r

(SrcRc)
T

S̃cc 0
Br 0 0







ur

uc

λ


 =




fr

fc

0


 , (4.17)

wherefr = ET
r r, fc = ET

c r, and the blocks are defined as

S̃cc =

N∑

i=1

R(i)T
c S(i)

cc R(i)
c , Srr =




S
(1)
rr

. . .

S
(N)
rr


 , SrcRc =




S
(1)
rc R

(1)
c

...

S
(N)
rc R

(N)
c


 .

REMARK 4.1. Note that the system (4.17) is just the expanded system (4.15).

Expressingur from the first equation in (4.17), we get

ur = S−1
rr

(
fr − SrcRcuc − BT

r λ
)
.

Substituting forur into the second equation in (4.17) gives

S̃∗

ccuc − (SrcRc)
T

S−1
rr BT

r λ = fc − (SrcRc)
T

S−1
rr fr,

whereS̃∗

cc = S̃cc − RT
c ST

rcS
−1
rr SrcRc. InvertingS̃∗

cc, we get that

uc = S̃∗
−1

cc

[
fc − (SrcRc)

T
S−1

rr fr + (SrcRc)
T

S−1
rr BT

r λ
]
.

After initialization with λ = 0, not mentioned in [19, 20], but which can be used (cf. [45,
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Section 6.4]), the assembled and averaged solution is

u = Erur + Ecuc

= ErS
−1
rr

{
fr − SrcRcS̃

∗
−1

cc (fc − (SrcRc)
T S−1

rr fr)
}

+ EcS̃
∗
−1

cc (fc − (SrcRc)
T S−1

rr fr)

= ErS
−1
rr fr − ErS

−1
rr SrcRcS̃

∗
−1

cc fc

+ ErS
−1
rr SrcRcS̃

∗
−1

cc (SrcRc)
T S−1

rr fr

+ EcS̃
∗
−1

cc fc − EcS̃
∗
−1

cc (SrcRc)
T S−1

rr fr

= ErS
−1
rr fr

+ (Ec − ErS
−1
rr SrcRc)S̃

∗
−1

cc (fc − (SrcRc)
T S−1

rr fr)

= MP-FETI-DPr,

where

MP-FETI-DP = ErS
−1
rr ET

r (4.18)

+ (Ec − ErS
−1
rr SrcRc)S̃

∗
−1

cc (ET

c − RT

c ST

rcS
−1
rr ET

r )

is the associated preconditioner P-FETI-DP, as in [20, equation (90)].

5. BDD family of methods. We recall two primal preconditioners from the Balancing
Domain Decomposition (BDD) family by Mandel in [31], namely the original BDD and
Balancing Domain Decomposition by Constraints (BDDC) introduced by Dohrmann [9].

5.1. BDD. The BDD is a Neumann-Neumann algorithm (cf. [14]) with a simple coarse
grid correction, introduced by Mandel [31]. The name of the preconditioner comes from an
idea tobalancethe residual. We say thatv ∈ Ŵ is balanced if

ZT ET v = 0.

Let us denote the “balancing” operator as

C = EZ, (5.1)

so the columns ofC are equal to the weighted sum of traces of the subdomain zero energy
modes. Next, let us denote bySC Ŝ theŜ-orthogonalprojection onto the range ofC, so that

SC = C
(
CT ŜC

)−1

CT ,

and byPC the complementary projection toSC Ŝ, defined as

PC = I − SC Ŝ. (5.2)

The BDD preconditioner [31, Lemma 3.1] can be written in our settings as

MBDD =
[
(I − SC Ŝ)ES+ET Ŝ(I − SC Ŝ) + SC Ŝ

]
Ŝ−1

=
[
(I − SC Ŝ)ES+ET (ŜŜ−1 − ŜSC ŜŜ−1) + SC ŜŜ−1

]

= PCES+ET PT

C + SC , (5.3)

whereSC serves as the coarse grid correction; see [31, 32] and [20] for details.
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5.2. BDDC. Following a similar path as Li and Widlund [30], we will assume that each
constraint can be represented by an explicit degree of freedom and that we can decompose
the spacẽW as in (4.16). We note that the original BDDC in [9, 33] is mathematically
equivalent, but algorithmically it treats the corner coarse degrees of freedom and edge in the
definition of W̃ in different ways. The BDDC is the method of preconditioned conjugate
gradients for the assembled system (3.5) with the preconditionerMBDDC defined by (cf. [30,
equation (27)])

MBDDC = Tsub+ T0,

whereTsub = ErS
−1
rr ET

r is the subdomain correction obtained by solving independent prob-
lems on subdomains, andT0 = EΨ(ΨT SΨ)−1ΨT ET is the coarse grid correction. HereΨ
are the coarse basis functions defined by energy minimization,

tr ΨT SΨ → min .

