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DECOMPOSITIONAL ANALYSIS OF KRONECKER
STRUCTURED MARKOV CHAINS ∗
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Abstract. This contribution proposes a decompositional iterative method with low memory requirements for the
steady-state analysis of Kronecker structured Markov chains. The Markovian system is formed by a composition of
subsystems using the Kronecker sum operator for local transitions and the Kronecker product operator for synchro-
nized transitions. Even though the interactions among subsystems, which are captured by synchronized transitions,
need not be weak, numerical experiments indicate that the solver benefits considerably from weak interactions among
subsystems, and is to be recommended specifically in this case.
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1. Introduction. In a system composed of subsystems, various events take place. Some
events are constrained only to a particular subsystem and can be called local, while others
require the involvement of multiple subsystems to be realized and can be called synchronized
(or global). The infinitesimal generator matrix underlyingMarkovian systems composed by
local and synchronized events can be expressed using the Kronecker sum operator for local
transitions and the Kronecker product operator for synchronized transitions [24]. Since a
Kronecker sum can be written as a sum of Kronecker products [31], the potentially large
generator matrix of such systems can be kept in memory as a sumof Kronecker products of
the smaller subsystem transition matrices without having to be generated and stored. With the
help of a vector-Kronecker product algorithm [18], this enables, at the expense of increased
analysis time, the iterative analysis of much larger Markovian models on a given computer
than can be performed with the conventional flat, sparse matrix generation approach [28].

Throughout this work, we assume that the cross product of thestate spaces of the subsys-
tems is equal to the state space of the system. We further assume that each state of the system
is reachable from every other state in the system, implying the irreducibility of the underly-
ing generator matrix, consequently the existence of its steady-state vector. Now, letting the
infinitesimal generator matrix corresponding to the continuous-time Markov chain (CTMC)
underlying the Kronecker representation be denoted byQ, the objective is to solve the linear
system of equations

πQ = 0 (1.1)

for the (global) steady-state (row) vector,π, without generatingQ and subject to the normal-
ization condition

∑

i∈S πi = 1, whereS is the state space of the CTMC.
Stochastic automata networks (SANs) [18, 24, 25], various classes of superposed stochas-

tic Petri Nets (SPNs) [17, 19], and hierarchical Markovian models (HMMs) [3, 10, 11] are
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Markovian modeling formalisms utilizing such a Kronecker representation. In this context,
the exponential growth of the size of the state space with thenumber of subsystems in the
specification of the model is referred to as the state space explosion problem. The Kronecker
based representation provides an elegant, memory conserving solution to the problem albeit
not as timewise efficient as one would like to have. This has triggered much research, and
currently, multilevel methods [7] and block SOR (BSOR) preconditioned projection meth-
ods [8] appear to be the strongest iterative solvers for the steady-state analysis of Kronecker
based Markovian systems. The former class of solvers exhibit fast convergence on many
problems, but it still has not been possible to provide a result characterizing their rate of con-
vergence [9], and examples are known where convergence is slow. On the other hand, the
latter class of solvers have many parameters that must be judiciously chosen for them to be
effective, and they may yield considerable fill-in during the factorization of diagonal blocks
in the BSOR preconditioner for certain problems. Hence, there is still room for research and
the recent review in [16] can be consulted for issues pertinent to the analysis of Kronecker
based Markovian representations.

This paper proposes a composite iterative method with low memory requirements for the
steady-state analysis of Kronecker based Markovian representations. The method is based on
decomposition into subsystems and is coupled with a Gauss-Seidel (GS) [30] relaxation step.
In a given iteration, each subsystem is solved independently for its local steady-state vector
by restricting the effects of synchronized transitions to the particular subsystem as a function
of the global steady-state vector computed in the previous iteration. The Kronecker product
of the local steady-state vectors constitutes the local term of the current global steady-state
vector. Then the residual vector obtained by multiplying this local term with the generator
matrix held in Kronecker form is used to compute a correctionterm for the current global
steady-state vector through GS. The local term, together with the correction term, determine
the current global steady-state vector. When the interactions among subsystems are weak,
the Kronecker product of the local steady-state vectors is expected to produce a good ap-
proximation to the global steady-state vector and yields convergence in a small number of
iterations.

As we will show later, the proposed method can be formulated using concepts from al-
gebraic multigrid (AMG) [26] and iterative aggregation-disaggregation (IAD) [28, Ch. 6],
which is originally proposed for stochastic matrices having a nearly completely decompos-
able block partitioning. However, we remark that the concept of weak interactions among
(or near independence of) subsystems is orthogonal to the concept of near complete decom-
posability associated with stochastic matrices. This is so, because the former refers to the
possibility of expressing an infinitesimal generator matrix as a Kronecker sum plus a term in
which the nonzero values are smaller, compared to those in the Kronecker sum, whereas the
latter refers to the possibility of symmetrically permuting and partitioning a stochastic matrix
such that the off-diagonal blocks have smaller probabilities, compared to those in the diag-
onal blocks. In this sense, the two concepts can be classifiedas multiplicative and additive,
respectively.

