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STRUCTURED POLYNOMIAL EIGENPROBLEMS
RELATED TO TIME-DELAY SYSTEMS *

HEIKE FASSBENDER, D. STEVEN MACKEY?, NILOUFER MACKEY%, AND CHRISTIAN SCHRODER

Abstract. A new class of structured polynomial eigenproblems arisinthestability analysis of time-delay
systems is identified and analyzed together with new typefeély related structured polynomials. Relationships
between these polynomials are established via the Caylegftnanation. Their spectral symmetries are revealed,
and structure-preserving linearizations constructedructured Schur decomposition for the class of structured pe
cils associated with time-delay systems is derived, and arittign for its computation, which compares favorably
with the QZ algorithm, is presented along with numerical expents.
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1. Introduction. In this paper we discuss a new class of structured matrixootyal
eigenproblemg)(\)v = 0, where

k

QM) = Z)\iBi, B; € C"*", By #0,
i=0 (1.2)

and BZZPP]C_Z]% i:O,...,k,

for a real involutory matrix? (i.e., P? = I). HereB denotes the componentwise conjugation
of the matrixB. With

k k
Q) = ; NB; and revQ()) := \Q (i) = ; N Bj_;, (1.2)

we see thaf)(\) in (1.1) satisfies
P-revQ(\) - P=Q(\). (1.3)

As shown in Sectior, the stability analysis of time-delay systems is an impursaurce of
eigenproblems of the formi(1). Throughout this paper we assume that all matrix polynomi-
als@Q(\) are regular, i.e., thatet Q(\) £ 0.
Matrix polynomials satisfying).3) are reminiscent of the various types of palindromic
polynomials defined in18g]:
e palindromic:rev Q(\) = Q(\),
e anti-palindromicirev Q(\) = —Q(\),
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e x-palindromic:rev Q*()\) = Q(\),

e x-anti-palindromicirev Q*(\) = —Q(\),
where A* denotes the transpost’ in the real case, and eithel” or the conjugate trans-
poseA* in the complex case. These palindromic matrix polynomialgetthe property that
reversing the order of the coefficient matrices, followethpes by taking their transpose or
conjugate transpose, gives the original matrix polynoifuiglto sign). Several other types of
structured matrix polynomial are also defined 18]|

e even, oddQ(—\) = £Q(N),

o x-evenx-odd: Q*(—\) = £Q(\),
and shown there to be closely related to palindromic polyiatswia the Cayley transforma-
tion.

We will show that matrix polynomials satisfyind.() have properties analogous to those
of the palindromic polynomials discussed ir]. Hence we refer to polynomials with prop-
erty (1.3) as P-conjugatef-palindromic polynomials, or PCP polynomials for short. iAs
in [18], we examine four related types of PCP-like structures,

e PCP:P -revQ(\) - P=Q(\),

e anti-PCP:P -revQ(\) - P = —Q(\),

e PCP-evenP - Q(—\)- P = Q(\),

e PCP-0dd:P-Q(—\)- P = —-Q()\),
revealing their spectral symmetry properties, their retethips to each other via the Cay-
ley transformation, as well as their structured lineartred. Here we continue the practice
stemming from Lancastedf]] of developing theory for polynomials of degréewherever
possible in order to gain the most insight and understanding

There are a number of ways in which palindromic matrix potyieds can be thought
of as generalizations of symplectic matrices. For exampddindromic polynomials and
symplectic matrices both have reciprocal pairing symmigttheir spectra. In addition, the
Cayley transformation relates palindromic polynomialst@n/odd matrix polynomials in
the same way as it relates symplectic matrices to Hamiltomatrices, and even/odd matrix
polynomials represent generalizations of Hamiltonianrives. Further information on the
relationship between symplectic matrices and palindrgrolgnomials can be found ir2p]
and, in the context of optimal control problems, #.[

The classical approach to investigate or numerically spblgnomial eigenvalue prob-
lems is linearization. An x kn pencil L(\) is said to be a linearization for anx n poly-
nomialQ(\) of degreék if £(A\)L(A)F(X\) = diag[Q(A), I(x—1),] for someE()\) andF(\)
with nonzeraconstandeterminants. The companion fornag provide the standard examples
of linearization for a matrix polynomiad(\). Let X; = Xy = diag(By, In, ..., In),

Brp_1 Br2 -+ DBy By-1 —1In 0
_ B s
vi=| o0 0l and vy | P2 O (1.4)
0 I, 0 By 0 - 0

ThenCi(A) = AX; + Y7 andCqy(A) = AX, + Y3 are the first and second companion
forms for Q(\). These linearizations do not reflect any structure that triighpresent in
the matrix polynomiaky, so only standard numerical methods can be applied to sbée t
eigenproblemC;(A)v = 0. In a finite precision environment this may produce physjcal
meaningless result24], e.g., loss of symmetries in the spectrum. Hence it is ugefu
construct linearizations that reflect the structure of tirergpolynomial, and then to develop
numerical methods for the resulting linear eigenvalue lgmbthat properly address these
structures.
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It is well known that, for regular matrix polynomials, lindgations preserve algebraic
and partial multiplicities of all finite eigenvalueS|[ In order to preserve the multiplicities of
the eigenvalueo, one has to consider linearizatiohé)\) which have the additional property
thatrev L(\) is also a linearization forev Q(\); see f]. Such linearizations have been
named strong linearizations ihg]. Both the first and the second companion forms are strong
linearizations for any regular matrix polynomidl [Proposition 1.1].

Several recent papers have systematically addressedstkeedabroadening the menu
of available linearizations, providing criteria to guidestchoice of linearization, and identi-
fying structure-preserving linearizations for varioupéyg of structured polynomial. 11§,
two vector spaces of pencils generalizing the companiamg$arere constructed and many
interesting properties were proved, including that alnassof these pencils are lineariza-
tions. The conditioning and backward error properties ohs®f these linearizations were
analyzed in7, 9, 11], developing criteria for choosing a linearization bestelifor numeri-
cal computation. Linearizations within these vector spagere identified that respect palin-
dromic and odd-even structurg]] symmetric and Hermitian structur&(], and definiteness
structure 1.8].

In this paper we investigate the four types of PCP-strudtumatrix polynomials, an-
alyzing their spectral symmetries in Sectidnthe relationships between the various PCP-
structures via the Cayley transformation in Sectpmand then showing how to build struc-
tured linearizations for each type of PCP-structure iniBeé. The existence and computa-
tion of a structured Schur-type decomposition for PCP-perecdiscussed in Sectids and
Section7 concludes with numerical results for some examples arifsorg physical applica-
tions. We first, though, discuss in more detail a key sourd@G-structured eigenproblems.

2. Time-delay systems.To motivate our consideration of matrix polynomials withfRC
structure, we describe how the stability analysis of tinséag systems (also known as delay-
differential equations; see, e.g5, R1]) leads to eigenproblems with this structurendutral
linear time-delay systefTDS) with m constant delays, ..., h,, > 0 andhy = 0 is given

by

S— {ZZL_() ij”(t_hk)zzzlz() Akx(t_ hk)7 t=> O’A (2.1)
x(t) = (1), t€[-h,0),

with b = max;{h;}, = : [—B,oo) — R, v € Cl[—fAL,O], and Ay, D, € R™*™,
for k = 0,...,m. An important special case of.Q) is the class ofetarded time-delay
systemsin which Dy = I and Dy, = 0,fork =1,...,m.

The stability of a TDS can be determined from its charadiereqjuation, i.e., from the
nontrivial solutions of the nonlinear eigenvalue problem

M(s)v =0, where M(s) = —sD(s) + A(s),
(2.2)

with D(s) =Y Dee " and A(s) =) Age "
k=0 k=0

As usual,s € C is called an eigenvalue associated with the eigenvectoiC”, and the set
of all eigenvalues (S) is called the spectrum &. Having an eigenvalue in the right half-
plane implies thatS is unstable. Conversely, havirgS) completely contained in the left
half-plane usually implies thaf is stable, although some additional technical assumptions
are required; for further details setE3[ 21].