Since we assume that each constraint corresponds to an explicit degree of freedom, the coarse
basis functionsΨ can be easily determined via the analogy to the discrete harmonic functions,
discussed, e.g., in [45, Section 4.4]; the functionsΨ are equal to1 in the coarse degrees
of freedom and have energy minimal extension with respect tothe remaining degrees of
freedomur, so they are precisely given as

Ψ =

[
Rc

−S−1
rr SrcRc

]
.

Then, we can compute

ΨT SΨ =
[
RT

c −RT
c ST

rcS
−1
rr

] [
Scc ST

rc

Src Srr

] [
Rc

−S−1
rr SrcRc

]

= RT

c SccRc − RT

c ST

rcS
−1
rr SrcRc

= S̃cc − RT

c ST

rcS
−1
rr SrcRc = S̃∗

cc,

followed by

EΨ[ΨT SΨ]−1ΨT ET

= E

[
Rc

−S−1
rr SrcRc

]
S̃∗

−1

cc

[
RT

c −RT
c ST

rcS
−1
rr

]
ET

= (Ec − ErS
−1
rr SrcRc)S̃

∗
−1

cc (ET

c − RT

c ST

rcS
−1
rr ET

r ).

So, the BDDC preconditioner takes the form

MBDDC = ErS
−1
rr ET

r + (5.4)

+ (Ec − ErS
−1
rr SrcRc)S̃

∗
−1

cc (ET

c − RT

c ST

rcS
−1
rr ET

r ).

6. Connections of the preconditioners.We review from [20, Section 8] that a certain
version of P-FETI-1 gives exactly the same algorithm as BDD.Next, we state the equivalence
of P-FETI-DP and BDDC preconditioners. Finally, we translate the abstract proof relating
the spectra of primal and dual preconditioners [19, Theorem 4] in the case of FETI-1 and
BDD.

THEOREM 6.1 ([20, Section 8]). If Q is chosen to be the Dirichlet preconditioner, the
P-FETI-1 and the BDD preconditioners are the same.
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Proof. We will show that the P-FETI-1 in (4.13) with Q = BDSBT

D
is the same as the

BDD in (5.3). So, similarly as in [20, pp. 3819–3820], from (4.12) we get

H = I − BT QG(GT QG)−1ZT

= I − BT BDSBT

DBZ(ZT BT BDSBT

DBZ)−1ZT

= I − AR(ZT AR)−1ZT ,

where

AR = BT BDSBT

DBZ.

Using (3.8), definitions ofC in (5.1), Ŝ in (3.5), and becauseSZ = 0 by (4.3),

AR = (I − ET RT )S(I − RE)Z

= SZ − SREZ − ET RT SZ + ET RT SREZ

= SZ − SRC − ET RT SZ + ET ŜC

= (ET Ŝ − SR)C,

and, similarly,

ZT AR = ZT (ET Ŝ − SR)C = CT ŜC − ZT SREZ = CT ŜC.

Using the two previous results, (5.2), and symmetries of̂S andSc, we get

HET =
(
I − AR(ZT AR)−1ZT

)
ET

= ET − AR(ZT AR)−1ZT ET

= ET − (ET Ŝ − SR)C(CT ŜC)−1CT

= ET − (ET Ŝ − SR)SC

= ET − ET ŜSC + SRSC

= ET (I − ŜSC) + SRSC

= ET PT

C + SRSC .

Next, the matrixSC satisfies the relation

SCRT SS+SRSC = SCRT SRSC = SC ŜSC

= C(CT ŜC)−1CT ŜC(CT ŜC)−1CT

= C(CT ŜC)−1CT = SC .

Since, by definitionPCC = 0, using (3.7) we get for someY that

PCES+SRSC = PCE(I + ZY )RSC

= PCERSC + PCEZY RSC

= PCSC + PCCY RSC

= PCSC

= (I − SC Ŝ)SC

= SC − SC = 0,
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and the same is true for the transpose, soSCRT SS+ET PT

C
= 0.

