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Abstract. A new class of structured polynomial eigenproblems arising inthe stability analysis of time-delay
systems is identified and analyzed together with new types of closely related structured polynomials. Relationships
between these polynomials are established via the Cayley transformation. Their spectral symmetries are revealed,
and structure-preserving linearizations constructed. A structured Schur decomposition for the class of structured pen-
cils associated with time-delay systems is derived, and an algorithm for its computation, which compares favorably
with the QZ algorithm, is presented along with numerical experiments.
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1. Introduction. In this paper we discuss a new class of structured matrix polynomial
eigenproblemsQ(λ)v = 0, where

Q(λ) =

k∑

i=0

λiBi, Bi ∈ C
n×n, Bk 6= 0,

and Bi = PBk−iP, i = 0, . . . , k,

(1.1)

for a real involutory matrixP (i.e.,P 2 = I). HereB denotes the componentwise conjugation
of the matrixB. With

Q(λ) :=

k∑

i=0

λiBi and rev Q(λ) := λkQ

(
1

λ

)
=

k∑

i=0

λiBk−i, (1.2)

we see thatQ(λ) in (1.1) satisfies

P · rev Q(λ) · P = Q(λ). (1.3)

As shown in Section2, the stability analysis of time-delay systems is an important source of
eigenproblems of the form (1.1). Throughout this paper we assume that all matrix polynomi-
alsQ(λ) are regular, i.e., thatdet Q(λ)≡/ 0.

Matrix polynomials satisfying (1.3) are reminiscent of the various types of palindromic
polynomials defined in [18]:

• palindromic:rev Q(λ) = Q(λ),
• anti-palindromic:rev Q(λ) = −Q(λ),
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• ⋆ -palindromic:rev Q⋆(λ) = Q(λ),
• ⋆-anti-palindromic:rev Q⋆(λ) = −Q(λ),

whereA⋆ denotes the transposeAT in the real case, and eitherAT or the conjugate trans-
poseA∗ in the complex case. These palindromic matrix polynomials have the property that
reversing the order of the coefficient matrices, followed perhaps by taking their transpose or
conjugate transpose, gives the original matrix polynomial(up to sign). Several other types of
structured matrix polynomial are also defined in [18],

• even, odd:Q(−λ) = ±Q(λ),
• ⋆-even,⋆-odd:Q⋆(−λ) = ±Q(λ),

and shown there to be closely related to palindromic polynomials via the Cayley transforma-
tion.

We will show that matrix polynomials satisfying (1.3) have properties analogous to those
of the palindromic polynomials discussed in [18]. Hence we refer to polynomials with prop-
erty (1.3) asP -conjugate-P -palindromic polynomials, or PCP polynomials for short. Asin
in [18], we examine four related types of PCP-like structures,

• PCP:P · rev Q(λ) · P = Q(λ),
• anti-PCP:P · rev Q(λ) · P = −Q(λ),
• PCP-even:P ·Q(−λ) · P = Q(λ),
• PCP-odd:P ·Q(−λ) · P = −Q(λ),

revealing their spectral symmetry properties, their relationships to each other via the Cay-
ley transformation, as well as their structured linearizations. Here we continue the practice
stemming from Lancaster [14] of developing theory for polynomials of degreek wherever
possible in order to gain the most insight and understanding.

There are a number of ways in which palindromic matrix polynomials can be thought
of as generalizations of symplectic matrices. For example,palindromic polynomials and
symplectic matrices both have reciprocal pairing symmetryin their spectra. In addition, the
Cayley transformation relates palindromic polynomials toeven/odd matrix polynomials in
the same way as it relates symplectic matrices to Hamiltonian matrices, and even/odd matrix
polynomials represent generalizations of Hamiltonian matrices. Further information on the
relationship between symplectic matrices and palindromicpolynomials can be found in [23]
and, in the context of optimal control problems, in [2].

The classical approach to investigate or numerically solvepolynomial eigenvalue prob-
lems is linearization. Akn × kn pencilL(λ) is said to be a linearization for ann × n poly-
nomialQ(λ) of degreek if E(λ)L(λ)F (λ) = diag[Q(λ), I(k−1)n] for someE(λ) andF (λ)
with nonzeroconstantdeterminants. The companion forms [5] provide the standard examples
of linearization for a matrix polynomialQ(λ). Let X1 = X2 = diag(Bk, In, . . . , In),

Y1 =




Bk−1 Bk−2 · · · B0

−In 0 · · · 0
. ..

.. .
...

0 −In 0


 , and Y2 =




Bk−1 −In 0

Bk−2 0
. . .

...
...

. . . −In

B0 0 · · · 0


 . (1.4)

Then C1(λ) = λX1 + Y1 and C2(λ) = λX2 + Y2 are the first and second companion
forms for Q(λ). These linearizations do not reflect any structure that might be present in
the matrix polynomialQ, so only standard numerical methods can be applied to solve the
eigenproblemCi(λ)v = 0. In a finite precision environment this may produce physically
meaningless results [24], e.g., loss of symmetries in the spectrum. Hence it is useful to
construct linearizations that reflect the structure of the given polynomial, and then to develop
numerical methods for the resulting linear eigenvalue problem that properly address these
structures.
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It is well known that, for regular matrix polynomials, linearizations preserve algebraic
and partial multiplicities of all finite eigenvalues [5]. In order to preserve the multiplicities of
the eigenvalue∞, one has to consider linearizationsL(λ) which have the additional property
that rev L(λ) is also a linearization forrev Q(λ); see [4]. Such linearizations have been
named strong linearizations in [15]. Both the first and the second companion forms are strong
linearizations for any regular matrix polynomial [4, Proposition 1.1].

Several recent papers have systematically addressed the tasks of broadening the menu
of available linearizations, providing criteria to guide the choice of linearization, and identi-
fying structure-preserving linearizations for various types of structured polynomial. In [19],
two vector spaces of pencils generalizing the companion forms were constructed and many
interesting properties were proved, including that almostall of these pencils are lineariza-
tions. The conditioning and backward error properties of some of these linearizations were
analyzed in [7, 9, 11], developing criteria for choosing a linearization best suited for numeri-
cal computation. Linearizations within these vector spaces were identified that respect palin-
dromic and odd-even structure [8], symmetric and Hermitian structure [10], and definiteness
structure [18].

In this paper we investigate the four types of PCP-structured matrix polynomials, an-
alyzing their spectral symmetries in Section3, the relationships between the various PCP-
structures via the Cayley transformation in Section4, and then showing how to build struc-
tured linearizations for each type of PCP-structure in Section 5. The existence and computa-
tion of a structured Schur-type decomposition for PCP-pencils is discussed in Section6, and
Section7 concludes with numerical results for some examples arisingfrom physical applica-
tions. We first, though, discuss in more detail a key source ofPCP-structured eigenproblems.

2. Time-delay systems.To motivate our consideration of matrix polynomials with PCP-
structure, we describe how the stability analysis of time-delay systems (also known as delay-
differential equations; see, e.g., [6, 21]) leads to eigenproblems with this structure. Aneutral
linear time-delay system(TDS) withm constant delaysh1, . . . , hm ≥ 0 andh0 = 0 is given
by

S =

{∑m
k=0 Dkẋ(t− hk) =

∑m
k=0 Akx(t− hk), t ≥ 0,

x(t) = ϕ(t), t ∈ [−ĥ, 0),
(2.1)

with ĥ = maxi{hi}, x : [−ĥ,∞) → R
n, ϕ ∈ C1[−ĥ, 0], and Ak,Dk ∈ R

n×n,
for k = 0, . . . ,m. An important special case of (2.1) is the class ofretarded time-delay
systems, in whichD0 = I andDk = 0, for k = 1, . . . ,m.

The stability of a TDS can be determined from its characteristic equation, i.e., from the
nontrivial solutions of the nonlinear eigenvalue problem

M(s)v = 0, where M(s) = −sD(s) + A(s),

with D(s) =
m∑

k=0

Dke−hks and A(s) =
m∑

k=0

Ake−hks.
(2.2)

As usual,s ∈ C is called an eigenvalue associated with the eigenvectorv ∈ C
n, and the set

of all eigenvaluesσ(S) is called the spectrum ofS. Having an eigenvalue in the right half-
plane implies thatS is unstable. Conversely, havingσ(S) completely contained in the left
half-plane usually implies thatS is stable, although some additional technical assumptions
are required; for further details see [13, 21].

A time-delay systemS is calledcritical if σ(S) ∩ iR 6= ∅, i =
√
−1. The set of all

points (h1, h2, . . . , hm) in delay-parameter space for whichS is critical form the critical
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curves (m = 2) or critical surfaces (m > 2) of the TDS. Since a TDS can change stability
when an eigenvalue pair crosses the imaginary axis, the critical curves/surfaces are important
in the study of the delay-parameter space stability domain.In most cases of practical inter-
est, the boundary of the stability domain is just a subset of the critical curves/surfaces [21,
Section 1.2]. Thus the computation of critical sets, for which a number of approaches exist
(see [13] for a list of references), is a key step in the stability analysis of time-delay systems.
Here we outline the new method for this computation developed in [13], leading ultimately to
a quadratic eigenproblem with PCP-palindromic structure that will have to be solved repeat-
edly for many different parameter values.