The fixed-point iteration presented in [13] for stochastic reward nets (SRNs) is also moti-
vated by the concept of near independence of subsystems, butis approximative. Although not
particularly geared towards Kronecker structured Markovian systems, the decomposition is
inspired by the Kronecker sum operator reflecting the local evolution of subsystems. It can be
considered as an extension of the work in [29], which is intended for a particular application
area. There are other methods in the literature that are based especially on decomposing Kro-
necker structured Markovian representations. For instance, [4] provides an iterative method
for SANs that bounds the solution from below and above using polyhedra theory and disag-



ETNA
Kent State University 

http://etna.math.kent.edu

DECOMPOSITIONAL ANALYSIS OF KRONECKER STRUCTURED MARKOV CHAINS 273

gregation. It is argued through two small examples that the generated bounds are satisfactory
only if the interactions among subsystems are weak, or the rates of synchronized transitions
are more or less independent of the states of subsystems. On the other hand, [5] introduces an
approximative method for superposed GSPNs, which iteratively operates individually only on
states that have higher steady-state probabilities; the remaining states are aggregated. Con-
siderable storage savings are obtained for the global steady-state vector due to its compact
representation as a Kronecker product of aggregated subsystem steady-state vectors. The
method proposed in this paper is different from these methods in that it is not approximative
and it aims to compute the solution exactly up to computer precision. It is coded into the
APNN toolbox [1] which is developed for HMMs since, to the best of our knowledge, this is
the toolbox having the largest set of steady-state solvers for Kronecker structured Markovian
representations which can serve as benchmarks for our numerical experiments.

The next section introduces the Markovian model used in the paper and provides a small
example. Section3 presents the decompositional iterative method. The proposed method is
compared with other iterative methods on various examples and numerical results are given
in Section4. The conclusion is drawn in Section5.

2. Model composition. Consider the following Kronecker representation of the CTMC
underlying a Markovian system composed of multiple subsystems interacting through syn-
chronized transitions, where

⊕

and
⊗

denote the Kronecker sum and Kronecker product
operators [31], respectively.

DEFINITION 2.1. LetK be the number of subsystems,S(k) = {0, 1, ..., |S(k)|−1} be the
state space of subsystemk for k = 1, 2, ...,K, t0 be a local transition (one per subsystem),T
be the set of synchronized transitions among subsystems, and rte

be the rate of synchronized
transitionte ∈ T . Then

Q = Qlocal + Qsynchronized, (2.1)

where

Qlocal =

K
⊕

k=1

Q
(k)
t0

, Qsynchronized=
∑

te∈T

rte

K
⊗

k=1

Q
(k)
te

+ D,

D is the diagonal correction matrix that sums the rows ofQsynchronizedto zero,Q(k)
t0

andQ
(k)
te

are matrices of order|S(k)| capturing transitions between states of subsystemk under local
transitiont0 and synchronized transitionte ∈ T , respectively.

PROPOSITION2.2. The matricesQlocal and Qsynchronizedhave zero row sums by con-
struction.

We remark that the state space ofQ is K-dimensional and is given by
S = S(1) × S(2) × · · · × S(K), where× is the cross product operator. Hence, each state
in S can be represented by aK-tuple. Throughout the text, we denote the states inS by the
K-tuples = (s1, s2, . . . , sK), wheresk ∈ S(k) for k = 1, 2, . . . ,K.

EXAMPLE 2.3. We illustrate these concepts with a simple system whichconsists ofK
subsystems interacting through synchronized transitions. Thekth subsystem hasnk redun-
dant components (implying|S(k)| = nk + 1) only one of which is working (i.e., operating)
at a given time instant fork = 1, 2, . . . ,K. The working component in subsystemk fails
independently of the working components in the other subsystems, with an exponentially
distributed time having rateλk. When a working component in a subsystem fails, it is re-
placed with one of the intact redundant components in that subsystem in no time and one
again has a working subsystem. Furthermore, there is one repairman in subsystemk who can
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repair a failed component independently of the failed components in the other subsystems
with an exponentially distributed time having rateµk. Hence, the considered model is that
of a system with redundant components, each of which does nothave to be highly reliable.
It improves steady-state availability by using a larger number of redundant components, and
not by employing highly reliable individual components.

For this system, local transition rate matrices have the tridiagonal form in

Q
(k)
t0

=















−λk λk

µk −(λk + µk) λk

. ..
. . .

. . .
µk −(λk + µk) λk

µk −µk















.

To center the discussion around the solution method rather than the model, at this point we
consider the existence of a single synchronized transition, t1, representing a global reset to
the initial state (or a global repair corresponding to complete recovery by repairing all failed
redundant components) with rateµ in which all redundant components are intact and all
subsystems are functioning, when the system is in the state of total failure. Such synchronized
transition rate matrices can be expressed asQ

(k)
t1

= enk+1e
T
1 , whereej represents thejth

column of the identity matrixI|S(k)| of order|S(k)|.

WhenK = 2 in this system, we have

Q = Q
(1)
t0

⊕

Q
(2)
t0

+ µQ
(1)
t1

⊗

Q
(2)
t1

+ D. (2.2)

Furthermore, ifn1 = n2 = 2, then

Q
(1)
t0

=





−λ1 λ1 0
µ1 −(λ1 + µ1) λ1

0 µ1 −µ1



 , Q
(2)
t0

=





−λ2 λ2 0
µ2 −(λ2 + µ2) λ2

0 µ2 −µ2



 ,

Q
(1)
t1

= Q
(2)
t1

=





0 0 0
0 0 0
1 0 0



 , D = diag(0, 0, 0, 0, 0, 0, 0, 0,−µ),

where diag(·) denotes a diagonal matrix which has its vector argument along its diagonal.
Besides, the state space ofQ is given by

S = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)},

whereas the state spaces of the subsystems are given by

S(1) = S(2) = {0, 1, 2}.