A time-delay systens is calledcritical if o(S) NiR # (),i = /—1. The set of all
points (hy, ha, ..., hy) in delay-parameter space for whichis critical form the critical
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curves fn = 2) or critical surfacesi, > 2) of the TDS. Since a TDS can change stability
when an eigenvalue pair crosses the imaginary axis, theatriurves/surfaces are important
in the study of the delay-parameter space stability domli@airmost cases of practical inter-
est, the boundary of the stability domain is just a subsehefcritical curves/surface&],
Section 1.2]. Thus the computation of critical sets, forahha number of approaches exist
(see [L3] for a list of references), is a key step in the stability s of time-delay systems.
Here we outline the new method for this computation develop¢l3], leading ultimately to
a quadratic eigenproblem with PCP-palindromic structhes will have to be solved repeat-
edly for many different parameter values.

To determine critical points in delay-parameter space, @aglrio compute purely imag-
inary eigenvalues dfl(s) in (2.2), i.e., to finds = iw with w € R such that

M(iw)v = 0. (2.3)

As shown in [L3], for anyw € R andv € C™ such thatv*v = 1 and?v := D(iw)v # 0,
equation 2.3) is equivalent to the pair of conditions

L(vv*,iw) =0 and *M(iw)v =0, (2.9)
wherelL is the Lyapunov-type operator

L(X,s) :=M(s)XD(s)" + D(s)XM(s)"

25
= A(s)XD(s)* + D(s) XA(s)" — 2D(s) XD(s)*Re(s), (2:3)

for X € C"*™ ands € C. The implication £.3) = (2.4) follows immediately from
L(vv*,iw) = M(iw)vv*D(iw)* + D(iw)vv*M(iw)* 2.6)

= M(iw)vo* + 5(M(iw)v)",

while the implication 2.4) = (2.3) follows by pre-multiplying 2.6) by v* and using the
assumptiorv # 0.

Note that the assumptian= D(iw)v # 0 is not very restrictive and holds generically,
sinceD(iw)v = 0 in (2.3) implies A(iw)v = 0 would also have to be true. In addition
D(iw)v = 0 if and only if the difference equation

DQI(t)—l-DllZJ(t—hl)—l-"'—i-DmI(t—hnL) =0 (27)

has a purely imaginary eigenvalue, which happens only in special situations.
We now see howd.4) can be used to systematically explore delay-parameteesjoa
find the critical set. FromZ.5) we have

L(vv*,iw) = A(iw)vo*D(iw)* + D(iw)vo* Aiw)*,
| N o 28)
with D(iw) =Y Dge™™™ and A(iw) = >  Age ™.
k=0 k=0

Because of the periodicity in the exponential termsDdfw) and A(iw), there is anw-
dependent periodicity in the critical set;(#1, ho, ..., h,,) is a critical delay corresponding
to the solution(iw, v) of the equatiorL(vv*,iw) = 0, then

27
(h17h27 c. ~7hn7.) + U(pl,p% s 7pm.)
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is also a critical delay for angp, po, ..., pm) € Z™. Thus it suffices to consider only the
anglesyy := why, fork = 1,...,m, wherey, € [—m,7]. These can be explored by
a line-search strategy: withg := whg = 0, for each fixed choice opq, ..., p,,_1 View

z 1= e~ "m as a variable and rewrife(vv*,iw) = 0 as an eigenproblem in terms ofand
vv*. Defining

m—1 m—1
Ag = Z Ape " and Dg := Z Dye "%k,
k=0 k=0

and using 2.8), we have
(Amz + As)vv* (sz + DS)* + (sz + Ds)vv* (Amz + AS)* =0. (2.9)
Expanding and vectorizin@(9) yields
(zE + F + zG) vec(vv™) = 0, (2.10)
where
E=Ds®A,, + As ® D,,,
F=D,,®A,, +Ds® As + As ® Ds + Ay, @ Dy, (2.11)
G =D,, ® As + A,, ® Ds,

and® denotes the usual Kronecker produt®,[Chapter 4.3]. Then multiplying2(10 by z,
with |z| = 1, results in the quadratic eigenvalue problem

(2E+ 2F + G)u = 0. (2.12)

A solution (z,u) of (2.12 with |z| = 1 andu of the formvec(vv*) completes the determi-
nation of (¢1, p2,...,m) = w(hi, ha,..., hy), and hence of a critical delay up to a real
scalar multiplew. The scaling factow, and hence a pure imaginary eigenvalue- iw

of (2.2), is determined by invoking the second condition2rdj:

0 = 0" M(iw)v
= 0" (—iwD(iw) + A(iw))v
= wi*D(iw)v + W A(iw)v
= w0V + 0" (Amz + AS)U
and, hence,
w = —i0*(Amz + Ag)v/(0*D).
From 2.9 we can see that € R. Definez := (A,,z + Ag)v, so that £.9) implies
Z0* +vz* = 0. Then
730" + 020 = 0 = (0°0)(0"F + 3°0) = 0= 0°F + 70 = 0,

sov*Z € iR and hencev € R.

The preceding discussion is summarized by the followingrtk.

THEOREMZ2.1 ([13]). Assume that the difference equat{@n’) has no purely imaginary
eigenvalues. Witlpy = 0 and any given combination of angles, € [—m, ]|, for k =
1,...,m — 1, consider the quadratic eigenvalue problem

(2°E 4 2F + G)u = 0, (2.13)
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whereE, F,G € C" *"” are given by(2.11). Then for any solution of2.13 with |z =1
andu of the formu = vec(vv*) = T ® v, for somev € C™ with v*v = 1, critical delays for
the TDS(2.1) can be constructed as follows. Let

U= (sz + Ds)v and w= —* (Amz + As)v/ (ﬁ*'ﬁ).
Then for any(py, p2, - - ., Pm) € Z™,
L
w

(h17h27 e ~7hm) = |:(S017 s Pm—1, 7A1'g Z) + 2”(1917]927 cee apm):|

is a critical delay for(2.1).
It is now straightforward to see why the quadratic matrixypoimial

Q(z) = 2°E+ 2F + G (2.14)
in (2.13 has PCP-structure. ByLp, Corollary 4.3.10] there exists an involutory, symmetric
permutation matrix® € R"**"” (i.e., P = P~1 = PT) such that
B®C = P(C®B)P (2.15)
forall B,C € C"*". Thus we have inZ.14) thatE = PGP andF = PF P, since
E=Ds®A,, + Ag ® D,,
= P[Am ®55]P+ P[Dm ®ZS]P
- P[Am © Ds + Dy, ®ZS}P — PGP.

The fact thatF” = PF P follows in a similar fashion. This implies
Q(2)=2’E+2F +G = P(?*G+2F + E)P = P -1evQ(2) - P,

that is, .14 is a matrix polynomial as inl(1) and (L.3).

Time-delay systems arise in a variety of applicatioBg],[ including electric circuits,
population dynamics, and the control of chemical procesSeseral realistic problems are
discussed in Section and some numerical results are given.

3. Spectral symmetry. Supposel () has property1.3), and letA # 0 be an eigen-
value ofQ(\) associated to the eigenvectgrthat isQ(\)v = 0. Then we have

0=QNv="P-tevQ(A) - Pv = revQ()\)-(Pv)=0,
which, from the definition1.2) of rev, implies that
Q(1/3) - (P7) = 0.

Hence, if\ is an eigenvalue with eigenvector then1/X is an eigenvalue with eigenvec-
tor Pw. Note that for any matrix polynomia), (1.2) implies that the nonzero finite eigenval-
ues ofrev Q(\) are the reciprocals of those 6f

The following theorem extends this observation of reciptgairing for eigenvalues of
PCP-palindromic polynomials to include eigenvaluesatpairing of eigenvalue multiplici-
ties, as well as to an analogous eigenvalue pairing for R€Rtedd polynomials. As inlfg],
we employ the convention thgl(\) has an eigenvalue ab with eigenvectorr if rev Q(\)
has the eigenvalu@ with eigenvectorz. The algebraic, geometric, and partial multiplicities
of an eigenvalue ato are defined to be the same as the corresponding multiptiafi¢he
zero eigenvalue afev Q(\).
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THEOREM 3.1 (Spectral Symmetry)Let Q(\) = ZLO A\iB;, B # 0, be a regular
matrix polynomial andP a real involution.