To determine critical points in delay-parameter space, we need to compute purely imag-
inary eigenvalues ofM(s) in (2.2), i.e., to finds = iω with ω ∈ R such that

M(iω)v = 0. (2.3)

As shown in [13], for any ω ∈ R andv ∈ C
n such thatv∗v = 1 and v̂ := D(iω)v 6= 0,

equation (2.3) is equivalent to the pair of conditions

L(vv∗, iω) = 0 and v̂∗
M(iω)v = 0, (2.4)

whereL is the Lyapunov-type operator

L(X, s) := M(s)XD(s)∗ + D(s)XM(s)∗

= A(s)XD(s)∗ + D(s)XA(s)∗ − 2D(s)XD(s)∗Re(s),
(2.5)

for X ∈ C
n×n ands ∈ C. The implication (2.3)⇒ (2.4) follows immediately from

L(vv∗, iω) = M(iω)vv∗
D(iω)∗ + D(iω)vv∗

M(iω)∗

= M(iω)vv̂∗ + v̂
(
M(iω)v

)∗
,

(2.6)

while the implication (2.4) ⇒ (2.3) follows by pre-multiplying (2.6) by v̂∗ and using the
assumption̂v 6= 0.

Note that the assumption̂v = D(iω)v 6= 0 is not very restrictive and holds generically,
sinceD(iω)v = 0 in (2.3) implies A(iω)v = 0 would also have to be true. In addition
D(iω)v = 0 if and only if the difference equation

D0x(t) + D1x(t− h1) + · · ·+ Dmx(t− hm) = 0 (2.7)

has a purely imaginary eigenvalue, which happens only in very special situations.
We now see how (2.4) can be used to systematically explore delay-parameter space to

find the critical set. From (2.5) we have

L(vv∗, iω) = A(iω)vv∗
D(iω)∗ + D(iω)vv∗

A(iω)∗,

with D(iω) =
m∑

k=0

Dke−iωhk and A(iω) =
m∑

k=0

Ake−iωhk .
(2.8)

Because of the periodicity in the exponential terms ofD(iω) and A(iω), there is anω-
dependent periodicity in the critical set; if(h1, h2, . . . , hm) is a critical delay corresponding
to the solution(iω, v) of the equationL(vv∗, iω) = 0, then

(h1, h2, . . . , hm) +
2π

ω
(p1, p2, . . . , pm)
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is also a critical delay for any(p1, p2, . . . , pm) ∈ Z
m. Thus it suffices to consider only the

anglesϕk := ωhk, for k = 1, . . . ,m, whereϕk ∈ [−π, π]. These can be explored by
a line-search strategy: withϕ0 := ωh0 = 0, for each fixed choice ofϕ1, . . . , ϕm−1 view
z := e−iϕm as a variable and rewriteL(vv∗, iω) = 0 as an eigenproblem in terms ofz and
vv∗. Defining

AS :=

m−1∑

k=0

Ake−iϕk and DS :=

m−1∑

k=0

Dke−iϕk ,

and using (2.8), we have
(
Amz + AS

)
vv∗
(
Dmz + DS

)∗
+
(
Dmz + DS

)
vv∗
(
Amz + AS

)∗
= 0. (2.9)

Expanding and vectorizing (2.9) yields

(zE + F + zG) vec(vv∗) = 0, (2.10)

where

E = DS ⊗Am + AS ⊗Dm,

F = Dm ⊗Am + DS ⊗AS + AS ⊗DS + Am ⊗Dm,

G = Dm ⊗AS + Am ⊗DS,

(2.11)

and⊗ denotes the usual Kronecker product [12, Chapter 4.3]. Then multiplying (2.10) by z,
with |z| = 1, results in the quadratic eigenvalue problem

(z2E + zF + G)u = 0. (2.12)

A solution (z, u) of (2.12) with |z| = 1 andu of the formvec(vv∗) completes the determi-
nation of(ϕ1, ϕ2, . . . , ϕm) = ω(h1, h2, . . . , hm), and hence of a critical delay up to a real
scalar multipleω. The scaling factorω, and hence a pure imaginary eigenvalues = iω
of (2.2), is determined by invoking the second condition in (2.4):

0 = iv̂∗
M(iω)v

= iv̂∗
(
−iωD(iω) + A(iω)

)
v

= ωv̂∗
D(iω)v + ıv̂∗

A(iω)v

= ωv̂∗v̂ + iv̂∗
(
Amz + AS

)
v

and, hence,

ω = −iv̂∗
(
Amz + AS

)
v/
(
v̂∗v̂
)
.

From (2.9) we can see thatω ∈ R. Definex̂ :=
(
Amz + AS

)
v, so that (2.9) implies

x̂v̂∗ + v̂x̂∗ = 0. Then

v̂∗(x̂v̂∗ + v̂x̂∗)v̂ = 0⇒ (v̂∗v̂)(v̂∗x̂ + x̂∗v̂) = 0⇒ v̂∗x̂ + x̂∗v̂ = 0,

so v̂∗x̂ ∈ iR and henceω ∈ R.
The preceding discussion is summarized by the following theorem.
THEOREM2.1 ([13]). Assume that the difference equation(2.7) has no purely imaginary

eigenvalues. Withϕ0 = 0 and any given combination of anglesϕk ∈ [−π, π], for k =
1, . . . ,m− 1, consider the quadratic eigenvalue problem

(z2E + zF + G)u = 0, (2.13)
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whereE,F,G ∈ C
n2

×n2

are given by(2.11). Then for any solution of(2.13) with |z| = 1
andu of the formu = vec(vv∗) = v ⊗ v, for somev ∈ C

n with v∗v = 1, critical delays for
the TDS(2.1) can be constructed as follows. Let

v̂ =
(
Dmz + DS

)
v and ω = −iv̂∗

(
Amz + AS

)
v/
(
v̂∗v̂
)
.

Then for any(p1, p2, . . . , pm) ∈ Z
m,

(h1, h2, . . . , hm) =
1

ω

[
(ϕ1, . . . , ϕm−1,−Arg z) + 2π(p1, p2, . . . , pm)

]

is a critical delay for(2.1).
It is now straightforward to see why the quadratic matrix polynomial

Q(z) = z2E + zF + G (2.14)

in (2.13) has PCP-structure. By [12, Corollary 4.3.10] there exists an involutory, symmetric
permutation matrixP ∈ R

n2
×n2

(i.e.,P = P−1 = PT ) such that

B ⊗ C = P (C ⊗B)P (2.15)

for all B,C ∈ C
n×n. Thus we have in (2.14) thatE = PGP andF = PFP , since

E = DS ⊗Am + AS ⊗Dm

= P
[
Am ⊗DS

]
P + P

[
Dm ⊗AS

]
P

= P
[
Am ⊗DS + Dm ⊗AS

]
P = PGP.

The fact thatF = PFP follows in a similar fashion. This implies

Q(z) = z2E + zF + G = P (z2G + zF + E)P = P · rev Q(z) · P,

that is, (2.14) is a matrix polynomial as in (1.1) and (1.3).
Time-delay systems arise in a variety of applications [22], including electric circuits,

population dynamics, and the control of chemical processes. Several realistic problems are
discussed in Section7, and some numerical results are given.

3. Spectral symmetry. SupposeQ(λ) has property (1.3), and letλ 6= 0 be an eigen-
value ofQ(λ) associated to the eigenvectorv, that isQ(λ)v = 0. Then we have

0 = Q(λ)v = P · rev Q(λ) · Pv ⇒ rev Q(λ) · (Pv) = 0,

which, from the definition (1.2) of rev, implies that

Q(1/λ) · (P v) = 0.

Hence, ifλ is an eigenvalue with eigenvectorv, then1/λ is an eigenvalue with eigenvec-
tor P v. Note that for any matrix polynomialQ, (1.2) implies that the nonzero finite eigenval-
ues ofrev Q(λ) are the reciprocals of those ofQ.

The following theorem extends this observation of reciprocal pairing for eigenvalues of
PCP-palindromic polynomials to include eigenvalues at∞, pairing of eigenvalue multiplici-
ties, as well as to an analogous eigenvalue pairing for PCP-even/odd polynomials. As in [18],
we employ the convention thatQ(λ) has an eigenvalue at∞ with eigenvectorx if rev Q(λ)
has the eigenvalue0 with eigenvectorx. The algebraic, geometric, and partial multiplicities
of an eigenvalue at∞ are defined to be the same as the corresponding multiplicities of the
zero eigenvalue ofrev Q(λ).



ETNA
Kent State University 

http://etna.math.kent.edu

312 H. FASSBENDER, D. S. MACKEY, N. MACKEY, AND C. SCHR̈ODER

THEOREM 3.1 (Spectral Symmetry).Let Q(λ) =
∑k

i=0 λiBi, Bk 6= 0, be a regular
matrix polynomial andP a real involution.

(a) If Q(λ) = ±P rev Q(λ)P , then the spectrum ofQ(λ) has the pairing(λ, 1/λ).
(b) If Q(λ) = ±PQ(−λ)P , then the spectrum ofQ(λ) has the pairing(λ,−λ).

Moreover, the algebraic, geometric, and partial multiplicities of the eigenvalues in each such
pair are equal.(Here we allowλ = 0 and interpret1/λ as the eigenvalue∞.)