Now, in order to see that weak interaction between the two subsystems has nothing to do with
near complete decomposability, consider the uniformized stochastic matrixP (α) = I +Q/α
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corresponding to

Q =





























∗ λ2 0 λ1 0 0 0 0 0
µ2 ∗ λ2 0 λ1 0 0 0 0
0 µ2 ∗ 0 0 λ1 0 0 0
µ1 0 0 ∗ λ2 0 λ1 0 0
0 µ1 0 µ2 ∗ λ2 0 λ1 0
0 0 µ1 0 µ2 ∗ 0 0 λ1

0 0 0 µ1 0 0 ∗ λ2 0
0 0 0 0 µ1 0 µ2 ∗ λ2

µ 0 0 0 0 µ1 0 µ2 ∗





























(0, 0)
(0, 1)
(0, 2)
(1, 0)
(1, 1)
(1, 2)
(2, 0)
(2, 1)
(2, 2)

, (2.3)

where∗ denote the negated off-diagonal row sums andα ∈ [maxs |qs,s|,∞) for the values
µ1 = µ2 = λ1 = λ2 = 1 andµ = 0.001. Q is composed of two subsystems, each having
three states that interact with a rate of 0.001; see (2.2). Hence, they are weakly interacting
with regards to their local evolutions. On the other hand, nomatter which one of the9!
reorderings of the nine states inS is used,P (4) cannot be symmetrically permuted to nearly
completely decomposable form with a decomposability parameter of 0.001; see (2.3). In fact,
the current ordering of states with the block partitioning of P (4) having three diagonal blocks
of order three yields a degree of coupling (i.e., maximum block off-diagonal probability mass)
of 0.5. Asα approaches∞, P (α) will end up possessing a nearly completely decomposable
partitioning with nine diagonal blocks, each of order one.

In passing, we remark that the subject of this paper is not thesteady-state solution of the
uniformized stochastic matrixP (α) by a decompositional iterative method using aggregation-
disaggregation based on a block partitioning, but it is the solution of the CTMC underlying
a sum of Kronecker products by decomposition into subsystems. Now, we are in a position
to introduce the proposed method.

3. Decompositional method.Our decompositional solution approach is built upon two
key components: systems of local equations obtained from the local transition rate matrices
of subsystems, and a system of global equations for the correction of the Kronecker product
of local solutions. In each iteration, the systems of local equations are solved first. The right-
hand sides of the systems of local equations depend on the global solution. After solving
the systems of local equations, the Kronecker product of local solutions is computed and
used to find the new correction and, hence, the new global solution. In summary, the local
solutions are used to improve the global solution, the global solution is used to improve the
local solutions, and the systems of local equations and the system of global equations are
solved alternatingly until a stopping criterion is met.

3.1. Local solutions and global correction.We express the global solutionπ in (1.1)
as the sum of two terms, one of which is the Kronecker product of the local solutions,π(k)

for k = 1, 2, . . . ,K, and the other is the global correctiony, as in

π =

K
⊗

k=1

π(k) − y. (3.1)

This expression assumes that the local solutions are normalized (i.e.,‖π(k)‖1 = 1); in other
words,π(k) represents the local steady-state vector of subsystemk, for k = 1, 2, . . . ,K.

We substitute global state variables in the right-hand sides of the systems of local equa-
tions,v(k)(π), for k = 1, 2, . . . ,K, using local state variables and the correction variables,
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without altering the synchronization policy, and obtain

π(k)Q
(k)
t0

= v(k)(π), subject to‖π(k)‖1 = 1, for k = 1, 2, . . . ,K. (3.2)

Here,v(k)(π) are associated with synchronized transitions, through functions of local vari-
ables, and global correction variables appearing in the definition of π in (3.1). The π in
parentheses indicates the dependence of the right-hand side on the global solution, that is,
v(k) is a function ofπ. Specifically, one term is added to (subtracted from) theskth element
of v(k) for every synchronized transition that moves subsystemk out of (into) the local state
sk ∈ S(k). In contrast,y = 0 would be imposed in (3.1) if the subsystems were independent,
andv(k)(π) = 0 would be obtained fork = 1, 2, . . . ,K.

Now, let us proceed to show how the right-hand side vectorsv(k)(π), for k = 1, 2, . . . ,K,
of the systems of local equations are obtained on our runningexample, and then formalize
our observations. In the following,πs refers to the steady-state probability of the global state
s = (s1, s2, . . . , sK) ∈ S, whereasπ(k)

sk refers to the steady-state probability of the local state
sk ∈ S(k) of subsystemk, for k = 1, 2, . . . ,K. Hence,

π(k)
sk

=
∑

l 6=k,sl∈S(l)

π(s1,s2,...,sK). (3.3)

EXAMPLE 2.3 (CONTINUED). Consider the nine global balance equations

−(λ1 + λ2)π(0,0) + µ2π(0,1) + µ1π(1,0) + µπ(2,2) = 0

λ2π(0,0) − (λ1 + λ2 + µ2)π(0,1) + µ2π(0,2) + µ1π(1,1) = 0

λ2π(0,1) − (λ1 + µ2)π(0,2) + µ1π(1,2) = 0

λ1π(0,0) − (λ1 + λ2 + µ1)π(1,0) + µ2π(1,1) + µ1π(2,0) = 0

λ1π(0,1) + λ2π(1,0) − (λ1 + λ2 + µ1 + µ2)π(1,1) + µ2π(1,2) + µ1π(2,1) = 0

λ1π(0,2) + λ2π(1,1) − (λ1 + µ1 + µ2)π(1,2) + µ1π(2,2) = 0

λ1π(1,0) − (λ2 + µ1)π(2,0) + µ2π(2,1) = 0

λ1π(1,1) + λ2π(2,0) − (λ2 + µ1 + µ2)π(2,1) + µ2π(2,2) = 0

λ1π(1,2) + λ2π(2,1) − (µ + µ1 + µ2)π(2,2) = 0

obtained by using (2.3) in (1.1). Summing up the first three global balance equations yields