(@) If Q(\) = £PrevQ(\)P, then the spectrum @@(\) has the pairing A, 1/)).

(b) If Q(\) = £PQ(—))P, then the spectrum @)(\) has the pairing \, —\).
Moreover, the algebraic, geometric, and partial multitiies of the eigenvalues in each such
pair are equal.(Here we allow\ = 0 and interpretl /) as the eigenvalueo.)

Proof. We first recall some well-known factS][about strict equivalence of pencils and
about the companion fori@; (\) of a matrix polynomial(\):

1. Q(\) andC; () have the same eigenvalues (includirg with the same algebraic,
geometric, and partial multiplicities;
2. any two strictly equivalent pencils have the same eideega(includingso) with
the same algebraic, geometric, and partial multiplicities
Because of these two facts it suffices to show that)) is strictly equivalent taev Cq ()
for part (a), and ta”;(—\) for part (b). The desired eigenvalue pairings and equality o
multiplicities then follow. Seed] for details.O

The same eigenvalue pairings also have been observed ysbvia [18] for *-(anti)-
palindromic and«-even/odd matrix polynomials; these results are summaiizdable3.1
Observe further that when the coefficient matrice€)oére all real, then for all the palin-

TABLE 3.1
Spectral symmetries.

Structure of@(\) eigenvalue pairing
(anti)-palindromic, T-(anti)-palindromic (N 1/A)
x-palindromic,x-anti-palindromic (A 1/X)
(anti)-PCP (A 1/0)
even, odd, T-even, T-odd (A, =)
x-even,-odd (A, =)
PCP-even, PCP-odd (A, =)

dromic structures listed in TabR1the eigenvalues occur not just in pairs, but in quadruples
(A, A\, 1/X,1/X). This property is sometimes referred to as “symplectic spesymmetry”,
since real symplectic matrices exhibit this behavior. ln¢bntext of the time-delay problem,
though, the coefficient matrices, F, G of Q(z) in (2.14 are typically not all real unless
there is only a single delay; in the problem.

4. Relationships between structured polynomials.t is well known that the Cayley
transformation and its generalizations to matrix peneilates Hamiltonian structure to sym-
plectic structure for both matrices and pencil§,[20]. By using the extensions of the clas-
sical definition of this transformation to matrix polynonsias given in 18], we develop
analogous relationships between the structured matrigpohials considered here.

The Cayley transforms of a degréematrix polynomial@(\) with pole at+1 or —1,
respectively, are the matrix polynomidls (Q) andC_,(Q) defined by

Cal@) = - e (122).
4.1)

— ko (1
C @) = o+ 0'Q (157,
This choice of definition was motivated ini§] by the observation that the dbius trans-

formationsz—ﬁ and}f—ﬁ map reciprocal pairéu, %) to plus/minus pairg\, —)), as well
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as conjugate reciprocal paifg, 1/7) to conjugate plus/minus paifs\,, —\). When viewed
as maps on the space ofx n matrix polynomials of degreg, the Cayley transformations
in (4.1) can be shown, by direct calculation, to be inverses of edlsaraip to a scaling

factor [18], that is,

C11(C21(Q)) = C_1(C11(Q)) = 2% - @,

where 1<k =degQ.

The following theorem relates structure@i{\) to that of its Cayley transforms.
THEOREM 4.1 (Structure of Cayley transforms)et Q(\) be a matrix polynomial of
degreek and letP be a real involution.
1. If Q()\) is (anti)-PCP, then the Cayley transforms @fare PCP-even or PCP-odd.
More precisely, ifQ(\) = +P - revQ(\) - P, then

Cor(Q)() = £P - Co1(Q)(—n) - P.
C(@Q)() = £(~D}P-C(Q)(~p) - P.

2. If Q(\) has PCP-even/odd structure, then the Cayley transforn@ afe (anti)-
PCP. Specifically, i)(\) = +P - Q(—\) - P, then

Ci1(Q) (1) = £(=1)"P - 1ev(C11(Q) (1)) - P,
C-1(Q)(p) = £P - rev(C-1(Q)(n)) - P.
Direct algebraic calculations yield straightforward pioo@3] of the results in Theo-

rem4.1 Analogous relationships between palindromic and evehfodtrix polynomials
were observed inlfg]. Table4.1summarizes all these results.

TABLE 4.1
Cayley transformations.
o) C-1(Q)(n) C1(Q)(n)
k even k odd k even k odd
palindromic even odd even
*-palindromic *-even *-0dd *-even
anti-palindromic odd even odd
*-anti-palindromic| x-odd *-even *-0dd
PCP PCP-even| PCP-odd PCP-even
anti-PCP PCP-odd | PCP-even PCP-odd
even palindromic palindromic anti-palindromic
*-even *-palindromic *-palindromic | x-anti-palindromic
odd anti-palindromic anti-palindromic palindromic
*-0dd *x-anti-palindromic | x-anti-palindromic| x-palindromic
PCP-even PCP PCP anti-PCP
PCP-odd anti-PCP anti-PCP PCP

5. Structured linearizations. Following the strategy in18], we consider the vector

spaced.; (@) andLy(Q) introduced in L7, 19,

Li(Q) == {LA)=XAX+Y:L(\) - (A®IL,) =v®Q(\),veC},
Lo(Q) :={L(A) =AX +Y : (AT ®I,)- L(\) = w” @ Q(\),w € C*},

(5.1)
(5.2)
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where
A=[at a2y ]

as sources of structured linearizations for our structp@ygnomials. The vector in (5.1)
is called the right ansatz vector &{\) € L,(Q), while w in (5.2) is called the left ansatz
vector of L(\) € La(Q).

We recall some of the key results known about these spacethdoconvenience of
the reader. The pencil spacks()) are generalizations of the first and second compan-
ion forms (L.4); direct calculations show that;(\) € L;(Q), with ansatz vectoe; in both
cases. These spaces can be represented using the coldtad-shim and row-shifted sum
defined as follows. Viewind( andY” as blockk x k£ matrices, partitioned inte x n blocks
Xij, Yi;, the column shifted sunX B Y and the row shifted sunX BY are defined to be

[ X1 o X O 0 Y -+ Y
XBY=| : SRR B P s

L Xp1 o Xgre O 0 Yer - Y

C Xy - X 0 .- 0

: : Y] - Y

XPY:=| N Sl

Xp o Xk : :

0 -0 Yih - Y

where the zero blocks are alsox n. An alternate characterizatiof9,

Li(Q) ={AX+Y: X8 Y =v®[By By_1 -+ Bol,veC"}, (5.3)
By,

Loy(Q) =4 AX+Y : XBY =w"®| | [,weC'), (5.4)
By

now shows that, like the companion forms, the penki{ls) € L, (Q) are easily constructible
from the data irQ(\).

The space&.;(Q) are fertile sources of linearizations: having nearly Hadf timension
of the full pencil space (they are both of dimensidit — 1)n? + k [19, Corollary 3.6]), al-
most all pencils in these spaces are strong linearizatitves@ is regular [L9, Theorem 4.7].
Furthermore, eigenvectors @f(\) are easily recoverable from thoseof)). For an eigen-
value\ of @, the correspondence— A ® z is an isomorphism between right eigenvectors
2 of Q(X\) and those of any linearizatiob(\) € LL;(Q). Similar observations hold for lin-
earizations iflL» (@) and left eigenvectorslp, Theorems 3.8 and 3.14].

It is natural to consider pencils in

DL(Q) := L1 (Q) NL2(Q),

since for such pencils both right and left eigenvector§afre easily recovered. It is shown
in [19, Theorem 5.3] that the right and left ansatz vectoesndw must coincide for pencils
L()\) € DL(Q), and that every: € C* uniquely determines( andY” such that\ X + Y is
in DL(Q). ThusDL(Q) is ak-dimensional space of pencils, almost all of which are gtron
linearizations for) [19, Theorem 6.8].