Using these results, the P-FETI-1 preconditioner from (4.13) becomes

MP-FETI = EHT S+HET

= (SCRT S + PCE)S+(ET PT

C + SRSC)

= SCRT SS+ET PT

C + SCRT SS+SRSC

+ PCES+ET PT

C + PCES+SRSC

= PCES+ET PT

C + SC , (6.1)

and we see that (6.1) is the same as the definition of BDD in (5.3).
THEOREM 6.2. The P-FETI-DP and the BDDC preconditioners are the same.
Proof. The claim follows directly comparing the definitions of bothpreconditioners,

P-FETI-DP in equation (4.18) and BDDC in equation (5.4).
COROLLARY 6.3. Comparing the preconditioner proposed by Cros [8, equation (4.8)]

with the definitions (4.18) and (5.4), it follows that this preconditioner can be interpreted as
either P-FETI-DP or BDDC.

In the remaining, we will show the equality of eigenvalues ofBDD and FETI-1, beingQ
the Dirichlet preconditioner.

LEMMA 6.4. The two preconditioned operators can be written as

MFETIF = (BDSBT

D)(BS̃+BT ),

MBDDŜ = (ES̃+ET )(RT SR),

where

S̃+ = HT S+H.

Proof. First, MFETI = BDSBT

D
, which is the Dirichlet preconditioner. From (4.11),

using the definition ofH by (4.12), we get

F = PT FP

= PT BS+BT P

=
(
I − G(GT QG)−1GT QT

)
BS+BT

(
I − QG(GT QG)−1GT

)

=
(
B − BZ(GT QG)−1GT QT B

)
S+

(
BT − BT QG(GT QG)−1ZT BT

)

= B
(
I − Z(GT QG)−1GT QB

)
S+

(
I − BT QG(GT QG)−1ZT

)
BT

= BHT S+HBT = BS̃+BT .

Next, Ŝ is defined by (3.5). By Theorem6.1, we can use (4.13) for MBDD to get

MBDD = EHT S+HET = ES̃+ET .

Before proceeding to the main result, we need to prove two technical Lemmas relating
the operatorsS andS̃+. The first Lemma establishes [19, Assumptions (13) and (22)] as well
as [19, Lemma 3] for FETI-1 and BDD.

LEMMA 6.5. The operatorsS, S̃+ defined by (3.1) and Theorem6.4, respectively, satisfy

S̃+SR = R, (6.2)

S̃+SS̃+ = S̃+. (6.3)
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Moreover, the following relations are valid

BS̃+SR = 0, (6.4)

S̃+BT BDSS̃+ET = 0. (6.5)

Proof. First, from (4.3) and symmetry ofS it follows that

HS =
(
I − BT QG(GT QG)−1ZT

)
S

= S − BT QG(GT QG)−1ZT S = S.

UsingHT = I − Z(GT QG)−1GT QB, we get

HT S+S = HT (I + ZY ) = HT + HT ZY

= HT +
[
I − Z(GT QG)−1GT QB

]
ZY

= HT + ZY − Z(GT QG)−1GT QGY

= HT + ZY − ZY = HT ,

so

S̃+S = HT S+HS = HT S+S = HT .

Finally, from the previous equation and (3.6), we get (6.2) as

S̃+SR = HT R =
(
I − Z(GT QG)−1GT QB

)
R = R,

and, sinceHT is a projection, we immediately get also (6.3) as

S̃+SS̃+ = HT S̃+ = HT HT S+H = S̃+.

Next, noting (3.6), (6.4) follows directly from (6.2).
Using (6.2)–(6.3) and (3.8)–(3.9), we get (6.5) as

S̃+BT BDSS̃+ET = S̃+(I − ET RT )SS̃+ET

= S̃+SS̃+ET − S̃+ET RT SS̃+ET

= S̃+ET − S̃+ET RT ET

= S̃+(I − ET RT )ET

= S̃+BT BDET = 0.