−λ1(π(0,0) + π(0,1) + π(0,2)) + µ1(π(1,0) + π(1,1) + π(1,2)) + µπ(2,2) = 0,

which is equivalent to

−λ1π
(1)
0 + µ1π

(1)
1 + µπ(2,2) = 0,

since, from (3.3), the steady-state probability of subsystem 1 being in local states1 ∈ S(1) is
given byπ

(1)
s1 =

∑

s2∈S(2) π(s1,s2). Adding the next three and the last three global balance
equations in a similar manner yields, respectively,

λ1π
(1)
0 − (λ1 + µ1)π

(1)
1 + µ1π

(1)
2 = 0,

λ1π
(1)
1 − µ1π

(1)
2 − µπ(2,2) = 0.

Now, observe that the three equations resulting from the addition of specific mutually exclu-
sive global balance equations, and use of local steady-state probabilities, can be expressed as
a linear system of the form

Q
(1)
t0

π(1) = v(1)(π), subject to‖π(1)‖1 = 1,
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where

v(1)(π) = (−µπ(2,2), 0, µπ(2,2)).

Following the same line of argument, but this time adding theglobal balance equations one,
four and seven, two, five and eight, and three, six and nine, one obtains

Q
(2)
t0

π(2) = v(2)(π), subject to‖π(2)‖1 = 1,

where

v(2)(π) = (−µπ(2,2), 0, µπ(2,2)).

The proposed method is related to iterative aggregation-disaggregation (IAD) [28, Ch. 6]
for stochastic matrices, and algebraic multigrid (AMG) [26] for general systems of equa-
tions. Although there are variations of IAD, all of them combine the solution of the aggre-
gated stochastic matrix, whose elements correspond to blocks in a block partitioning of the
stochastic matrix, with pre- and/or post-iteration steps over the global system of equations.
The solution of the aggregated system distributes the steady-state probability mass over state
space partitions, whereas for each block the probability mass is distributed inside the cor-
responding state space partition. On the other hand, AMG solves a system of equations by
performing iterations on systems of equations of decreasing size, where each system of equa-
tions is obtained by aggregation. We return to this point after we present the algorithm in the
next section. Let us first formalize our observations. In doing that, we follow the approach
taken in [9].

DEFINITION 3.1. Let the surjective (i.e., onto) mappingfk : S −→ S(k), which satisfies

∃s ∈ S s.t. fk(s) = sk for each sk ∈ S(k),

represent the transformation of states inS to states inS(k), for k = 1, 2, . . . ,K, during the
decomposition into subsystems.

Since the normalization of the local steady-state vector ofeach subsystem can be per-
formed after it is computed, we introduce theK restriction (or aggregation) operators that
are used to transform global steady-state probability variables to local steady-state probabil-
ity variables ofK different subsystems, as in the next definition.

DEFINITION 3.2. The(|S| × |S(k)|) restriction operatorR(k) for the mapping

fk : S −→ S(k),

k = 1, 2, . . . ,K, has its(s, sk)th element given by

r(k)
s,sk

=

{

1, if fk(s) = sk,

0, otherwise,

for s ∈ S andsk ∈ S(k). In Kronecker representation,R(k) is written as

R(k) =

(

k−1
⊗

l=1

I|S(l)|e

)

⊗

I|S(k)|

⊗

(

K
⊗

l=k+1

I|S(l)|e

)

, (3.4)

wheree is the vector of ones of appropriate dimension.
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The postmultiplication bye of each identity matrixI|S(l)|, exceptl = k, in (3.4) corre-
sponds to the aggregation of each dimension, exceptk, in the decomposition process. Equiv-
alently, (3.4) can be interpreted asI|S(k)| being pre-Kronecker (post-Kronecker) multiplied

by a vector of ones of length
∏k−1

l=1 |S(l)| (
∏K

l=k+1 |S
(l)|).

PROPOSITION3.3. The restriction operatorR(k), for k = 1, 2, . . . ,K, is nonnegative
(i.e., R(k) ≥ 0), has only a single nonzero with the value 1 in each row, and therefore row
sums of 1, i.e.,R(k)e = e. Furthermore, since there is at least one nonzero in each column of
R(k) (i.e.,eT R(k) > 0), it is also the case thatrank(R(k)) = |S(k)|.

For each local statesk ∈ S(k), the global balance equations that are mapped to the same
statesk ∈ S(k), for k = 1, 2, . . . ,K, are summed by theK prolongation(or disaggregation)
operators defined next.

DEFINITION 3.4. The (|S(k)| × |S|) prolongation operatorP (k)(π) for the mapping
fk : S −→ S(k), k = 1, 2, . . . ,K, has its(sk, s)th element given by

p(k)
sk,s(π) =

{

πs/π
(k)
sk , if fk(s) = sk,

0, otherwise,

for s ∈ S andsk ∈ S(k).
Observe the dependency of the prolongation operator of eachsubsystem on the steady-

state vectorπ.
PROPOSITION 3.5. The prolongation operatorP (k)(π) is nonnegative (that is,

P (k)(π) ≥ 0), has the same nonzero structure as the transpose ofR(k) (i.e., (R(k))T ), has a
single nonzero in each column (i.e.,eT P (k)(π) > 0), and has at least one nonzero in each
row, implyingrank(P (k)(π)) = |S(k)|. Furthermore, each row ofP (k)(π) is a probability
vector, implying thatP (k)(π) has row sums of 1 just likeR(k).