Furthermore, all pencils iDLL(Q) are block-symmetricq]; in particular, the set of all
block-symmetric pencils ifi; (Q) is preciselyDIL(Q). Here a block: x & matrix A with nxn
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blocks A;; is said to be block-symmetric #5 = A, whereA” denotes the block transpose
of A, thatis, A is the blockk x k matrix withn x n blocks defined by A%),; := A;;; see B
for more details on symmetric linearizations of matrix pwynials and their connection to
DL(Q).

The existence of other types of structured linearizatiofl.iiQY), in particular forx-
(anti)-palindromic and-even/odd polynomial§), has been established ih7 18] by show-
ing how they may be constructed frdbi(Q)-pencils. A second method for building these
structured pencils using the shifted sum was presenteti/in [n the following subsections
we develop analogous methods to construct PCP-structineatizations irl, (@), L2(Q),
andDL(Q) for all the types of PCP-structured polynomials considéngtiis paper.

It is important to point out that linearizations other th&e bnes irL, (Q) andL,(Q)
discussed here are also possible. Indeed, several othéodsefor constructing block-
symmetric linearizations of matrix polynomials have appdgpreviously in the literature;
see B, Section 4] for more details.

5.1. Structured linearizations of (anti)-PCP polynomials We now turn to the prob-
lem of finding structured linearizations for general (afQP polynomials, that is, for

k
=Y NB,
=1

satisfyingB; = +PB;,_; P for somen x n real involutionP. Our search for these structured
linearizations will take place in the spades(Q), L2(Q), andDL(Q).

In this context, a linearizatiod(\) = AX + Y for @ will be considered structure-
preserving if it satisfies

P-revL(\) - P=+L()\), or equivalently, Y =+P.-X-P, (5.5)

for somekn x kn real involutionP. It is not immediately obvious, though, what we should
use forP. One might reasonably expect that an appropm%mould incorporate the original
involution P in some way. An apparently natural choice,

I, ® P =

7

P
works only when the coefficient matricés of () are very specifically tied to one another;
e.g., fork = 2, Q would be constrained b, = PB,P + B, = B, + B», and a structured
L()\) € L1(Q) would have to have right ansatz vectot= [1, 1]7. Things work out better if
we use instead the involution

P

P:=R®P= ., where R= € RF¥k, (5.6)

P’ 1
Note that? = R ® P is symmetric wheneveP is, a property that will be important in
Section6. R

Fixing the involutionP = R ® P for the rest of this section, we begin by observing that
if a pencilA X" + v is (anti)-PCP with respect B, then from 6.5, Y() = + P X P
is uniquely determined by (V)| so it suffices to specify all the admissibl&"). Partition-
ing XM andY ™ intonxn bIockin(jl) andl/igl), withi, j = 1,..., k, we obtain from§.5)
and 6.6) that these blocks satisfy

~ (1)
Y;gl) :tPXk i+1,k— j+1P (57)
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ForAX( 4+ Y™ to be a pencil i, (Q), we know from 6.3) that
XV YD =0 [By Biey -+ Bo]l=:Z (5.8)

for somev € C*. It follows immediately from the definition of the column #led sum &
that if Z is partitioned conformably inta x n blocksZ;,, with¢ =1,...,k + 1, then

X1(11)7 = ]-7
Zig=viBro1 =14 X +V) l<l<k+1, (5.9)
i, (=k+1.

Invoking (5.7) with j = k, (5.9) with ¢ = 1 and/¢ = k + 1, together with the PCP-structure
of Q yields

1 ~-(1)
viBo =Y\ = +PX, i1, P

- iP(’Uk,Z;HB;C)P
= Vp—ip1(£PBRP) = Uj_i11Bo
for all 7. Hencev;, = v;_;11, equivalentlyRv = v, is a necessary condition for the right

ansatz vectov of any PCP-pencil ifiL; (Q).
The first block column ofX (V) is completely determined by (9) with ¢ = 1,

x =By, (5.10)
while (5.9 for 2 < ¢ = j < k together with §.7) provides a pairwise relation

—(1
Xz-(jl) =v;B_j11 — Y(jl),l =v;Br_j11 F PXI(C—)i+1,kfj+2P (5.11)

K2

among the remaining(k — 1) blocks of X(*) in block columns2 throughk. Because the
“centrosymmetric” pairing of indices irb(11),

has no fixed points,5(11) is always a relation between distinct blocksXf!. One block
in each of these centrosymmetric pairs can be chosen ailyitthen (5.11) uniquely de-
termines the remaining bIockKi(jl) with j > 2. Gathering $.10 and 6.11) together with
the conditions on the blocks af(!) that follow from (.7) gives us the following blockwise
specification

(1) Uin, Jj=1
ViBr—jy1 F PXy i1 kol i>1
(1) ;
v = { viBiei = X, J<k, (5.13)
/ i Bo, J=k,

of an (anti)-PCP-pench X M) + Y1), These pencils can now all be shown to bé.ir(Q)
by a straightforward verification of propert$.6).
Thus, we see that for any € C* satisfyingRv = v, there always exist penci(\) €
L, (Q) with right ansatz vector and (anti)-PCP structure. These pencils are far from being
unique: the above analysis shows that for each admisstblere are:(k —1)n?/2 (complex)
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degrees of freedom available for constructing (anti)-R@Reils inlL; (@) with v as right
ansatz vector. Indeed, the set of all PCP-pencils;ifty) can be shown to be a real subspace
of L;(Q) of real dimensionk + k(k — 1)n?. This is quite different from the palindromic
structures considered ii9, Theorem 3.5], where for each suitably restricted rightaéins
vector there was shown to be a unique structured pentil {©).

A similar analysis can be used to develop formulas for thefsat (anti)-PCP-structured
pencilsAX ) +Y ) inLy(Q), using the row shifted sum characterizatié as a starting
point in place of §.8). We find that the left ansatz vectaerof any (anti)-PCP-pencil ity (Q)
is restricted, just as it was for (anti)-PCP-pencilsLin(@Q), to ones satisfyinqRw = w.
Partitioning X ® andY® into n x n blocks X’ andY,'”) as before now forces the first

block row of X to be

Xf? = w; By,

while the remaining blocks oX (?) in block rows2 throughk must pairwise satisfy the
relations

X = w;By i1 F PX iiopjin P for 2<i<k, (5.14)

analogous toX.12) for (anti)-PCP-pencils ifi.; (Q). Here the pairing of indices for blocks
of X is

(i,j) «— (k—i+2,k—j+1) for i>2.

Once again we have a pairing with no fixed points, allowing blloek in each block pair to
be chosen arbitrarily, while the other one is then uniqupgctied by 6.14). Thus we obtain
the following blockwise specification for a general (afRiFP pencil ilL,(Q),

2 w; B, i=1
X = —(2) .
Wi Br—iv1 FPX} 0 i1 P 1> 1,
y®@ _ ) wjBg—i— Xi(i)l,j) i<k
“ w; Bo, i=k,

analogous t0§.12 and 6.13 for (anti)-PCP pencils ifi.; (Q).
An alternative way to generate (anti)-PCP pencilifQ) is to use the block transpose
linear isomorphismg, Theorem 2.2]

L1(Q) — L2(Q)
L(\) — L(\)?

betweenL;(Q) andL.(Q). For any (anti)-PCP pencilX + PXP with the particular

~

involution P = R ® P we can show that
(\X + PXP)® = Ax8+ (PXP)® = A\xB+ PX"P.

Thus, block transposition preserves (anti)-PCP structame hence restricts to an isomor-
phism between the (real) subspaces of all (anti)-PCP penril;(Q) and all (anti)-PCP
pencils inL2(Q).