Proof. We first recall some well-known facts [5] about strict equivalence of pencils and
about the companion formC1(λ) of a matrix polynomialQ(λ):

1. Q(λ) andC1(λ) have the same eigenvalues (including∞) with the same algebraic,
geometric, and partial multiplicities;

2. any two strictly equivalent pencils have the same eigenvalues (including∞) with
the same algebraic, geometric, and partial multiplicities.

Because of these two facts it suffices to show thatC1(λ) is strictly equivalent torev C1(λ)
for part (a), and toC1(−λ) for part (b). The desired eigenvalue pairings and equality of
multiplicities then follow. See [3] for details.

The same eigenvalue pairings also have been observed previously in [18] for ∗-(anti)-
palindromic and∗-even/odd matrix polynomials; these results are summarized in Table3.1.
Observe further that when the coefficient matrices ofQ are all real, then for all the palin-

TABLE 3.1
Spectral symmetries.

Structure ofQ(λ) eigenvalue pairing

(anti)-palindromic, T-(anti)-palindromic (λ, 1/λ)

∗-palindromic,∗-anti-palindromic (λ, 1/λ)

(anti)-PCP (λ, 1/λ)

even, odd, T-even, T-odd (λ,−λ)

∗-even,∗-odd (λ,−λ)

PCP-even, PCP-odd (λ,−λ)

dromic structures listed in Table3.1the eigenvalues occur not just in pairs, but in quadruples
(λ, λ, 1/λ, 1/λ). This property is sometimes referred to as “symplectic spectral symmetry”,
since real symplectic matrices exhibit this behavior. In the context of the time-delay problem,
though, the coefficient matricesE,F,G of Q(z) in (2.14) are typically not all real unless
there is only a single delayh1 in the problem.

4. Relationships between structured polynomials.It is well known that the Cayley
transformation and its generalizations to matrix pencils relates Hamiltonian structure to sym-
plectic structure for both matrices and pencils [16, 20]. By using the extensions of the clas-
sical definition of this transformation to matrix polynomials as given in [18], we develop
analogous relationships between the structured matrix polynomials considered here.

The Cayley transforms of a degreek matrix polynomialQ(λ) with pole at+1 or −1,
respectively, are the matrix polynomialsC+1(Q) andC−1(Q) defined by

C+1(Q)(µ) := (1− µ)kQ

(
1 + µ

1− µ

)
,

C−1(Q)(µ) := (µ + 1)kQ

(
µ− 1

µ + 1

)
.

(4.1)

This choice of definition was motivated in [18] by the observation that the M̈obius trans-
formationsµ−1

µ+1 and 1+µ
1−µ map reciprocal pairs(µ, 1

µ ) to plus/minus pairs(λ,−λ), as well
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as conjugate reciprocal pairs(µ, 1/µ) to conjugate plus/minus pairs(λ,−λ). When viewed
as maps on the space ofn × n matrix polynomials of degreek, the Cayley transformations
in (4.1) can be shown, by direct calculation, to be inverses of each other up to a scaling
factor [18], that is,

C+1(C−1(Q)) = C−1(C+1(Q)) = 2k ·Q, where 1 ≤ k = deg Q.

The following theorem relates structure inQ(λ) to that of its Cayley transforms.
THEOREM 4.1 (Structure of Cayley transforms).Let Q(λ) be a matrix polynomial of

degreek and letP be a real involution.
1. If Q(λ) is (anti)-PCP, then the Cayley transforms ofQ are PCP-even or PCP-odd.

More precisely, ifQ(λ) = ±P · rev Q(λ) · P , then

C+1(Q)(µ) = ±P · C+1(Q)(−µ) · P,

C−1(Q)(µ) = ±(−1)kP · C−1(Q)(−µ) · P.

2. If Q(λ) has PCP-even/odd structure, then the Cayley transforms ofQ are (anti)-
PCP. Specifically, ifQ(λ) = ±P ·Q(−λ) · P , then

C+1(Q)(µ) = ±(−1)kP · rev(C+1(Q)(µ)) · P,

C−1(Q)(µ) = ±P · rev(C−1(Q)(µ)) · P.

Direct algebraic calculations yield straightforward proofs [3] of the results in Theo-
rem 4.1. Analogous relationships between palindromic and even/odd matrix polynomials
were observed in [18]. Table4.1summarizes all these results.

TABLE 4.1
Cayley transformations.

C−1(Q)(µ) C+1(Q)(µ)
Q(λ)

k even k odd k even k odd

palindromic even odd even
⋆-palindromic ⋆-even ⋆-odd ⋆-even

anti-palindromic odd even odd
⋆-anti-palindromic ⋆-odd ⋆-even ⋆-odd

PCP PCP-even PCP-odd PCP-even
anti-PCP PCP-odd PCP-even PCP-odd

even palindromic palindromic anti-palindromic
⋆-even ⋆-palindromic ⋆-palindromic ⋆-anti-palindromic

odd anti-palindromic anti-palindromic palindromic
⋆-odd ⋆-anti-palindromic ⋆-anti-palindromic ⋆-palindromic

PCP-even PCP PCP anti-PCP
PCP-odd anti-PCP anti-PCP PCP

5. Structured linearizations. Following the strategy in [18], we consider the vector
spacesL1(Q) andL2(Q) introduced in [17, 19],

L1(Q) :=
{
L(λ) = λX + Y : L(λ) · (Λ⊗ In) = v ⊗Q(λ), v ∈ C

k
}

, (5.1)

L2(Q) :=
{
L(λ) = λX + Y : (ΛT ⊗ In) · L(λ) = wT ⊗Q(λ), w ∈ C

k
}

, (5.2)
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where

Λ =
[
λk−1 λk−2 · · · λ 1

]T
,

as sources of structured linearizations for our structuredpolynomials. The vectorv in (5.1)
is called the right ansatz vector ofL(λ) ∈ L1(Q), while w in (5.2) is called the left ansatz
vector ofL(λ) ∈ L2(Q).

We recall some of the key results known about these spaces forthe convenience of
the reader. The pencil spacesLi(Q) are generalizations of the first and second compan-
ion forms (1.4); direct calculations show thatCi(λ) ∈ Li(Q), with ansatz vectore1 in both
cases. These spaces can be represented using the column-shifted sum and row-shifted sum
defined as follows. ViewingX andY as blockk × k matrices, partitioned inton× n blocks
Xij , Yij , the column shifted sumX ⊞→ Y and the row shifted sumX ⊞↓ Y are defined to be

X ⊞→ Y :=




X11 · · · X1k 0
...

...
...

Xk1 · · · Xkk 0


+




0 Y11 · · · Y1k
...

...
...

0 Yk1 · · · Ykk


 ,

X ⊞↓ Y :=




X11 · · · X1k
...

...
Xk1 · · · Xkk

0 · · · 0


+




0 · · · 0
Y11 · · · Y1k

...
...

Yk1 · · · Ykk


 ,

where the zero blocks are alson× n. An alternate characterization [19],

L1(Q) =
{
λX + Y : X ⊞→ Y = v ⊗ [Bk Bk−1 · · · B0], v ∈ C

k
}

, (5.3)

L2(Q) =



λX + Y : X ⊞↓ Y = wT ⊗




Bk...
B0


 , w ∈ C

k



 , (5.4)

now shows that, like the companion forms, the pencilsL(λ) ∈ Li(Q) are easily constructible
from the data inQ(λ).

The spacesLi(Q) are fertile sources of linearizations: having nearly half the dimension
of the full pencil space (they are both of dimensionk(k − 1)n2 + k [19, Corollary 3.6]), al-
most all pencils in these spaces are strong linearizations whenQ is regular [19, Theorem 4.7].
Furthermore, eigenvectors ofQ(λ) are easily recoverable from those ofL(λ). For an eigen-
valueλ of Q, the correspondencex ↔ Λ ⊗ x is an isomorphism between right eigenvectors
x of Q(λ) and those of any linearizationL(λ) ∈ L1(Q). Similar observations hold for lin-
earizations inL2(Q) and left eigenvectors [19, Theorems 3.8 and 3.14].

It is natural to consider pencils in

DL(Q) := L1(Q) ∩ L2(Q),

since for such pencils both right and left eigenvectors ofQ are easily recovered. It is shown
in [19, Theorem 5.3] that the right and left ansatz vectorsv andw must coincide for pencils
L(λ) ∈ DL(Q), and that everyv ∈ C

k uniquely determinesX andY such thatλX + Y is
in DL(Q). ThusDL(Q) is ak-dimensional space of pencils, almost all of which are strong
linearizations forQ [19, Theorem 6.8].

Furthermore, all pencils inDL(Q) are block-symmetric [8]; in particular, the set of all
block-symmetric pencils inL1(Q) is preciselyDL(Q). Here a blockk×k matrixA with n×n
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blocksAij is said to be block-symmetric ifAB = A, whereAB denotes the block transpose
of A, that is,AB is the blockk×k matrix withn×n blocks defined by(AB)ij := Aji; see [8]
for more details on symmetric linearizations of matrix polynomials and their connection to
DL(Q).

The existence of other types of structured linearization inL1(Q), in particular for⋆-
(anti)-palindromic and⋆-even/odd polynomialsQ, has been established in [17, 18] by show-
ing how they may be constructed fromDL(Q)-pencils. A second method for building these
structured pencils using the shifted sum was presented in [17]. In the following subsections
we develop analogous methods to construct PCP-structured linearizations inL1(Q), L2(Q),
andDL(Q) for all the types of PCP-structured polynomials consideredin this paper.