Now, we state three results that follow from the definitions of the particular restriction
and prolongation operators.

LEMMA 3.6. The prolongation operatorP (k)(π) and the restriction operatorR(k) sat-
isfy

P (k)(π)R(k) = I|S(k)|, for k = 1, 2, . . . ,K.

Proof. The identity follows from Propositions3.3 and3.5, asP (k)(π) ≥ 0, R(k) ≥ 0,
P (k)(π) has the same nonzero structure as(R(k))T , P (k)(π)e = e, andeT (R(k))T = eT .

LEMMA 3.7. The local steady-state vector of subsystemk is given by

π(k) = πR(k), for k = 1, 2, . . . ,K,

and it satisfies

π = π(k)P (k)(π), for k = 1, 2, . . . ,K.

Proof. The first part of the result follows from (3.3) and Definition3.2, and the second
part follows from (3.3) and Definition3.4.

LEMMA 3.8. The(|S(k)| × |S(k)|) matrix

Q(k)(π) = P (k)(π)QR(k), for k = 1, 2, . . . ,K, (3.5)

is the irreducible infinitesimal generator underlying the CTMC associated with subsystemk.
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Proof. The result follows from the assumption thatQ is an irreducible CTMC,π > 0,
and similar arguments used in the proof of Lemma 4.1 in [9, p. 1038].

Observe the dependency onπ in (3.5). The next result enables us to form the linear
system of local equations to be solved for each subsystem.

COROLLARY 3.9. The irreducible infinitesimal generator underlying the CTMC associ-
ated with subsystemk can be written as

Q(k)(π) = Q
(k)
t0

+ P (k)(π)QsynchronizedR
(k), for k = 1, 2, . . . ,K.

Proof. Observe from Lemma3.8and (2.1) that

Q(k)(π) = P (k)(π)QlocalR
(k) + P (k)(π)QsynchronizedR

(k).

Writing

Qlocal =

K
⊕

k=1

Q
(k)
t0

=

K
∑

k=1

(

k−1
⊗

l=1

I|S(l)|

)

⊗

Q
(k)
t0

⊗

(

K
⊗

l=k+1

I|S(l)|

)

and premultiplyingQlocal by P (k)(π) and postmultiplying byR(k) yields the matrixQ(k)
t0

, of
size(|S(k)| × |S(k)|), which has row sums of zero from Proposition2.2.

EXAMPLE 2.3 (CONTINUED). Corollary3.9suggests for our running example that

Q(1)(π) = Q
(1)
t0

+





0 0 0
0 0 0

µπ(2,2)/π
(1)
2 0 −µπ(2,2)/π

(1)
2



 ,

Q(2)(π) = Q
(2)
t0

+





0 0 0
0 0 0

µπ(2,2)/π
(2)
2 0 −µπ(2,2)/π

(2)
2



 .

Note that althoughQ(k)(π) is irreducible fork = 1, 2, . . . ,K, Q
(k)
t0

need not be.
The next definition introduces the projector which is used toprove thatπ(k) is the local

steady-state vector ofQ(k)(π), for k = 1, 2, . . . ,K.
DEFINITION 3.10.The(|S| × |S|) matrix

H(k)(π) = R(k)P (k)(π), for k = 1, 2, . . . ,K,

defines a nonnegative projector (i.e.,H(k)(π) ≥ 0 and(H(k)(π))2 = H(k)(π)) which satis-
fiesH(k)(π)e = e.

LEMMA 3.11.The steady-state vectorπ satisfies

πH(k)(π) = π, for k = 1, 2, . . . ,K.

Proof. The result follows from Definitions3.2and3.4and the fact that the restricted and
then prolonged row vector isπ.

COROLLARY 3.12.The local steady-state vectorπ(k) of subsystemk satisfies

π(k)Q(k)(π) = 0, for k = 1, 2, . . . ,K. (3.6)



ETNA
Kent State University 

http://etna.math.kent.edu
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Proof. We have

π(k)Q(k)(π) = (πR(k))(P (k)(π)QR(k)) = (πR(k)P (k)(π))QR(k)

= (πH(k)(π))QR(k) = (π)QR(k) = (πQ)R(k) = 0,

from the first part of Lemma3.7, Lemma3.8, Definition3.10, Lemma3.11, and (1.1).
THEOREM 3.13. The linear system of local equations to be solved for subsystemk can

be written as in (3.2), where

v(k)(π) = −πQsynchronizedR
(k), for k = 1, 2, . . . ,K, (3.7)

andv(k)(π) satisfiesv(k)(π)e = 0.
Proof. Writing (3.6) from Corollary3.9as

π(k)Q
(k)
t0

= −π(k)P (k)(π)QsynchronizedR
(k)

and using the second part of Lemma3.7yields the result.
In the global solution, numerically significant correctionto the Kronecker product of

local solutions requires the solution of the system of global equations

yQ =

(

K
⊗

k=1

π(k)

)

Q (3.8)

for the global correctiony. Note thatQ is the Kronecker structured generator matrix in (2.1)
for the non-altered, original Markovian system, and the nonzero right-hand side is the residual
computed by multiplying the Kronecker product of the local solutions withQ. The systems
of local equations in (3.2) and the system of global equations in (3.8) together are equivalent
to the original system of equations forπ in (1.1); they are linear in the local variables of each
subsystem and iny.