We now know how to generate lots of (anti)-PCP pencilsi(Q) and inL,(Q) for each
admissible right or left ansatz vector. But what abBilit(Q) = L, (Q) N L2 (Q)? Are there
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any (anti)-PCP pencils in this very desirable subspace otifg® The following theorem
answers this question in the affirmative, and also gives quamess result analogous to the
ones for the palindromic structures consideredLi#].[

THEOREM 5.1 (Existence/Uniqueness of PCP-Structured Pencildli(())). Suppose
Q()\) is an(anti)-PCP-polynomial with respect to the involutiéh Letv € C* be any vector
such thatRv = 5, and letL()\) be the unique pencil IDL(Q) with ansatz vectov. Then,
L(\) is an(anti)-PCP-pencil with respect to the involutidh = R ® P.

Proof. Our strategy is to show that the penEil\) := = Prev L(\)P (using+ when
Q@ is PCP and—- when @ is anti-PCP) is also ifDL(Q), with the same ansatz vector
as L(\). Then, from the unique determination BIL(Q)-pencils by their ansatz vectors
(see B, Theorem 3.4] or19, Theorem 5.3]), we can conclude tIiAa(tA) = L(\), and hence
that L(A) is (anti)-PCP with respect 5.

We begin by showing that()\) € LL; (Q) with right ansatz vectos implies thati()\) €
LL; (Q) with right ansatz vectos. From the defining identity (in the variabl for a pencil
inL:(Q), we have

L) - A1) =v®Q(\) =v® [+PrevQ(\)P].
Takingrev of both sides of this identity, and using the fact that A = RA, we get
rev L(A) - (RA® I) = v ® [PQ(A)P].
Multiplying on the right by the involutiol ® P = P and simplifying yields
trevL(\) - (RA® P) = (v ® [PQ(N)P] ) (1® P),
which implies
+rev L(\) - (R® P)(A® 1) =v® PQ(N).
Now multiplying on the left byR @ P and using the hypothesigv = v yields

+(R®P) -revL()) - (R® P)(A®I) = Ru® Q()),

[iﬁ rev L()\)ﬁ] AR =12 Q(N).
Finally conjugate both sides, and replacby \ in the resulting identity:
[+PrevINP]|A® ) =v® Q) = [£PrevL(\P](A®I)=v®Q(\).

Thus,L(\) - (A® I) = v ® Q()\), and thereford.()\) € L, (Q) with right ansatz vectos.
A similar computation starts from the defining identity

AT ®I)- L) =0T @ Q(N)

for a pencilL(\) to be inL»(Q), and shows that whenevé&\) € Ly(Q) has left ansatz
vectorv, thenf(A) is also inLy(Q) with left ansatz vectop. Thus,f()\) € DL(Q) with
ansatz vecton. Hence,L()\) = L()), and thereford.()) is a PCP-pencil with respect to the
involution P = R ® P. O
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Now that we know there exists a unique structured pendilliri)) for each admissible
ansatz vector, how can we go about constructing it in a siapdeeffective manner? Perhaps
the simplest answer is just to use either of the explicit fdas forDLL(Q) pencils given in §]
and [L9, Theorem 5.3]. An alternative is to adapt the procedured imsfe. 7] for constructing
*-palindromic andk-even/odd pencils iDL(Q), as follows.

Given a vectow € CF such thatRv = w, our goal is to construct the penailX + Y
in DL(Q) with ansatz vectoo that is (anti)-PCP with respect to the involutibh= R ® P.
Recall that it suffices to determin€, since the (anti)-PCP structure forcégo be+P XP.
We now constructX one group of blocks at a time, alternating between usingdhbethat
X comes from a pencil ifPLL(Q), and hence is block-symmetric, and the fact that it comes
from a pencil that is (anti)-PCP ih, (Q), and so satisfies the conditions B12).

The first block column of is determined byX.12) to be X;; = v; By.
The first block row ofX is now forced to beX;; = v; B, by block-symmetry.
Equation $.12 now determines the last block row &f from the first block row.
The last block column oKX is now determined by block-symmetry.
Equation $.12) determines the second block columnXffrom the last block col-
umn.
The second block row of follows by block-symmetry.
Equation $.12) determines the next-to-last block row &f from the second block
row.

8. The next-to-last block column df is now determined by block-symmetry.

9. ...
The order of construction for the various groups of blockXifollows the pattern

arwNE

No

| 2 |
[ 6 |
x| fals| - I |
| 7 |
3

similar to that in [L7, Section 7.3.2] fox-even and-odd linearizations.

The matrixX resulting from this construction is necessarily block-gyetric, since all
the blocks in the even-numbered pan2|4, 6,8, ... are determined by imposing the con-
dition of block-symmetry. Sinceﬁﬁfﬁ)’6 — PX°P = PXDP, we see that the pencil
AX + P X P as awhole is block-symmetric, and hence i®in(Q).

EXAMPLE 5.2 (Quadratic case). To illustrate this procedure we fihthal structured
pencils inDL(Q) for the quadratic PCP-polynomi@&)(\) = \?By + AB; + By, where
B, = PB,P andB, = PB,P. An admissible ansatz vectorc C? must satisfyRv = v,
i.e., must be of the form = [o, @]”. The matrixX in the structure®L(Q)-pencilAX + Y
with ansatz vectoo is then constructed in three steps:

first [QBZ 1] , then [QBZ O[*BQ} , and finally [

(07
EBQ aBQ aBQ aBl — QPEQP

B, aBs }
resulting in the structured pencilX + P X P given by

A OZBQ @BQ aBl - @Bg CYPEQP
EBQ aBl - OéPEQP OzPEQP EPEQP ’
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So far in this section we have shown how to construct mangired pencils ifi; (Q),
L2(Q), andDL(Q). But which ones, if any, of these pencils are actually lifesdions for
the structured polynomid) that we began with? It is known that whéi{\) is regular, then
any regular pencil irl; (Q) or Ly(Q) is a (strong) linearization fo€ [19, Theorem 4.3].
Although there is a systematic approadB][for determining the regularity of a pendil(\)
in Ly (Q) or Ly(Q), there is in general no connection between its regularity the right
(or left) ansatz vector of.(\). By contrast, for pencils ifDLL(Q) the Eigenvalue Exclusion
Theorem [L9, Theorem 6.7] characterizes regularity directly in termhshe ansatz vector:
L(\) € DL(Q) with ansatz vectos = [v;] € C¥ is regular, and hence a (strong) linearization
for Q(\), if and only if no root of the scalar-polynomial

p(a;v) = v e T o+ v

is an eigenvalue of)(\). Among the ansatz vectorssatisfyingRv = 7, there will always
be many choices such that the roots of ¢hgolynomial

Pl popah 2 o 4 T 4T

p(z;v) = v
are disjoint from the eigenvalues 6f(\), thus providing many structured pencilslifi.(Q)
that are indeed linearizations fQi(\).

One might also wish to choose the ansatz vectso that the desired eigenvalues are op-
timally conditioned. Although the problem of determinirigtbest conditioned linearization
in DLL(Q) for an unstructured polynomi&) has been investigated if][ up to now it is not
clear how to do this for structured linearizations of sttmet! polynomials).

REMARK 5.3. Consider again the general quadratic PCP-polyno@iabk discussed
in Example5.2. In this case admissible ansatz vectors have the form [, @]” with
corresponding-polynomialp(z;v) = «ax + @. In order to obtain a linearization we need
only choosex € C so that the numbera/« on the unit circle is not an eigenvalue@f\).
Clearly, this always can be done.

REMARK 5.4. In this section our structured linearizations havenbafethe same type
as the structured polynomial: we linearized a PCP-polyabmith a PCP-pencil, and an
anti-PCP-polynomial with an anti-PCP-pencil. It shouldimed, however, that “crossover”
linearizations are also possible. Small modifications efdbnstructions given in this section
show that any PCP-polynomial can be linearized by an ang-péncil, and any anti-PCP-
polynomial by a PCP-pencil. The admissibility condition the ansatz vectors of these
crossover linearizations is noWv = —v rather thanRv = w. From the point of view of
numerical computation such crossover linearizationsiastegs useful, since spectral symme-
tries are still preserved.

REMARK 5.5. Itis not yet clear whether the choice®f= R ® P as the involution for
our structured linearizations is the only one possiblef thrére might be other choices fét
that work just as well.