The next Lemma is a particular version of [19, Theorem 4] for FETI-1 and BDD.
LEMMA 6.6. The following identities are valid:

TD(MFETIF) = (MBDDŜ)TD, TD = ES̃+BT ,

TP (MBDDŜ) = (MFETIF)TP , TP = (MFETIF)BDSR.
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Proof. Using the transpose of (6.5) and (6.4), we derive the first identity as

TD(MFETIF) = ES̃+BT BDSBT

DBS̃+BT

= ES̃+(I − ET RT )S(I − RE)S̃+BT

= ES̃+S(I − RE)S̃+BT − ES̃+ET RT SS̃+BT

+ ES̃+ET RT SRES̃+BT

= ES̃+SBT

DBS̃+BT − ES̃+ET RT SS̃+BT

+ (ES̃+ET )(RT SR)TD

= (MBDDŜ)TD.

Similarly, using (6.5) and (6.4), we derive the second identity as

TP (MBDDŜ) = (MFETIF)BDSRES̃+ET RT SR

= (MFETIF)BDS(I − BT

DB)S̃+(I − BT BD)SR

= (MFETIF)BDSS̃+(I − BT BD)SR

− (MFETIF)BDSBT

DBS̃+SR

+ (MFETIF)BDSBT

DBS̃+BT BDSR

= MFETIBS̃+BT BDSS̃+ET RT SR

− (MFETIF)BDSBT

DBS̃+SR

+ (MFETIF)(BDSBT

D)(BS̃+BT )BDSR

= (MFETIF)(MFETIF)BDSR.

= (MFETIF)TP .

THEOREM 6.7. Under the assumption of Lemma6.6, the spectra of the preconditioned
operatorsMBDDŜ andMFETI-1F satisfy the relation

σ(MBDDŜ) \ {1} = σ(MFETI-1F) \ {0, 1}.

Moreover, the multiplicity of any common eigenvalueλ 6= 0, 1 is identical for the two pre-
conditioned operators.

Proof. Let uD be a (nonzero) eigenvector of the preconditioned FETI-1 operator corre-
sponding to the eigenvalueλD. Then, by Lemma6.6, we have

TD(MFETI-1F)uD = (MBDDŜ)TDuD,

soTDuD is an eigenvector of the preconditioned BDD operator corresponding to the eigen-
valueλD, provided thatTDuD 6= 0. So, we assume thatTDuD = 0, but then it is also true
that

0 = BDSR(TDuD) = BDSRES̃+BT uD

= BDS(I − BT

DB)S̃+BT uD = BDSS̃+BT uD − BDSBT

DBS̃+BT uD

= BDSS̃+BT uD − (MFETIF)uD = BDSS̃+BT uD − λDuD,

so that

BDSS̃+BT uD = λDuD.
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Note that, by (6.2) and (3.6), we get

(BDSS̃+BT )2 = BDSS̃+BT BDSS̃+BT

= BDSS̃+(I − ET RT )SS̃+BT

= BDSS̃+SS̃+BT − BDSS̃+ET RT SS̃+BT

= BDSS̃+BT − BDSS̃+ET RT BT

= BDSS̃+BT ,

soBDSS̃+BT is a projection, and thereforeλD = 0, 1.
Next, Let uP be a (nonzero) eigenvector of the preconditioned BDD operator corre-

sponding to the eigenvalueλP . Then, by Lemma6.6, we have

TP (MBDDŜ) = (MFETIF)TP ,

soTP uP is an eigenvector of the preconditioned FETI-1 operator corresponding to the eigen-
valueλP , provided thatTP uP 6= 0. So, we assume thatTP uP = 0, but then, using (6.2)
and (3.7), we also get

0 = TD(TP uP ) = TD(MFETIF)BDSRuP

= (MBDDŜ)TDBDSRuP = (MBDDŜ)ES̃+BT BDSRuP

= MBDDŜES̃+(I − ET RT )SRuP

= MBDDŜES̃+SRuP − MBDDŜES̃+ET RT SRuP

= MBDDŜuP − MBDDŜES̃+ET RT SRuP

= MBDDŜuP − (MBDDŜ)2uP ,

which is the same as

λP uP − λ2
P uP = λP (1 − λP )uP = 0,

and thereforeλP = 0, 1.
Finally, letλ 6= 0, 1 be an eigenvalue of the operatorMBDDŜ with multiplicity m. From

the previous arguments, the eigenspace corresponding toλ is mapped by the operatorTP

into an eigenspace ofMFETI-1F and since this mapping is one-to-one, the multiplicity ofλ
corresponding toMFETI-1F is n ≥ m. By the same argument, we can prove the opposite
inequality and the conclusion follows.
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