In our method, we recompute the local solutions and the global correction alternatingly
in each iteration starting with initial approximations until a predetermined stopping criterion
is met. At first sight, there may seem to be no advantage in this. However, exploiting the
Kronecker structure when solving the systems of local equations and the system of global
equations speeds up the convergence to the global solution over other methods when the
subsystems are weakly interacting, as we show in the sectionon numerical experiments. Now
we present the solution algorithm.

3.2. Algorithm. Let

Q = U − L

be the forward GS splitting of the generator matrix in Kronecker form, whereU corresponds
to its upper-triangular part andL contains the rest, as discussed in [16, pp. 287–289]. Note
that one can also consider the more general SOR splitting with relaxation parameterω —
GS is SOR withω = 1 — from which we refrain in order not to clutter the discussion.
The algorithm is stated in Algorithm1, for a user-specified stopping tolerancetol, where
subscripts within square brackets denote iteration numbers.

In step 0, the global correction vector is set to zero and the global solution vector is
set to the uniform probability distribution. Note that a positive initial global solution vector
is sufficient in exact arithmetic for the irreducibility of the aggregated matrices in the first
iteration if the local transition rate matrices are reducible. In the current implementation, each
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ALGORITHM 1 (Decompositonal iterative method with GS correction step).
0. Initial step:

Setit = 0, y[it] = 0, π[it] = eT /n.
1. Compute local solutions and normalize:

If Q
(k)
t0

is irreducible, solveπ(k)
[it+1]Q

(k)
t0

= v(k)(π[it]),

else solveπ(k)
[it+1]Q

(k)(π[it]) = 0,

subject to‖π(k)
[it+1]‖1 = 1, for k = 1, 2, . . . ,K.

2. Compute global correction:

y[it+1]U = y[it]L +
(

⊗K

k=1 π
(k)
[it+1]

)

Q.

3. Compute global solution, normalize, and check for termination:
π[it+1] =

⊗K

k=1 π
(k)
[it+1] − y[it+1], subject to‖π[it+1]‖1 = 1,

exit if ‖π[it+1]Q‖∞ < tol, otherwiseit = it + 1 and return to step 1.

system of local equations is solved in step 1 using Gaussian elimination (GE), and the local
solution is normalized. The use of GE is justified by the reasonably small number of states
in each subsystem arising in practical applications. Thereare two cases. In the former case,
as shown in Theorem3.13, each linear system of local equations to be solved has a zerosum
right-hand side vector due to the particular way in which synchronized transition rate matrices
are specified in the composed model. IfQ

(k)
t0

is a singular negated M-matrix [2, p. 156] of rank

(|S(k)|−1) (this requires the irreducibility ofQ(k)
t0

), then a unique positive solutionπ(k)
[it+1] up

to a multiplicative constant can be computed using the normalization condition. In the latter
case, from Lemma3.8, the coefficient matrixQ(k)(π[it]) is irreducible ifQ is irreducible and
π[it] > 0 . Hence, the existence of a unique positive solution up to a multiplicative constant
is guaranteed.

Observe from Definition2.1that in each termrte

⊗K

k=1 Q
(k)
te

of the global synchronized
transition rate matrixQsynchronized, the rates of nonzero transitions are obtained by multiplying

the products of nonzero elements inQ
(k)
te

with the raterte
. Hence, each global synchronized

transition obtained in this way from some global state(s1, s2, . . . , sK) to some global state
(s′1, s

′
2, . . . , s

′
K) is due to synchronized transition from local statesk to local states′k in

subsystemk. Since the synchronized transition rate matricesQ
(k)
te

are in general very sparse,
the enumeration process associated with the nonzeros in theglobal synchronized transition
rate matrix to form the right-hand side vectors of the local systems of equations in (3.7), or
the aggregated coefficient matrices in Corollary3.9, can be handled in a systematic manner.

Note that there are differences from a computational point of view between using (3.2)
versus (3.6) in step 1 of the proposed iterative method. In the former case, the local tran-
sition rate matrix is constant and already available in sparse format, meaning it can be fac-
torized once at the outset. In the latter case, the aggregated coefficient matrix needs to be
reconstructed and factorized at each iteration. Furthermore, in the former case, it is the right-
hand side vector that is dependent on the current global solution π[it], whereas, in the latter
case, it is the coefficient matrix that is dependent onπ[it]. The two approaches for obtain-
ing the new local steady-state vector are therefore not equivalent except at steady-state (i.e.,
π[it] = π[it+1] = π), since the former case uses only the new local steady-statevector,
whereas the latter case uses both the new and the current local steady-state vector in the left-
hand side. The new local steady-state vector premultipliesthe aggregated matrix, but the
elements of the aggregated matrix are computed using the elements of the current global and
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local steady-state vectors (see Definition3.4).
In step 2, the global correction is computed by solving a triangular linear system in

Kronecker form. The situation in this step is somewhat better compared to that in step 1, in
thatQ is already a singular M-matrix of rank(|S| − 1) since it is an irreducible infinitesimal
generator matrix by assumption. Hence, the global correction y[it+1] is obtained through
a GS relaxation onQ with a zero sum (see (3.8)), but nonzero right-hand side as long as the
method has not converged. Step 3 subtracts the global correction obtained in step 2 from the
Kronecker product of local solutions obtained in step 1, to compute the new global solution
vector. Steps 1 through 3 are repeated until the infinity normof the residual falls belowtol.