It is important to point out that linearizations other than the ones inL1(Q) andL2(Q)
discussed here are also possible. Indeed, several other methods for constructing block-
symmetric linearizations of matrix polynomials have appeared previously in the literature;
see [8, Section 4] for more details.

5.1. Structured linearizations of (anti)-PCP polynomials. We now turn to the prob-
lem of finding structured linearizations for general (anti)-PCP polynomials, that is, for

Q(λ) =

k∑

i=1

λiBi,

satisfyingBi = ±PBk−iP for somen×n real involutionP . Our search for these structured
linearizations will take place in the spacesL1(Q), L2(Q), andDL(Q).

In this context, a linearizationL(λ) = λX + Y for Q will be considered structure-
preserving if it satisfies

P̂ · rev L(λ) · P̂ = ±L(λ), or, equivalently, Y = ±P̂ ·X · P̂ , (5.5)

for somekn × kn real involutionP̂ . It is not immediately obvious, though, what we should
use forP̂ . One might reasonably expect that an appropriateP̂ would incorporate the original
involutionP in some way. An apparently natural choice,

Ik ⊗ P =

[
P . . .

P

]
,

works only when the coefficient matricesBi of Q are very specifically tied to one another;
e.g., fork = 2, Q would be constrained byB1 = PB2P + B2 = B0 + B2, and a structured
L(λ) ∈ L1(Q) would have to have right ansatz vectorv = [1, 1]T . Things work out better if
we use instead the involution

P̂ := R⊗ P =

[
P

. .
.

P

]
, where R =

[
1

. .
.

1

]
∈ R

k×k. (5.6)

Note thatP̂ = R ⊗ P is symmetric wheneverP is, a property that will be important in
Section6.

Fixing the involutionP̂ = R⊗ P for the rest of this section, we begin by observing that

if a pencilλX(1) + Y (1) is (anti)-PCP with respect tôP , then from (5.5), Y (1) = ±P̂ X
(1)

P̂
is uniquely determined byX(1), so it suffices to specify all the admissibleX(1). Partition-
ing X(1) andY (1) into n×n blocksX

(1)
ij andY

(1)
ij , with i, j = 1, . . . , k, we obtain from (5.5)

and (5.6) that these blocks satisfy

Y
(1)
ij = ±PX

(1)

k−i+1,k−j+1P. (5.7)
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ForλX(1) + Y (1) to be a pencil inL1(Q), we know from (5.3) that

X(1)
⊞→ Y (1) = v ⊗ [Bk Bk−1 · · · B0] =: Z (5.8)

for somev ∈ C
k. It follows immediately from the definition of the column shifted sum⊞→

that if Z is partitioned conformably inton× n blocksZiℓ, with ℓ = 1, . . . , k + 1, then

Ziℓ = viBk−ℓ+1 =





X
(1)
i1 , ℓ = 1,

X
(1)
iℓ + Y

(1)
i,ℓ−1, 1 < ℓ < k + 1,

Y
(1)
ik , ℓ = k + 1.

(5.9)

Invoking (5.7) with j = k, (5.9) with ℓ = 1 andℓ = k + 1, together with the PCP-structure
of Q yields

viB0 = Y
(1)
ik = ±PX

(1)

k−i+1,1P

= ±P
(
vk−i+1Bk

)
P

= vk−i+1(±PBkP ) = vk−i+1B0

for all i. Hencevi = vk−i+1, equivalentlyRv = v, is a necessary condition for the right
ansatz vectorv of any PCP-pencil inL1(Q).

The first block column ofX(1) is completely determined by (5.9) with ℓ = 1,

X
(1)
i1 = viBk, (5.10)

while (5.9) for 2 ≤ ℓ = j ≤ k together with (5.7) provides a pairwise relation

X
(1)
ij = viBk−j+1 − Y

(1)
i,j−1 = viBk−j+1 ∓ PX

(1)

k−i+1,k−j+2P (5.11)

among the remainingk(k − 1) blocks ofX(1) in block columns2 throughk. Because the
“centrosymmetric” pairing of indices in (5.11),

(i, j)←→ (k − i + 1, k − j + 2), j ≥ 2,

has no fixed points, (5.11) is always a relation between distinct blocks ofX(1). One block
in each of these centrosymmetric pairs can be chosen arbitrarily; then (5.11) uniquely de-
termines the remaining blocksX(1)

ij with j ≥ 2. Gathering (5.10) and (5.11) together with

the conditions on the blocks ofY (1) that follow from (5.7) gives us the following blockwise
specification

X
(1)
ij =

{
viBk, j = 1,

viBk−j+1 ∓ PX
(1)

k−i+1,k−j+2P, j > 1,
(5.12)

Y
(1)
ij =

{
viBk−j −X

(1)
i,j+1, j < k,

viB0, j = k,
(5.13)

of an (anti)-PCP-pencilλX(1) + Y (1). These pencils can now all be shown to be inL1(Q)
by a straightforward verification of property (5.8).

Thus, we see that for anyv ∈ C
k satisfyingRv = v, there always exist pencilsL(λ) ∈

L1(Q) with right ansatz vectorv and (anti)-PCP structure. These pencils are far from being
unique: the above analysis shows that for each admissiblev there arek(k−1)n2/2 (complex)
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degrees of freedom available for constructing (anti)-PCP-pencils inL1(Q) with v as right
ansatz vector. Indeed, the set of all PCP-pencils inL1(Q) can be shown to be a real subspace
of L1(Q) of real dimensionk + k(k − 1)n2. This is quite different from the palindromic
structures considered in [19, Theorem 3.5], where for each suitably restricted right ansatz
vector there was shown to be a unique structured pencil inL1(Q).

A similar analysis can be used to develop formulas for the setof all (anti)-PCP-structured
pencilsλX(2) +Y (2) in L2(Q), using the row shifted sum characterization (5.4) as a starting
point in place of (5.8). We find that the left ansatz vectorw of any (anti)-PCP-pencil inL2(Q)
is restricted, just as it was for (anti)-PCP-pencils inL1(Q), to ones satisfyingRw = w.
PartitioningX(2) andY (2) into n × n blocksX

(2)
ij andY

(2)
ij as before now forces the first

block row ofX(2) to be

X
(2)
1j = wjBk,

while the remaining blocks ofX(2) in block rows2 throughk must pairwise satisfy the
relations

X
(2)
ij = wjBk−i+1 ∓ PX

(2)

k−i+2,k−j+1P, for 2 ≤ i ≤ k, (5.14)

analogous to (5.12) for (anti)-PCP-pencils inL1(Q). Here the pairing of indices for blocks
of X(2) is

(i, j)←→ (k − i + 2, k − j + 1) for i ≥ 2.

Once again we have a pairing with no fixed points, allowing oneblock in each block pair to
be chosen arbitrarily, while the other one is then uniquely specified by (5.14). Thus we obtain
the following blockwise specification for a general (anti)-PCP pencil inL2(Q),

X
(2)
ij =

{
wjBk, i = 1

wjBk−i+1 ∓ PX
(2)

k−i+2,k−j+1P, i > 1,

Y
(2)
ij =

{
wjBk−i −X

(2)
i+1,j , i < k

wjB0, i = k,

analogous to (5.12) and (5.13) for (anti)-PCP pencils inL1(Q).
An alternative way to generate (anti)-PCP pencils inL2(Q) is to use the block transpose

linear isomorphism [8, Theorem 2.2]

L1(Q) −→ L2(Q)

L(λ) 7−→ L(λ)B

betweenL1(Q) and L2(Q). For any (anti)-PCP pencilλX ± P̂ XP̂ with the particular
involution P̂ = R⊗ P we can show that

(
λX ± P̂ XP̂

)B
= λXB ±

(
P̂ XP̂

)B
= λXB ± P̂ X

B

P̂ .

Thus, block transposition preserves (anti)-PCP structure, and hence restricts to an isomor-
phism between the (real) subspaces of all (anti)-PCP pencils in L1(Q) and all (anti)-PCP
pencils inL2(Q).

We now know how to generate lots of (anti)-PCP pencils inL1(Q) and inL2(Q) for each
admissible right or left ansatz vector. But what aboutDL(Q) = L1(Q) ∩ L2(Q)? Are there
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any (anti)-PCP pencils in this very desirable subspace of pencils? The following theorem
answers this question in the affirmative, and also gives a uniqueness result analogous to the
ones for the palindromic structures considered in [19].

THEOREM 5.1 (Existence/Uniqueness of PCP-Structured Pencils inDL(Q)). Suppose
Q(λ) is an(anti)-PCP-polynomial with respect to the involutionP . Letv ∈ C

k be any vector
such thatRv = v, and letL(λ) be the unique pencil inDL(Q) with ansatz vectorv. Then,
L(λ) is an(anti)-PCP-pencil with respect to the involution̂P = R⊗ P .

Proof. Our strategy is to show that the pencilL̂(λ) := ± P̂ rev L(λ)P̂ (using+ when
Q is PCP and− when Q is anti-PCP) is also inDL(Q), with the same ansatz vectorv
as L(λ). Then, from the unique determination ofDL(Q)-pencils by their ansatz vectors
(see [8, Theorem 3.4] or [19, Theorem 5.3]), we can conclude thatL̂(λ) ≡ L(λ), and hence
thatL(λ) is (anti)-PCP with respect tôP .