5.2. Structured linearizations of PCP-even/odd polynomis. Next we consider the
linearization of PCP-even/odd polynomials by PCP-evemfeehcils inl; (@), L2(Q), and
DL(Q). Recall that(\) = Zle M\ B, is PCP-even/odd if)(\) = £PQ(—\)P, equiva-
lently if B; = +(—1)*PB,P, for some real involutiorP. Thus a penciL(\) = AX + Y is
PCP-even/odd if there is some involutiéhsuch that

X=5PXP and Y =+PYP. (5.15)
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Now, just as in Sectiob.1, the first issue is to decide whidh to use; certainly we wanP
such that structured pencils whithearize Q(\) always can be found. The first two possi-
bilities that spring to mind]; ® P and R, ® P, turn out to work only for structure@ having
additional restrictions on its coefficient matrices. Wel séle, however, that choosing

(-1
(—1)k—2 kexk
P=Y,QP= P , Where X, := . e R¥*%,
_PpP .
P (—1)°
works for any PCP-even/od@()\). Fixing P = ¥, ® P for the rest of this section, and
partitioning X andY” like P into n x n blocks X;; andY;;, we obtain from §.15 that
X;j =F(-1)""PX;;P and Y;; = +(-1)"" PY;;P. (5.16)
Now we know from 6.3) that a pencih X (V) + Y (V) isin L, (Q) exactly when
XU\ yvyW =y®[By Bro1 --- B, (5.17)

for somev € C*. Thus the blocks of such a pencil have to satisfy the conditio

i B, j=1
xM _ ] VP ’ 5.18
Y { Vi B—j41 — Yif})_l, Jj>1, (5.18)
& :
v =1 Y J<k, (5.19)
J UiB()7 J= ka

for an arbitrary choice of the blockisgl), with1 < j < k—1andv € CF. ForaAX® 4y ™)
to be a structured pencil ib; (Q), it remains to determine how these arbitrary choices can be
made so that all the relations if.( 6 hold.

To satisfy 6.16 for v, with j = k, i.e., forY,\" = v;B,, we must have

UiBO - i(—l)i+kP(UiBo)P = (—1)i+kfiBo

for all . Hence the right ansatz vectormust satisfyv; = (—1)"**7;, or equivalently
¥rv = ©. Choosing the rest of thlé;gl) for1 < j < k —1in anyway such that%.16

holds clearly yields” (¥ such thatr) — +P Y P. The matrixX ) is now completely
determined by .18, and a straightforward, albeit tedious, verification shahat all the
relations in 6.16) hold for thisX (1), Thus we have obtained a complete description of all the
PCP-even/odd pencils in; (Q).

REMARK 5.6. It is interesting to note an unexpected consequenddtharacteriza-
tion: when@) is PCP-even, a small variation of the first companion forradizationC' ()
is structure-preserving! Letting denote the: x k cyclic permutation

01
.0.1 ,
1 0

we see that the block-row-permuted companion fe#me I)C;(X) is a PCP-even pencil in
L, (Q) with right ansatz vectos = ey.
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A similar analysis, starting from the row shifted sum ch&deation 6.4) in place
of (5.17), yields the following description of all the PCP-even/qguiehcils A\ X ® + Y (2)
in Ly (@) with left ansatz vectow. The blocks of such a structured pencil satisfy

By i=1
x® ) YTk ’ 5.20
“ w;B—iv1 — Yi(ﬂ,j, i>1, (5:20)
(2) ’
y2 = Vi 1<k, (5.21)
K ij(), 1= k7

where once again the left ansatz vectois required to satisfy_,w = w, and the blocks
Yig.z) for 1 <i < k — 1 are chosen imnyway so that$.16) holds. The matrixX (?) is then
determined by .20, and the resulting pencdX® + Y2 ¢ LL,(Q) is guaranteed to be
PCP-even/odd.

When we look inDL(Q) for pencils that are PCP-even/odd, we find a situation very
much like the one described in Theoréni for PCP-polynomials. The following theorem
shows that PCP-even/odd pencilshi.(@) are uniquely defined by any admissible ansatz
vectorv, i.e., by anyv that satisfies v = @.

THEOREM 5.7 (Existence/Uniqueness of PCP-Even/Odd Pencil3lifQ)). Suppose
Q()) is a PCP-even/odd polynomial with respect to the involutfanLetv € C* be any
vector such thab,v = v, and letL(\) be the unique pencil iPLL(Q) with ansatz vectoo.
ThenL(\) is PCP-even/odd with respect to the involutiBn= Y ® P.

Proof. Defining the auxiliary pencilL(\) := + P L(—\)P, computations parallel to
those in Theorem.1 (with just a few changes) demonstrate tﬁaik) is in DL(Q) with the
same ansatz vector @g\). The “rev” operation is replaced by the substitutian— —\, R
is replaced by, and the observatiorev A = RA is replaced by\(—)\) = X, A. Then the
unique determination dbIL(Q)-pencils by their ansatz vectors implies tHat\) = L(\),
and hence thak(\) is PCP-even/odd with respectﬁ) Further details can be found ][

0

To construct these structured pendil§\) € DIL(Q) we once again have two main op-
tions: use the explicit formulas for genefialL(Q)-pencils given in §, 19, or alternatively
build them up blockwise using a shifted sum constructioriay@us to the procedures used
in [17, Section 7.3.2] for building-even andk-odd linearizations. In this construction we
alternate between using the fact tHat\) = AX + Y is to be inlL; (Q) and so must sat-
isfy the shifted sum conditiorb(17), and invoking block-symmetry to ensure that\) is
in DL(Q). (Recall that the set of all block-symmetric pencildin(Q) is preciselyDL(Q).)
The determination of the blocks X + Y proceeds in the order indicated in the following
diagram.

| 2 | | 3 |
6 ]
AX+Y=X|[]|1]5 I4 + 4I 511
| 7 | | |
3 2

We start with a choice of ansatz vectosuch that,v = ©. Then,
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=

L(\) being inL;(Q) immediately determines the blocks in the panels labelled
by (1); from (5.18 and 6.19 we know thatX;; = v; By, andY;; = v; By.
Block-symmetry now forces the blocks in the panels lausl2).

The shifted sum conditio(17) next determines the blocks in the panels labelBd
Block-symmetry now forces the blocks in the panels lzauEit).

Equation §.17) next determines the blocks in the panels labe{@d

Block-symmetry now forces the blocks in the panels laoEb).

ok wnN

7. ..
In summary, each panel labelled with an odd number is coctstllusing information from
the shifted sum condition5(17), while the panels labelled with an even number are con-
structed so as to maintain block-symmetry. Since the evenbered panels comprise all the
blocks above the diagonal ik and all the blocks below the diagonal¥n we are guaranteed
that the construction as a whole will produce a block-symimgencil, and hence a pencil
in DL(Q).

The question of determining which of these structured pentDL(Q) is actually a lin-
earization for is handled in the same way as it was in Secfidh i.e., by using the Eigen-
value Exclusion Theoremp, Theorem 6.7] for pencils iBL(Q). For any admissible ansatz
vectorv such that the roots of thepolynomialp(z; v) are disjoint from the eigenvalues of
@, the structured pencil iDL(Q) corresponding t@ will be a linearization for). Clearly
there will be many such for which this is the case.

Finally it should be noted that remarks similar to the oneb@&end of Sectiob.], e.g.,
on the existence of “crossover” structured linearizatiand the possibility of there being
other good choices of involutioR, also apply here in the context of PCP-even/odd structure.

6. Structured Schur form for PCP-pencils. Once a PCP-polynomial has been lin-
earized in a structure-preserving manner, the eigenvalu®e resulting PCP-pencil should
be computed in such a way that the reciprocal pairing of tleetspm (see Theore®\l) is
guaranteed.