Two of the earlier papers which analyze iterative methods based on aggregation-disaggre-
gation for linear systems with nonsingular coefficient matrices, using successive substitution
together with restriction and prolongation operators, are[12] and [21]. The latter provides
a local convergence proof. Convergence analysis of a two-level IAD method for Markov
chains and its equivalence to AMG is provided in [20]. Another paper that investigates the
convergence of a two-level IAD method for Markov chains using concepts from multigrid
is [22]. Recently, in [23], the results from [22] have been improved, and an asymptotic
convergence result is provided for a two-level IAD method which uses post-smoothings of
the power iteration type. However, fast convergence cannotbe guaranteed in a general setting
even when there are only two-levels [23, p. 340].

Now, we take a look at what goes on during one iteration of the proposed method in
more detail, and remark that the situation is different fromthat of the ML method [9] in two
ways. First, the proposed method works in two levels, whereas the ML method utilizesK
levels. Second, the proposed method solvesK systems of local equations at the second level
and these systems are obtained from a well-defined decomposition of a Kronecker structured
Markov chain, whereas the ML method solves only one aggregated system of equations at
each level and the aggregated system does not have to arise from a Kronecker decomposition.

Let

π̃[it+1] =
K
⊗

k=1

π
(k)
[it+1] and TGS = LU−1

represent the GS iteration matrix. Then, after some algebraic manipulation on the equation
in step 2 usingQ = U − L and the definition ofTGS , we have

y[it+1] = y[it]TGS + π̃[it+1](I − TGS), for it = 0, 1, . . . .

Substituting this in the equation of step 3, we obtain

π[it+1] = (π̃[it+1] − y[it])TGS , for it = 0, 1, . . . .

Usingy[0] = 0, yields

π[1] = π̃[1]TGS .

Continuing in this manner, we obtain

π[2] = π̃[2]TGS − π[1](I − TGS),

and eventually,

π[it+1] = π̃[it+1]TGS −

(

it
∑

i=1

π[i]

)

(I − TGS), for it = 0, 1, . . . ,
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which implies

π[it+1] = π[it]TGS + (π̃[it+1] − π̃[it])TGS , for it = 0, 1, . . . (3.9)

(assuming that̃π[0] = π[0]). Equation (3.9) reveals that the proposed method computes the
new global solution vector by summing two terms, the first of which is the GS iterated current
global solution vector and the second of which is the GS iterated difference between the
current and the previous Kronecker products of local solution vectors. The method will be
advantageous only if the second term brings the new global solution vector closer toπ than
the first term alone.

Now, let us writeQ = A + B, whereA = eπ (that is,A is the stochastic matrix having
the steady-state vector along its rows). Then, we have

A > 0, A2 = A, Ae = e, πA = π, π(B + I) = 0, A(B + I) = (B + I)A = 0,

H(k)(π[it])A = A and π
(k)
[it+1]P

(k)(π[it])A = π, for π
(k)
[it+1] > 0, π[it] > 0.

These results follow from the definition ofA, Q = A + B, Definition 3.10, and Proposi-
tion 3.5. Observing thatA is a positive projector and using proof by contradiction as in [23,
p. 330], it is possible to show thatP (k)(π[it])BR(k) is nonsingular.

Let us consider the homogeneous linear systems with coefficient matricesQ(k)(π[it]) to
be solved in step 2 of Algorithm1. Then, fromQ = A + B, thekth linear system can be
reformulated as

π
(k)
[it+1]P

(k)(π[it])AR(k) = −π
(k)
[it+1]P

(k)(π[it])BR(k),

which implies

πR(k) = π(k) = −π
(k)
[it+1]P

(k)(π[it])BR(k),

from π
(k)
[it+1]P

(k)(π[it])A = π and the first part of Lemma3.7; thus,

π
(k)
[it+1] = −π(k)(P (k)(π[it])BR(k))−1,

and, consequently,

π̃[it+1] =

K
⊗

k=1

−π(k)(P (k)(π[it])BR(k))−1.

From the compatibility of the Kronecker product with matrixmultiplication and matrix in-
version [31, pp. 85–86], this can be rewritten as

π̃[it+1] = −π

(

P (π[it])

(

K
⊗

k=1

B

)

R

)−1

, (3.10)

where

π =
K
⊗

k=1

π(k), P (π[it]) =
K
⊗

k=1

P (k)(π[it]), and R =
K
⊗

k=1

R(k).
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We remark that

H(π[it]) = RP (π[it])

is a nonnegative projector, and (3.10) expresses the Kronecker product of the new local so-
lution vectors in terms of the global solution vector, an(n × nK) prolongation operator
associated with the current global solution vector, theK-fold Kronecker product of part of
the generator matrix, and an(nK × n) restriction operator. It follows from Propositions3.3
and3.5thatR andP (π[it]) are restriction and prolongation operators, respectively.

After substituting (3.10) in (3.9), we obtain

π[it+1] = π[it]TGS−π





(

P (π[it])

(

K
⊗

k=1

B

)

R

)−1

−

(

P (π[it−1])

(

K
⊗

k=1

B

)

R

)−1


TGS ,

which may be rewritten, usingB = Q − eπ and (2.1), as

π[it+1] =

[

π[it] − π

K
⊗

k=1

(

Q
(k)
t0

+ P (k)(π[it])QsynchronizedR
(k) − eπR(k)

)−1

+ π
K
⊗

k=1

(

Q
(k)
t0

+ P (k)(π[it−1])QsynchronizedR
(k) − eπR(k)

)−1
]

TGS .