We begin by showing thatL(λ) ∈ L1(Q) with right ansatz vectorv implies thatL̂(λ) ∈
L1(Q) with right ansatz vectorv. From the defining identity (in the variableλ) for a pencil
in L1(Q), we have

L(λ) · (Λ⊗ I) = v ⊗Q(λ) = v ⊗
[
±P rev Q(λ)P

]
.

Takingrev of both sides of this identity, and using the fact thatrev Λ = RΛ, we get

rev L(λ) · (RΛ⊗ I) = ±v ⊗
[
PQ(λ)P

]
.

Multiplying on the right by the involution1⊗ P = P and simplifying yields

± rev L(λ) · (RΛ⊗ P ) =
(
v ⊗

[
PQ(λ)P

])
(1⊗ P ),

which implies

± rev L(λ) · (R⊗ P )(Λ⊗ I) = v ⊗ PQ(λ).

Now multiplying on the left byR⊗ P and using the hypothesisRv = v yields

±(R⊗ P ) · rev L(λ) · (R⊗ P )(Λ⊗ I) = Rv ⊗Q(λ),

i.e.,
[
±P̂ rev L(λ)P̂

]
· (Λ⊗ I) = v ⊗Q(λ).

Finally conjugate both sides, and replaceλ by λ in the resulting identity:
[
±P̂ rev L(λ)P̂

]
(Λ⊗ I) = v ⊗Q(λ) =⇒

[
±P̂ rev L(λ)P̂

]
(Λ⊗ I) = v ⊗Q(λ).

Thus,L̂(λ) · (Λ⊗ I) = v ⊗Q(λ), and thereforêL(λ) ∈ L1(Q) with right ansatz vectorv.
A similar computation starts from the defining identity

(ΛT ⊗ I) · L(λ) = vT ⊗Q(λ)

for a pencilL(λ) to be inL2(Q), and shows that wheneverL(λ) ∈ L2(Q) has left ansatz
vectorv, thenL̂(λ) is also inL2(Q) with left ansatz vectorv. Thus,L̂(λ) ∈ DL(Q) with
ansatz vectorv. Hence,̂L(λ) ≡ L(λ), and thereforeL(λ) is a PCP-pencil with respect to the
involution P̂ = R⊗ P .
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Now that we know there exists a unique structured pencil inDL(Q) for each admissible
ansatz vector, how can we go about constructing it in a simpleand effective manner? Perhaps
the simplest answer is just to use either of the explicit formulas forDL(Q) pencils given in [8]
and [19, Theorem 5.3]. An alternative is to adapt the procedures used in [17] for constructing
⋆ -palindromic and⋆ -even/odd pencils inDL(Q), as follows.

Given a vectorv ∈ C
k such thatRv = v, our goal is to construct the pencilλX + Y

in DL(Q) with ansatz vectorv that is (anti)-PCP with respect to the involution̂P = R ⊗ P .
Recall that it suffices to determineX, since the (anti)-PCP structure forcesY to be±P̂ XP̂ .
We now constructX one group of blocks at a time, alternating between using the fact that
X comes from a pencil inDL(Q), and hence is block-symmetric, and the fact that it comes
from a pencil that is (anti)-PCP inL1(Q), and so satisfies the conditions in (5.12).

1. The first block column ofX is determined by (5.12) to beXi1 = viBk.
2. The first block row ofX is now forced to beX1j = vjBk by block-symmetry.
3. Equation (5.12) now determines the last block row ofX from the first block row.
4. The last block column ofX is now determined by block-symmetry.
5. Equation (5.12) determines the second block column ofX from the last block col-

umn.
6. The second block row ofX follows by block-symmetry.
7. Equation (5.12) determines the next-to-last block row ofX from the second block

row.
8. The next-to-last block column ofX is now determined by block-symmetry.
9. ...

The order of construction for the various groups of blocks inX follows the pattern

X =




1

3

2

45

7

6

8. . .




,

similar to that in [17, Section 7.3.2] for⋆-even and⋆-odd linearizations.
The matrixX resulting from this construction is necessarily block-symmetric, since all

the blocks in the even-numbered panels2, 4, 6, 8, . . . are determined by imposing the con-

dition of block-symmetry. Since
(
P̂ XP̂

)B
= P̂ X

B

P̂ = P̂ XP̂ , we see that the pencil

λX ± P̂ XP̂ as a whole is block-symmetric, and hence is inDL(Q).
EXAMPLE 5.2 (Quadratic case). To illustrate this procedure we find all the structured

pencils inDL(Q) for the quadratic PCP-polynomialQ(λ) = λ2B2 + λB1 + B0, where
B1 = PB1P andB0 = PB2P . An admissible ansatz vectorv ∈ C

2 must satisfyRv = v,
i.e., must be of the formv = [α, α]T . The matrixX in the structuredDL(Q)-pencilλX + Y
with ansatz vectorv is then constructed in three steps:

first

[
αB2 ∗
αB2 ∗

]
, then

[
αB2 αB2

αB2 ∗

]
, and finally

[
αB2 αB2

αB2 αB1 − αPB2P

]
,

resulting in the structured pencilλX + P̂ XP̂ given by

λ

[
αB2 αB2

αB2 αB1 − αPB2P

]
+

[
αB1 − αB2 αPB2P

αPB2P αPB2P

]
.
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So far in this section we have shown how to construct many structured pencils inL1(Q),
L2(Q), andDL(Q). But which ones, if any, of these pencils are actually linearizations for
the structured polynomialQ that we began with? It is known that whenQ(λ) is regular, then
any regular pencil inL1(Q) or L2(Q) is a (strong) linearization forQ [19, Theorem 4.3].
Although there is a systematic approach [19] for determining the regularity of a pencilL(λ)
in L1(Q) or L2(Q), there is in general no connection between its regularity and the right
(or left) ansatz vector ofL(λ). By contrast, for pencils inDL(Q) the Eigenvalue Exclusion
Theorem [19, Theorem 6.7] characterizes regularity directly in terms of the ansatz vector:
L(λ) ∈ DL(Q) with ansatz vectorv = [vi] ∈ C

k is regular, and hence a (strong) linearization
for Q(λ), if and only if no root of the scalarv-polynomial

p(x; v) := v1x
k−1 + v2x

k−2 + · · ·+ vk−1x + vk

is an eigenvalue ofQ(λ). Among the ansatz vectorsv satisfyingRv = v, there will always
be many choices such that the roots of thev-polynomial

p(x; v) = v1x
k−1 + v2x

k−2 + · · ·+ v2x + v1

are disjoint from the eigenvalues ofQ(λ), thus providing many structured pencils inDL(Q)
that are indeed linearizations forQ(λ).

One might also wish to choose the ansatz vectorv so that the desired eigenvalues are op-
timally conditioned. Although the problem of determining the best conditioned linearization
in DL(Q) for an unstructured polynomialQ has been investigated in [9], up to now it is not
clear how to do this for structured linearizations of structured polynomialsQ.

REMARK 5.3. Consider again the general quadratic PCP-polynomialQ as discussed
in Example5.2. In this case admissible ansatz vectors have the formv = [α, α]T with
correspondingv-polynomialp(x; v) = αx + α. In order to obtain a linearization we need
only chooseα ∈ C so that the number−α/α on the unit circle is not an eigenvalue ofQ(λ).
Clearly, this always can be done.

REMARK 5.4. In this section our structured linearizations have been of the same type
as the structured polynomial: we linearized a PCP-polynomial with a PCP-pencil, and an
anti-PCP-polynomial with an anti-PCP-pencil. It should benoted, however, that “crossover”
linearizations are also possible. Small modifications of the constructions given in this section
show that any PCP-polynomial can be linearized by an anti-PCP-pencil, and any anti-PCP-
polynomial by a PCP-pencil. The admissibility condition for the ansatz vectors of these
crossover linearizations is nowRv = −v rather thanRv = v. From the point of view of
numerical computation such crossover linearizations are just as useful, since spectral symme-
tries are still preserved.

REMARK 5.5. It is not yet clear whether the choice ofP̂ = R ⊗ P as the involution for
our structured linearizations is the only one possible, or if there might be other choices for̂P
that work just as well.