The generalized Schur decompositighT') = (QAZ, QBZ) of a matrix pair(A, B),
whereS andT" are upper triangular an@ andZ are unitary, is the basis for most numerical
approaches to computing eigenvalues and generalizedanvaubspaces for the general lin-
ear eigenprobler\A + B)x = 0. In this section we discuss the computation stractured
Schur-type decomposition for the linear PCP-eigenproblem

(AX + PXP)v =0, (6.1)

whereX € C™>*™ and P € R™*™ is an involution. We begin by assuming thatis also
symmetric; this is true for the involution in the quadratiCf®eigenproblem arising from the
stability analysis of time-delay systems discussed ini&e&, as well as in the structured
linearizations for such problems described in Seclidn

SinceP is an involution, its eigenvalues are f&-1}, so whenP is symmetric it admits
a Schur decomposition of the form

P=WDWT, D:[I” }
~Lnp

wherelV € R™*™ is orthogonal. With
X=wT'Xw and 5=wWTv
we can then simplify&.1) to the linear PCP-eigenproblem

(\X + DX D)o =0,
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with involution D.
Using a Cayley transform and scaling yields

g(c+1 (AX + D?D)) ()0 = (uN + M)o =0,

wherepy = i—jr} By Theorem4.1, the penciluN + M is PCP-even with involutiorD,

henceN = —DND andM = DﬂD.Ihese relations also can be directly verified from
the defining equation®/ := %()? - D)?D) and M := %()A( + D)?D). Note also that
Theorem3.1guarantees symmetry of the spectrunudf + M with respect to the imaginary
axis. PartitioningV and M conformably withD, we have

N = {Nﬂ Nl?} = [Nll Nl?} = _—DND,

Nay N Ny —No
M = = — — = DMD.

Hence, the blocksVia, Naoi, Mi1, and My are real, whileN;q, Nas, Mie, and My are
purely imaginary. N
Multiplying on both sides byD := diag(I,, —il,,—,) Yields the equivalereal pencil

~

Re(Xu) Im()?u) ])

-~

Im(Xgl) —RC()?QQ)
Re()/(\'u) Im()?lg) ])

~ ~ im(X11)  —iRe(X12)
D(uN + M)D = A ~
(V- M) (H —iRe(X21) —ilm(X
= —ip —Im(é(:u) Re()zu)
Re(Xgl) Im(XQQ)
=: (I/X1 -+ XQ),

+

~

Im(Xgl) —Re()/(\vgg)

with X7, X5 real, andr = —iu. HereRe(X') andIm(X) denote the real and imaginary parts
of X, respectively. L

Now let (S,T) = (QX1Z,QX>Z) be areal generalized Schur form for the real pair
(X1, Xo), i.e.,Q andZ are real orthogonaf is real and upper triangular, arttlis real and
quasi-upper triangular with x 1 and2 x 2 blocks. Any1 x 1 block in this real Schur form
corresponds to a real eigenvaluerof; + X5, hence to a purely imaginary eigenvalue of
wN + M, and thus to an eigenvalue X + PX P on the unit circle. Similarly, ang x 2
block corresponds to a complex conjugate pair of eigengdloier X, + X5, which in turn
corresponds to an eigenvalue pgir, —jz) for uN + M, and hence to a reciprocal pair of
eigenvalues), 1/)) for \X + PX P. Thus, we see that the block structure in the real Schur
form of the real pencib X; + X, precisely mirrors the reciprocal pairing structure in the
spectrum of the original PCP-pengiX + PX P.

We recover a structured Schur form fX + P X P by re-assembling all the transfor-
mations together to obtain

(QDWTYAX + PXP)(WDZ) = \(T —iS) + (T +iS).

Since\S + T = \S + S, this Schur form is again a PCP-pencil, but with respect & th
involution P = I. This derivation is the basis for Algorith 1

This algorithm has several advantages over the standardd@rthm applied directly
to AX + PX P. First, it is faster, since the main computational work i tkal QZ algorithm
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ALGORITHM 6.1 (Structured Schur form for PCP-pencils).
Input: X € C™*™ andP € R™*™, with P? = [ andP” = P.
Output: Unitary @, Z € C™*™ and block upper triangulas € C™*™ such thatQ X 7 =
S and@QPX PZ = S; the diagonal blocks aof are only of sizel x 1 (corresponding to
eigenvalues of magnitude 1) akc 2 (corresponding to pairs of eigenvalues of the form
(A, 1/2)).
1. P — WDWT with D = diag(I,, —I,,—,) [find real symmetric Schur form]
2 X —« WIXW
~Im(X11) Re(Xys)

3 X — .
! Re(X21) Im(Xas)

],where)?n e Crxp

Re()?u) Im()/(\;u)

4: Xo — ~
2 Im(Xgl) —Re(XQQ)

],Wheref{n € Crxp

5 (X1, Xs) — (QTSZT,QTTZT) [compute real generalized Schur form]
6: Q — Qdiag(ILy, —il,, ,)WT, Z— Wdiag(l,, —il,n_,)Z
7.8« T—iS

rather than the complex QZ algorithm. Second, structureguu@tion guarantees reciprocally
paired eigenvalues; in particular, the presence of eideesan the unit circle can be robustly
detected. It is interesting to note that an algorithm witlst properties (computation of a
structuredSchur form with the resulting guaranteed spectral symmairy greater efficiency
than the standard QZ algorithm) is not yet available for therk-palindromic eigenvalue
problems.

In many applications it is also necessary to compute eiggokgefor a PCP-polynomial,
e.g., in the stability analysis of time-delay systems dbscrin Sectior?. These can be found
by starting with the eigenvalue problemS + T')x = 0 in real generalized Schur form, and
computing eigenvectors using standard methods. It then follows that

<1+WS+T):C <1+"”S+S>zo,

1—w — v

which in turn implies that

(1 Ty PXP) (Zzx) = 0.
1—v

In other wordsp = Zx is an eigenvector of the pencil if.(l) corresponding to the eigenvalue
A= % If this pencil was originally obtained as a structured dineation inlL; (@) for a
PCP-polynomial) (), then (as described in Sectijiv must be of the form\ & « for some
eigenvector: of Q(A) corresponding to the eigenvalue= }sz. Thus, eigenvectorg of
Q(X) are immediately recoverable from the eigenvectoo$ the pencil in 6.1).

REMARK 6.2. Any real involutionP that is not symmetric admits a Schur decomposition

of the form

R=WTPW = {IP fz }

.
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FIGURE 7.1. Metal strip with twoL,, cells (three capacitive cells dashed) (a), and small PEEQehéor
metal strip (b). Figures are redrawn fromi].

Defining

K = [Ip 2f2 ] ,

S -

we havek 'RK = D = diag(l,,—I,n_,), and soP = WDW ! with W = WK.
Thus, if P is only mildly non-normal (i.e.| R12|| is small), then there is a well-conditioned
similarity transformation that bring® to the diagonal fornD, and replacindgV by W and
wT by W-Lin Algorithm 6.1 would still be a reasonable way to compute the eigenvalues
and eigenvectors of a PCP-pencil. Note, however, that thgubmatrices) and Z will no
longer be unitary.

REMARK 6.3. Note that with some minor modifications, Algorithrl also can be
used on an anti-PCP-pencil to compute a structured Schur tioat is anti-PCP, of the form
AS —S.

7. Applications and numerical results. As we saw earlier in Sectiof, eigenvalue
problems with PCP-structure arise in the stability analygineutral linear time-delay sys-
tems. Such systems provide useful mathematical models my jpiaysical application areas
(see [L3, 22] and the references therein); one example is circuits wéllhydelements, such
as transmission lines and partial element equivalent it'¢ BEEC’s). A realistic problem
motivated by the small PEEC model in Figutd.is given by

Dya(t — h) + @(t) = Agx(t) + Arz(t — h), t>0, 1)
l(t) = @(t)v te [_ha O)? .
where
-7 1 2 1 0 -3
Ay = 100 3 -9 0|, A =100{ -0.5 —-05 -1},
1 2 —6 -0.5 —1.5 0
1 -1 5 2
D, = — 4 0 3|, Dy=1,
-2 4 1

o(t) = [sin(t), sin(2t), sin(3t)]".