5.2. Structured linearizations of PCP-even/odd polynomials. Next we consider the
linearization of PCP-even/odd polynomials by PCP-even/odd pencils inL1(Q), L2(Q), and
DL(Q). Recall thatQ(λ) =

∑k
i=1 λiBi is PCP-even/odd ifQ(λ) = ±PQ(−λ)P , equiva-

lently if Bi = ±(−1)iPBiP , for some real involutionP . Thus a pencilL(λ) = λX + Y is
PCP-even/odd if there is some involution̂P such that

X = ∓P̂ XP̂ and Y = ±P̂ Y P̂ . (5.15)
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Now, just as in Section5.1, the first issue is to decide whicĥP to use; certainly we want̂P
such that structured pencils whichlinearizeQ(λ) always can be found. The first two possi-
bilities that spring to mind,Ik⊗P andRk⊗P , turn out to work only for structuredQ having
additional restrictions on its coefficient matrices. We will see, however, that choosing

P̂ := Σk ⊗ P =




. . .
−P

P
−P

P


 , where Σk :=




(−1)k−1

(−1)k−2

. . .
(−1)0


 ∈ R

k×k,

works for any PCP-even/oddQ(λ). Fixing P̂ = Σk ⊗ P for the rest of this section, and
partitioningX andY like P̂ into n× n blocksXij andYij , we obtain from (5.15) that

Xij = ∓(−1)i+jPXijP and Yij = ±(−1)i+jPY ijP. (5.16)

Now we know from (5.3) that a pencilλX(1) + Y (1) is in L1(Q) exactly when

X(1)
⊞→ Y (1) = v ⊗ [Bk Bk−1 · · · B0], (5.17)

for somev ∈ C
k. Thus the blocks of such a pencil have to satisfy the conditions

X
(1)
ij =

{
viBk, j = 1,

viBk−j+1 − Y
(1)
i,j−1, j > 1,

(5.18)

Y
(1)
ij =

{
Y

(1)
ij , j < k,

viB0, j = k,
(5.19)

for an arbitrary choice of the blocksY (1)
ij , with 1 ≤ j ≤ k−1 andv ∈ C

k. ForλX(1) +Y (1)

to be a structured pencil inL1(Q), it remains to determine how these arbitrary choices can be
made so that all the relations in (5.16) hold.

To satisfy (5.16) for Y
(1)
ij with j = k, i.e., forY (1)

ik = viB0, we must have

viB0 = ±(−1)i+kP
(
viB0

)
P = (−1)i+kviB0

for all i. Hence the right ansatz vectorv must satisfyvi = (−1)i+kvi, or equivalently
Σkv = v. Choosing the rest of theY (1)

ij for 1 ≤ j ≤ k − 1 in any way such that (5.16)

holds clearly yieldsY (1) such thatY (1) = ±P̂ Y
(1)

P̂ . The matrixX(1) is now completely
determined by (5.18), and a straightforward, albeit tedious, verification shows that all the
relations in (5.16) hold for thisX(1). Thus we have obtained a complete description of all the
PCP-even/odd pencils inL1(Q).

REMARK 5.6. It is interesting to note an unexpected consequence of this characteriza-
tion: whenQ is PCP-even, a small variation of the first companion form linearizationC1(λ)
is structure-preserving! LettingZ denote thek × k cyclic permutation

Z =




0 1
. . .

. . .
0 1

1 0


 ,

we see that the block-row-permuted companion form(Z ⊗ I)C1(λ) is a PCP-even pencil in
L1(Q) with right ansatz vectorv = ek.
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A similar analysis, starting from the row shifted sum characterization (5.4) in place
of (5.17), yields the following description of all the PCP-even/oddpencilsλX(2) + Y (2)

in L2(Q) with left ansatz vectorw. The blocks of such a structured pencil satisfy

X
(2)
ij =

{
wjBk, i = 1,

wjBk−i+1 − Y
(2)
i−1,j , i > 1,

(5.20)

Y
(2)
ij =

{
Y

(2)
ij , i < k,

wjB0, i = k,
(5.21)

where once again the left ansatz vectorw is required to satisfyΣkw = w, and the blocks
Y

(2)
ij for 1 ≤ i ≤ k − 1 are chosen inanyway so that (5.16) holds. The matrixX(2) is then

determined by (5.20), and the resulting pencilλX(2) + Y (2) ∈ L2(Q) is guaranteed to be
PCP-even/odd.

When we look inDL(Q) for pencils that are PCP-even/odd, we find a situation very
much like the one described in Theorem5.1 for PCP-polynomials. The following theorem
shows that PCP-even/odd pencils inDL(Q) are uniquely defined by any admissible ansatz
vectorv, i.e., by anyv that satisfiesΣkv = v.

THEOREM 5.7 (Existence/Uniqueness of PCP-Even/Odd Pencils inDL(Q)). Suppose
Q(λ) is a PCP-even/odd polynomial with respect to the involutionP . Let v ∈ C

k be any
vector such thatΣkv = v, and letL(λ) be the unique pencil inDL(Q) with ansatz vectorv.
ThenL(λ) is PCP-even/odd with respect to the involutionP̂ = Σk ⊗ P .

Proof. Defining the auxiliary pencil̂L(λ) := ± P̂ L(−λ)P̂ , computations parallel to
those in Theorem5.1 (with just a few changes) demonstrate thatL̂(λ) is in DL(Q) with the
same ansatz vector asL(λ). The “rev” operation is replaced by the substitutionλ → −λ, R
is replaced byΣk, and the observationrev Λ = RΛ is replaced byΛ(−λ) = ΣkΛ. Then the
unique determination ofDL(Q)-pencils by their ansatz vectors implies thatL̂(λ) ≡ L(λ),
and hence thatL(λ) is PCP-even/odd with respect tôP . Further details can be found in [3].

To construct these structured pencilsL(λ) ∈ DL(Q) we once again have two main op-
tions: use the explicit formulas for generalDL(Q)-pencils given in [8, 19], or alternatively
build them up blockwise using a shifted sum construction analogous to the procedures used
in [17, Section 7.3.2] for building⋆-even and⋆-odd linearizations. In this construction we
alternate between using the fact thatL(λ) = λX + Y is to be inL1(Q) and so must sat-
isfy the shifted sum condition (5.17), and invoking block-symmetry to ensure thatL(λ) is
in DL(Q). (Recall that the set of all block-symmetric pencils inL1(Q) is preciselyDL(Q).)
The determination of the blocks inλX + Y proceeds in the order indicated in the following
diagram.

λX + Y = λ




1

3

2

45

7

6

8. . .




+




1

2

3

4 5

6

7

8 . . .




.

We start with a choice of ansatz vectorv such thatΣkv = v. Then,
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1. L(λ) being in L1(Q) immediately determines the blocks in the panels labelled
by (1); from (5.18) and (5.19) we know thatXi1 = viBk andYik = viB0.

2. Block-symmetry now forces the blocks in the panels labelled(2).
3. The shifted sum condition (5.17) next determines the blocks in the panels labelled(3).
4. Block-symmetry now forces the blocks in the panels labelled(4).
5. Equation (5.17) next determines the blocks in the panels labelled(5).
6. Block-symmetry now forces the blocks in the panels labelled(6).
7. ...

In summary, each panel labelled with an odd number is constructed using information from
the shifted sum condition (5.17), while the panels labelled with an even number are con-
structed so as to maintain block-symmetry. Since the even-numbered panels comprise all the
blocks above the diagonal inX and all the blocks below the diagonal inY , we are guaranteed
that the construction as a whole will produce a block-symmetric pencil, and hence a pencil
in DL(Q).

The question of determining which of these structured pencils in DL(Q) is actually a lin-
earization forQ is handled in the same way as it was in Section5.1, i.e., by using the Eigen-
value Exclusion Theorem [19, Theorem 6.7] for pencils inDL(Q). For any admissible ansatz
vectorv such that the roots of thev-polynomialp(x; v) are disjoint from the eigenvalues of
Q, the structured pencil inDL(Q) corresponding tov will be a linearization forQ. Clearly
there will be many suchv for which this is the case.

Finally it should be noted that remarks similar to the ones atthe end of Section5.1, e.g.,
on the existence of “crossover” structured linearizationsand the possibility of there being
other good choices of involution̂P , also apply here in the context of PCP-even/odd structure.

6. Structured Schur form for PCP-pencils. Once a PCP-polynomial has been lin-
earized in a structure-preserving manner, the eigenvaluesof the resulting PCP-pencil should
be computed in such a way that the reciprocal pairing of the spectrum (see Theorem3.1) is
guaranteed.

The generalized Schur decomposition(S, T ) = (QAZ,QBZ) of a matrix pair(A,B),
whereS andT are upper triangular andQ andZ are unitary, is the basis for most numerical
approaches to computing eigenvalues and generalized invariant subspaces for the general lin-
ear eigenproblem(λA + B)x = 0. In this section we discuss the computation of astructured
Schur-type decomposition for the linear PCP-eigenproblem

(λX + P XP )v = 0, (6.1)

whereX ∈ C
m×m andP ∈ R

m×m is an involution. We begin by assuming thatP is also
symmetric; this is true for the involution in the quadratic PCP-eigenproblem arising from the
stability analysis of time-delay systems discussed in Section 2, as well as in the structured
linearizations for such problems described in Section5.1.

SinceP is an involution, its eigenvalues are in{±1}, so whenP is symmetric it admits
a Schur decomposition of the form

P = WDWT , D =

[
Ip

−Im−p

]
,

whereW ∈ R
m×m is orthogonal. With

X̂ = WT XW and v̂ = WT v

we can then simplify (6.1) to the linear PCP-eigenproblem

(λX̂ + DX̂D)v̂ = 0,
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with involutionD.
Using a Cayley transform and scaling yields

1
2

(
C+1

(
λX̂ + DX̂D

))
(µ)v̂ =: (µN + M)v̂ = 0,

whereµ = λ−1
λ+1 . By Theorem4.1, the pencilµN + M is PCP-even with involutionD,

henceN = −DND andM = DMD. These relations also can be directly verified from

the defining equationsN := 1
2 (X̂ − DX̂D) andM := 1

2 (X̂ + DX̂D). Note also that
Theorem3.1guarantees symmetry of the spectrum ofµN +M with respect to the imaginary
axis. PartitioningN andM conformably withD, we have

N =

[
N11 N12

N21 N22

]
=

[
−N11 N12

N21 −N22

]
= −DND,

M =

[
M11 M12

M21 M22

]
=

[
M11 −M12

−M21 M22

]
= DMD.

Hence, the blocksN12, N21, M11, andM22 are real, whileN11, N22, M12, andM21 are
purely imaginary.

Multiplying on both sides bỹD := diag(Ip,−iIm−p) yields the equivalentreal pencil

D̃(µN + M)D̃ =

(
µ

[
iIm(X̂11) −iRe(X̂12)

−iRe(X̂21) −iIm(X̂22)

]
+

[
Re(X̂11) Im(X̂12)

Im(X̂21) −Re(X̂22)

])

=

(
−iµ

[
−Im(X̂11) Re(X̂12)

Re(X̂21) Im(X̂22)

]
+

[
Re(X̂11) Im(X̂12)

Im(X̂21) −Re(X̂22)

])

= : (νX1 + X2),

with X1,X2 real, andν = −iµ. HereRe(X) andIm(X) denote the real and imaginary parts
of X, respectively.

Now let (S̃, T̃ ) = (Q̃X1Z̃, Q̃X2Z̃) be areal generalized Schur form for the real pair
(X1,X2), i.e.,Q̃ andZ̃ are real orthogonal,̃T is real and upper triangular, and̃S is real and
quasi-upper triangular with1× 1 and2× 2 blocks. Any1× 1 block in this real Schur form
corresponds to a real eigenvalue ofνX1 + X2, hence to a purely imaginary eigenvalue of
µN + M , and thus to an eigenvalue ofλX + PXP on the unit circle. Similarly, any2 × 2
block corresponds to a complex conjugate pair of eigenvalues for νX1 + X2, which in turn
corresponds to an eigenvalue pair(µ,−µ̄) for µN + M , and hence to a reciprocal pair of
eigenvalues(λ, 1/λ̄) for λX + P XP . Thus, we see that the block structure in the real Schur
form of the real pencilνX1 + X2 precisely mirrors the reciprocal pairing structure in the
spectrum of the original PCP-pencilλX + P XP .

We recover a structured Schur form forλX + P XP by re-assembling all the transfor-
mations together to obtain

(Q̃D̃WT

︸ ︷︷ ︸
Q

)(λX + PXP )(WD̃Z̃︸ ︷︷ ︸
Z

) = λ (T̃ − iS̃)︸ ︷︷ ︸
S

+(T̃ + iS̃)︸ ︷︷ ︸
T

.

SinceλS + T = λS + S, this Schur form is again a PCP-pencil, but with respect to the
involutionP = I. This derivation is the basis for Algorithm6.1.

This algorithm has several advantages over the standard QZ algorithm applied directly
to λX +PXP . First, it is faster, since the main computational work is the real QZ algorithm
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ALGORITHM 6.1 (Structured Schur form for PCP-pencils).

Input: X ∈ C
m×m andP ∈ R

m×m, with P 2 = I andPT = P .
Output: Unitary Q,Z ∈ C

m×m and block upper triangularS ∈ C
m×m such thatQXZ =

S andQPXPZ = S; the diagonal blocks ofS are only of size1× 1 (corresponding to
eigenvalues of magnitude 1) and2× 2 (corresponding to pairs of eigenvalues of the form
(λ, 1/λ̄)).

1: P →WDWT with D = diag(Ip,−Im−p) [find real symmetric Schur form]
2: X̂ ←WT XW

3: X1 ←
[
−Im(X̂11) Re(X̂12)

Re(X̂21) Im(X̂22)

]
, whereX̂11 ∈ C

p×p

4: X2 ←
[
Re(X̂11) Im(X̂12)

Im(X̂21) −Re(X̂22)

]
, whereX̂11 ∈ C

p×p

5: (X1,X2)→ (Q̃T S̃Z̃T , Q̃T T̃ Z̃T ) [compute real generalized Schur form]

6: Q← Q̃ diag(Ip,−iIm−p)W
T , Z ←Wdiag(Ip,−iIm−p)Z̃

7: S ← T̃ − iS̃

rather than the complex QZ algorithm. Second, structure preservation guarantees reciprocally
paired eigenvalues; in particular, the presence of eigenvalues on the unit circle can be robustly
detected. It is interesting to note that an algorithm with these properties (computation of a
structuredSchur form with the resulting guaranteed spectral symmetry, and greater efficiency
than the standard QZ algorithm) is not yet available for the T- or ∗-palindromic eigenvalue
problems.

In many applications it is also necessary to compute eigenvectors for a PCP-polynomial,
e.g., in the stability analysis of time-delay systems described in Section2. These can be found
by starting with the eigenvalue problem(νS̃ + T̃ )x = 0 in real generalized Schur form, and
computing eigenvectorsx using standard methods. It then follows that

(
1 + iν

1− iν
S + T

)
x =

(
1 + iν

1− iν
S + S

)
x = 0,

which in turn implies that

(
1 + iν

1− iν
X + PXP

)
(Zx) = 0.

In other words,v = Zx is an eigenvector of the pencil in (6.1) corresponding to the eigenvalue
λ = 1+iν

1−iν . If this pencil was originally obtained as a structured linearization inL1(Q) for a
PCP-polynomialQ(λ), then (as described in Section5) v must be of the formΛ⊗u for some
eigenvectoru of Q(λ) corresponding to the eigenvalueλ = 1+iν

1−iν . Thus, eigenvectorsu of
Q(λ) are immediately recoverable from the eigenvectorsv of the pencil in (6.1).

REMARK 6.2. Any real involutionP that is not symmetric admits a Schur decomposition
of the form

R = WT PW =

[
Ip R12

−Im−p

]
.
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(a) (b)

FIGURE 7.1. Metal strip with twoLp cells (three capacitive cells dashed) (a), and small PEEC model for
metal strip (b). Figures are redrawn from [1].

Defining

K :=

[
Ip

1
2R12

−Im−p

]
,

we haveK−1RK = D = diag(Ip,−Im−p), and soP = W̃DW̃−1 with W̃ = WK.
Thus, ifP is only mildly non-normal (i.e.,‖R12‖ is small), then there is a well-conditioned
similarity transformation that bringsP to the diagonal formD, and replacingW by W̃ and
WT by W̃−1 in Algorithm 6.1 would still be a reasonable way to compute the eigenvalues
and eigenvectors of a PCP-pencil. Note, however, that the output matricesQ andZ will no
longer be unitary.

REMARK 6.3. Note that with some minor modifications, Algorithm6.1 also can be
used on an anti-PCP-pencil to compute a structured Schur form that is anti-PCP, of the form
λS − S.

7. Applications and numerical results. As we saw earlier in Section2, eigenvalue
problems with PCP-structure arise in the stability analysis of neutral linear time-delay sys-
tems. Such systems provide useful mathematical models in many physical application areas
(see [13, 22] and the references therein); one example is circuits with delay elements, such
as transmission lines and partial element equivalent circuits (PEEC’s). A realistic problem
motivated by the small PEEC model in Figure7.1 is given by

S =

{
D1ẋ(t− h) + ẋ(t) = A0x(t) + A1x(t− h), t ≥ 0,

x(t) = ϕ(t), t ∈ [−h, 0),
(7.1)

where

A0 = 100



−7 1 2

3 −9 0
1 2 −6


 , A1 = 100




1 0 −3
−0.5 −0.5 −1
−0.5 −1.5 0


 ,

D1 = − 1

72



−1 5 2

4 0 3
−2 4 1


 , D0 = I,

ϕ(t) =
[
sin(t), sin(2t), sin(3t)

]T
.

More details on this example can be found in [1].
The quadratic eigenproblem (2.13) for this example is(z2E + zF + G)u = 0, with

E = (D0 ⊗A1) + (A0 ⊗D1), G = (D1 ⊗A0) + (A1 ⊗D0),

F = (D0 ⊗A0) + (A0 ⊗D0) + (D1 ⊗A1) + (A1 ⊗D1).
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It is easy to verify thatE = PGP andF = PFP hold for

P =




M11 M21 M31

M12 M22 M32

M13 M23 M33


 ,

whereMij denotes the3× 3 matrix with the entry1 in position(i, j) and zeroes everywhere
else.

The standard companion forms for this quadratic eigenproblem are

C1(λ) = λ

[
E

I

]
+

[
F G
−I 0

]
and C2(λ) = λ

[
E

I

]
+

[
F −I
G 0

]
.

A structured pencil inL1(Q) (as discussed in Section5.1) is given by

λ

[
v1E −X12

v1E v1F + PX12P

]
+

[
X12 + v1F v1PEP
−PX12P v1PEP

]
, v1 ∈ C, (7.2)

whereX12 is arbitrary, while a structured pencil inL2(Q) is given by

λ

[
w1E w1E
X21 w1F − PX21P

]
+

[
w1F −X21 PX21P
w1PEP w1PEP

]
, w1 ∈ C, (7.3)

whereX21 is arbitrary. Withw1 = v1 andX21 = v1E = −X12, the pencils (7.2) and (7.3)
are the same. Thus

λ

[
v1E v1E
v1E v1F − v1PEP

]
+

[
v1F − v1E v1PEP

v1PEP v1PEP

]
(7.4)

defines the unique structured pencil (up to choice of scalarv1) belonging to the intersection
DL(Q) = L1(Q) ∩ L2(Q). By the Eigenvalue Exclusion Theorem [19, Theorem 6.7], the
pencil (7.4) is a structured linearization if and only if−v1/v1 is not an eigenvalue ofQ(λ).