More details on this example can be found1h [
The quadratic eigenprobler@.(L3 for this example i22E + zF + G)u = 0, with
E=(Dy® A1)+ (Ao ®D1), G=(D1®Ag)+ (A1 @ Dy),
F = (Do ® Ap) + (Ao ® Do) + (D1 @ Ay) + (A1 @ Dy).



ETNA
Kent State University
http://etna.math.kent.edu

STRUCTURED POLYNOMIAL EIGENPROBLEMS RELATED TO TIME-DELX SYSTEMS 327

It is easy to verify that? = PGP andF = PF P hold for

My My M3y
P=| My My Ms |,
Mz Maz Mss

where);; denotes th@ x 3 matrix with the entryl in position(z, j) and zeroes everywhere
else.
The standard companion forms for this quadratic eigenprotzre

cl(A)zx{E I]%E (C);] and @(A):A{E I}Jr{g _OI}

A structured pencil i1 (Q) (as discussed in Sectiénl) is given by

A UlE —X12 X12+’U1F ’U1PEP
nE T F+PXsP —PX,P 7w, PEP

] , v €C, (7.2)

whereX, is arbitrary, while a structured pencil I, (Q) is given by

)\|: w B w1 B :| l: w1 F — Xo1 PYle

Xy W F— PX P w,PEP @ PEP } cowmet (73

where X, is arbitrary. Withw; = v; and Xy, = 71 F = — X5, the pencils {.2) and (7.3)
are the same. Thus

|: ’UlE @1E :| |: UlF—@lE ’UlPEP :|

ElE 51F - U1PEP 121PEP @1PEP (74)

defines the unique structured pencil (up to choice of saglabelonging to the intersection
DL(Q) = L1(Q) NL2(Q). By the Eigenvalue Exclusion Theorerhd Theorem 6.7], the
pencil (7.4) is a structured linearization if and only+fo; /v, is not an eigenvalue @ (\).

Choosingv; = 1 and applying Algorithn6.1, we found that {.4) has no eigenvalues
on the unit circle, so the time-delay systeéhin (7.1) has no critical delays. The syste$ris
stable forh = 0, since all eigenvalues of the penéi{a) = a(Dy + D7) — (Ao + A1) have
negative real part. Continuity of the eigenvaluesas a function of the delay then implies
thatS is stable for every choice of the delay> 0, a property known adelay-independent
stability.

Our next example arises from the discretization of a padiddy-differential equation
(PDDE), taken from Example 3.22 in3, Sections 2.4.1, 3.3, 3.5.2]. It consists of the re-
tarded time-delay system

I(t) = on(t) + All‘(t — hl) + AQI(t - hg), (75)

whereAy € R"*™ is tridiagonal and4, A, € R"*" are diagonal with

(Ao)kj = —2(n+1)?/7 + ap + bosin(jr/(n + 1)), if k=,
Tt 12/, if |k —j| =1,

jﬂ- —7m(1—35/(n+1

(A1)jj=a1+b1n+1(1—€ ( ]/(Jr))),
jm®
n+1

(A2)j; = az + b (1—j/(n+1)).
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Hereay, b, are real scalar parameters and N is the number of uniformly spaced interior
grid points in the discretization of the PDDE. We used thei@al

apg = 2, bo = 0.37 a; = —2, bl = 0.2, as = —2, b2 =—-0.3

(as in [L3]) and considered various values for With ¢; = —7/2 (i.e., e’ = i) the
guadratic PCP eigenvalue problem to solve is

(ME + AF + PEP)v =0, (7.6)
where
E=1®A4;, F=(I®(Ao—iA1))+ ((Ado+id) 1),

and P is then? x n? permutation that interchanges the order of Kronecker mtsdas
in (2.15. Table7.1displays the results of our numerical experiments. Hecdenotes the
dimension of the time-delay system.f), 2n? the dimension of the PCP-penci.{g), and
tholyeig, tQz, tpcp denote the execution times in seconds for the three testdtbose
1. solving the quadratic eigenvalue problemg( using the Matlakpol yei g com-
mand, which applies the QZ algorithm to a (permuted) congraform,
2. solving the generalized eigenproblem for the PCP-péiicl) using the Matlalf)z
algorithm, and
3. solving the eigenproblem for the PCP-pencilj using Algorithm6.1.
All computations were done in Matlab 7.5 (R2007b) under GBMBE Linux 10.2 (ker-
nel 2.6.18, 64 bit) on a Core 2 Duo Processor E6850 3.0GHz4@B memory. The quan-
tities errpolyeig @nderrqyz, defined by

err — max min M7
Ai Ak |

where);, \;, are (not necessarily distinct) eigenvalues b, measure the distance of the
computed eigenvalues from being paired for the two ungiradt methods. Note that this
measure is zero for Algorithi.1 by construction. The numbes,oiyeis, #qz, and#pcp
denote the number of eigenvalues on the unit circle foundaa enethod; for the unstruc-
tured methods this is the number of eigenvaldasith ||\ — 1| < 10~'*, while for Algo-
rithm 6.1 this is the number of x 1 blocks in the structured Schur form.

As it can be seen from Tablg1, our structured method is about twice as fast as both
unstructured methods. Note that the QZ algorithm appliethéoPCP linearization (col-
umntqz) is slightly slower than the QZ algorithm applied to a conmiparform linearization
(columntqiyeig). On the other hand, the eigenvalues computeddiyyei g are not as well

TABLE 7.1
Comparison ofpol yei g, QZ, and Algorithm6.1

n 207 | tholyeig  tQz  pcP | eITpolyeig  €1TQz | #polyeig  #qz  #pcp
5 50| 0.02 0.02 0.01] 5.5e-15 3.7e-1
10 200| 0.50 0.55 0.28| 6.5e-14 1.2e-1
15 450 55 6.3 3.0 | 4.4e-13 2.6e-1
20 800 33 36 20 1.3e-12 4.8e-1
25 1250 131 137 72 3.1e-12 6.6e-1
30 1800| 413 435 227 | 1.1le-11 7.5e-1

OCwWwWwhhrp
OO OoOWhA>M
AR ArDdBAD
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paired as those computed by the QZ algorithm applied to tHe IP@arization. In the time-
delay setting the only eigenvalues of interest are thosa@niit circle and in this respect the
three methods perform very differently. All methods cotisefind the number of eigenvalues
of unit magnitude fom = 5,10. For largern the unstructured methods do not find all, and
sometimes not any, of the desired eigenvalues. In partidalan = 30 only the structured
method finds all 4 eigenvalues on the unit circle, whereasatis&ructured methods find none.
As a third example, we tested PCP-pencils of the fativ- PX P, whereX is randomly
generated by the Matlab commanandn( n) +i *r andn( n) andP is the matrixRk defined
in (5.6). We found that, fob0 < n < 2000, our Algorithm6.1 performs 2.5 to 3 times faster
than the QZ algorithm on this type of problem.

8. Concluding summary. Motivated by a quadratic eigenproblem arising in the stabil
ity analysis of time-delay system&3], we have identified a new type of matrix polynomial
structure, termed PCP-structure, that is analogous todhedoomic structures investigated
in [18]. The properties of these PCP-polynomials were investijatlong with those of three
closely related structures: anti-PCP, PCP-even and P@Ralgnomials. Spectral symme-
tries were revealed, and relationships between thesdwstegavere established via the Cayley
transformation.

Building on the work in 9], we have shown how to construct structure-preserving lin-
earizations for all these structured polynomials in thecjepaced.; (Q), L2(Q), andDL(Q).

In addition to preservation of eigenvalue symmetry, suckdrizations also permit easy
eigenvector recovery, which can be an important consimerah applications. Structured
Schur forms for PCP and anti-PCP pencils were derived, aldtiga new algorithm for their
computation, which compares favorably with the QZ alganittJsing a structure-preserving
linearization followed by the computation of a structuresh& form thus allows us to solve
the new structured eigenproblem efficiently, reliably, avith guaranteed preservation of
spectral symmetries.

Acknowledgment. The authors thank Elias Jarlebring for many enlightenirgg k-
sions about time-delay systems.
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