Choosingv1 = 1 and applying Algorithm6.1, we found that (7.4) has no eigenvalues
on the unit circle, so the time-delay systemS in (7.1) has no critical delays. The systemS is
stable forh = 0, since all eigenvalues of the pencilL(α) = α(D0 + D1)− (A0 + A1) have
negative real part. Continuity of the eigenvalues ofS as a function of the delayh then implies
thatS is stable for every choice of the delayh ≥ 0, a property known asdelay-independent
stability.

Our next example arises from the discretization of a partialdelay-differential equation
(PDDE), taken from Example 3.22 in [13, Sections 2.4.1, 3.3, 3.5.2]. It consists of the re-
tarded time-delay system

ẋ(t) = A0x(t) + A1x(t− h1) + A2x(t− h2), (7.5)

whereA0 ∈ R
n×n is tridiagonal andA1, A2 ∈ R

n×n are diagonal with

(A0)kj =

{
−2(n + 1)2/π2 + a0 + b0 sin

(
jπ/(n + 1)

)
, if k = j,

(n + 1)2/π2, if |k − j | = 1,

(A1)jj = a1 + b1
jπ

n + 1

(
1− e−π

(
1−j/(n+1)

))
,

(A2)jj = a2 + b2
jπ2

n + 1

(
1− j/(n + 1)

)
.
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Hereaℓ, bℓ are real scalar parameters andn ∈ N is the number of uniformly spaced interior
grid points in the discretization of the PDDE. We used the values

a0 = 2, b0 = 0.3, a1 = −2, b1 = 0.2, a2 = −2, b2 = −0.3

(as in [13]) and considered various values forn. With ϕ1 = −π/2 (i.e., eiϕ1 = i) the
quadratic PCP eigenvalue problem to solve is

(λ2E + λF + PEP )v = 0, (7.6)

where

E = I ⊗A2, F =
(
I ⊗ (A0 − iA1)

)
+
(
(A0 + iA1)⊗ I

)
,

and P is the n2 × n2 permutation that interchanges the order of Kronecker products as
in (2.15). Table7.1 displays the results of our numerical experiments. Heren denotes the
dimension of the time-delay system (7.5), 2n2 the dimension of the PCP-pencil (7.4), and
tpolyeig, tQZ, tPCP denote the execution times in seconds for the three tested methods:

1. solving the quadratic eigenvalue problem (7.6) using the Matlabpolyeig com-
mand, which applies the QZ algorithm to a (permuted) companion form,

2. solving the generalized eigenproblem for the PCP-pencil(7.4) using the MatlabQZ
algorithm, and

3. solving the eigenproblem for the PCP-pencil (7.4) using Algorithm6.1.
All computations were done in Matlab 7.5 (R2007b) under OpenSUSE Linux 10.2 (ker-
nel 2.6.18, 64 bit) on a Core 2 Duo Processor E6850 3.0GHz with4GB memory. The quan-
tities errpolyeig anderrQZ, defined by

err = max
λj

min
λk

|λj − (1/λk) |
|λj |

,

whereλj , λk are (not necessarily distinct) eigenvalues of (7.6), measure the distance of the
computed eigenvalues from being paired for the two unstructured methods. Note that this
measure is zero for Algorithm6.1by construction. The numbers#polyeig, #QZ, and#PCP

denote the number of eigenvalues on the unit circle found by each method; for the unstruc-
tured methods this is the number of eigenvaluesλ with

∣∣ |λ| − 1
∣∣ < 10−14, while for Algo-

rithm 6.1this is the number of1× 1 blocks in the structured Schur form.
As it can be seen from Table7.1, our structured method is about twice as fast as both

unstructured methods. Note that the QZ algorithm applied tothe PCP linearization (col-
umntQZ) is slightly slower than the QZ algorithm applied to a companion form linearization
(columntpolyeig). On the other hand, the eigenvalues computed bypolyeig are not as well

TABLE 7.1
Comparison ofpolyeig, QZ, and Algorithm6.1

n 2n2 tpolyeig tQZ tPCP errpolyeig errQZ #polyeig #QZ #PCP

5 50 0.02 0.02 0.01 5.5e-15 3.7e-15 4 4 4
10 200 0.50 0.55 0.28 6.5e-14 1.2e-13 4 4 4
15 450 5.5 6.3 3.0 4.4e-13 2.6e-13 4 3 4
20 800 33 36 20 1.3e-12 4.8e-13 3 0 4
25 1250 131 137 72 3.1e-12 6.6e-13 3 0 4
30 1800 413 435 227 1.1e-11 7.5e-13 0 0 4



ETNA
Kent State University 

http://etna.math.kent.edu

STRUCTURED POLYNOMIAL EIGENPROBLEMS RELATED TO TIME-DELAY SYSTEMS 329

paired as those computed by the QZ algorithm applied to the PCP linearization. In the time-
delay setting the only eigenvalues of interest are those on the unit circle and in this respect the
three methods perform very differently. All methods correctly find the number of eigenvalues
of unit magnitude forn = 5, 10. For largern the unstructured methods do not find all, and
sometimes not any, of the desired eigenvalues. In particular, for n = 30 only the structured
method finds all 4 eigenvalues on the unit circle, whereas theunstructured methods find none.

As a third example, we tested PCP-pencils of the formλX+PXP , whereX is randomly
generated by the Matlab commandrandn(n)+i*randn(n) andP is the matrixR defined
in (5.6). We found that, for50 < n < 2000, our Algorithm6.1performs 2.5 to 3 times faster
than the QZ algorithm on this type of problem.

8. Concluding summary. Motivated by a quadratic eigenproblem arising in the stabil-
ity analysis of time-delay systems [13], we have identified a new type of matrix polynomial
structure, termed PCP-structure, that is analogous to the palindromic structures investigated
in [18]. The properties of these PCP-polynomials were investigated, along with those of three
closely related structures: anti-PCP, PCP-even and PCP-odd polynomials. Spectral symme-
tries were revealed, and relationships between these structures were established via the Cayley
transformation.

Building on the work in [19], we have shown how to construct structure-preserving lin-
earizations for all these structured polynomials in the pencil spacesL1(Q), L2(Q), andDL(Q).
In addition to preservation of eigenvalue symmetry, such linearizations also permit easy
eigenvector recovery, which can be an important consideration in applications. Structured
Schur forms for PCP and anti-PCP pencils were derived, alongwith a new algorithm for their
computation, which compares favorably with the QZ algorithm. Using a structure-preserving
linearization followed by the computation of a structured Schur form thus allows us to solve
the new structured eigenproblem efficiently, reliably, andwith guaranteed preservation of
spectral symmetries.

Acknowledgment. The authors thank Elias Jarlebring for many enlightening discus-
sions about time-delay systems.
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nomial eigenproblems related to time-delay systems”, preprint, TU Braunschweig, Institut Computa-
tional Mathematics, Braunschweig, Germany, 2008.

[4] I. GOHBERG, M.A. K AASHOEK, AND P. LANCASTER, General theory of regular matrix polynomials and
band Toeplitz operators, Integral Equations Operator Theory, 11 (1988), pp. 776–882.

[5] I. GOHBERG, P. LANCASTER, AND I. RODMAN, Matrix Polynomials, Academic Press, New York, 1982.
[6] J. K. HALE AND S. M. VERDUYN LUNEL, Introduction to Functional-Differential Equations, Springer, New

York, 1993.
[7] N.J. HIGHAM , R-C. LI , AND F. TISSEUR, Backward error of polynomial eigenproblems solved by lineariza-

tion, SIAM J. Matrix Anal. Appl., 29 (2007), pp. 1218–1241.
[8] N.J. HIGHAM , D.S. MACKEY, N. MACKEY, AND F. TISSEUR, Symmetric linearizations for matrix polyno-

mials, SIAM J. Matrix Anal. Appl., 29 (2006), pp. 143–159.
[9] N.J. HIGHAM , D.S. MACKEY, AND F. TISSEUR, The conditioning of linearizations of matrix polynomials,

SIAM J. Matrix Anal. Appl., 28 (2006), pp. 1005–1028.



ETNA
Kent State University 

http://etna.math.kent.edu

330 H. FASSBENDER, D. S. MACKEY, N. MACKEY, AND C. SCHR̈ODER

[10] , Definite matrix polynomials and their linearization by definite pencils, SIAM J. Matrix Anal. Appl.,
31 (2009), pp. 478–502.

[11] N.J. HIGHAM , D.S. MACKEY, F. TISSEUR, AND S.D. GARVEY, Scaling, sensitivity and stability in the
numerical solution of quadratic eigenvalue problems, Internat. J. Numer. Methods Engrg.,73 (2008),
pp. 344–360.

[12] R.A. HORN AND C. R. JOHNSON, Topics in Matrix Analysis, Cambridge University Press, Cambridge, 1995.
[13] E. JARLEBRING, The Spectrum of Delay-Differential Equations: Numerical Methods, Stability and Per-

turbation, Ph. D. thesis, TU Braunschweig, Institut Computational Mathematics, Carl-Friedrich-Gauß-
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