Observe that the new solution vector depends on both the current and the previous solution
vectors.

In the next section, we present results of numerical experiments for some benchmark
problems, larger versions of the running example with varying number and rates of synchro-
nized transitions, and some randomly generated problems.

4. Numerical experiments. Experiments are performed on a PC with an Intel Core2
Duo 1.83GHz processor having 4 Gigabytes of main memory, running Linux. The large
main memory is necessary to store the large number of vectorsof length|S| used in some of
the benchmark solvers in the APNN toolbox. The existence of two cores in the CPU is not
exploited for parallel computing in the implementation. Hence, only one of the two cores is
busy running solvers in the experiments.

The proposed decompositional method (D) is compared with the following iterative
solvers: Jacobi (J), GS, block GS (BGS), generalized minimum residual with a Krylov
subspace size of 20 (GMRES(20)), transpose-free quasi-minimal residual (TFQMR), bi-
conjugate gradient stabilized (BICGSTAB), BGS preconditioned GMRES(20), TFQMR,
BICGSTAB (that is, BGSGMRES(20), BGSTFQMR, BGSBICGSTAB), multilevel with
one pre- and one post-smoothing using GS, W-cycle, and cyclic order of aggregating sub-
systems in each cycle (MLGS(W,C)). More information can be obtained on these methods
in [27] except ML GS(W,C) for which [9] can be consulted. In passing, we remark that
BGS preconditioned projection methods and multilevel methods are state-of-the-art iterative
solvers for Kronecker based Markovian representations [7].

The solvers are compared in terms of number of iterations to converge to a user-specified
stopping tolerance, elapsed CPU time, and amount of allocated main memory. In the tables,
the columns labelled as Iteration, Residual, Time, and Memory, report the number of iter-
ations to converge, the infinity norm of the residual upon stopping, the CPU time taken in
seconds, and the amount of memory, in megabytes, allocated by the solvers, respectively. An
asterisk superscript over an iteration number indicates that convergence has not taken place
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TABLE 4.1
Numerical results for the Overflowlarge problem withK = 6, |S(1)| = 6, |S(2)| = |S(3)| = · · · =

|S(6)| = 11, T = {t1, t2, . . . , t30}, rt1 = rt2 = · · · = rt30 = 1.

Method Iteration Residual Time Memory
J 1,120 9.7e − 09 1,440 37
GS 590 9.3e − 09 1,563 37
BGS 340 9.1e − 09 699 1,685
GMRES(20) 160 6.9e − 09 214 184
TFQMR 224 3.2e − 10 257 88
BICGSTAB 126 8.6e − 09 145 74
BGS GMRES(20) 60 5.8e − 09 237 1,869
BGS TFQMR 66 5.8e − 09 237 1,773
BGS BICGSTAB 50 1.4e − 08 194 1,758
ML GS(W,C) 1,894∗ 8.2e − 03 10,010 70
D 330 8.8e − 09 1,339 52

for the particular solver in the allotted CPU time. Bold fontin the Time column indicates
the fastest solver. In all solvers, the maximum number of iterations is set to 5,000, maximum
CPU time is set to 10,000 seconds, andtol = 10−8 is enforced on the infinity norm of the
residual. We remark that the stopping test is executed every10 iterations in the proposed
solver just like in the J, GS, and BGS solvers. This explains why all numbers of iterations to
converge are multiples of 10 with these solvers, unless the solver stops due to the CPU time
limit. Now, we turn to the numerical experiments.

4.1. Some benchmark problems.We have run experiments with the proposed solver
on some benchmark problems such asKanbanmediumand Kanbanlarge [8], arising in
a manufacturing system with Kanban control,Availability [9], arising in a system availabil-
ity model with subsystems working at different time scales,andOverflowlarge [1], arising
in an overflow queueing network. We must remark that all localtransition rate matrices in
the Kanbanproblems are triangular, meaning they are reducible. Thosein the Availability
problem are reducible, and those in theOverflowlargeproblem are tridiagonal and therefore
irreducible.

Nonzero values in the local transition rate matrices of theKanbanproblems are 1, whereas
those in theAvailability problem are in{1} ∪ 101−k{0.01, 0.02, 0.09, 0.18} for subsystems
k = 1, 2, . . . , 6, and those inOverflowlarge are in{1, 1.5} for subsystem 1 and in{1} ∪
{1.1 − 0.1k} for subsystemsk = 2, 3, . . . , 6. Hence, the nonzero values in the local transi-
tion matrices are about the same order in theKanbanandOverflowlarge problems, but not
in theAvailability problem. On the other hand, nonzero values in the transitionrate matrices
of the Kanbanproblems are in{1, 10} for subsystemsk = 1, 2, 4 and 1 for subsystem 3,
whereas those in theAvailability problem are 1, and those inOverflowlarge are in{1, 1.5}
for subsystem 1 and in{1} ∪ {1.1 − 0.1k} for subsystemsk = 2, 3, . . . , 6.

Table4.1 shows the performance of the proposed solver and the other solvers for one
of these four problems, namelyOverflowlarge. In the set of experiments reported, the di-
agonal blocks associated with the BGS solvers and the BGS preconditioners for projection
methods at level 3 are LU factorized [6] using the column approximate minimum degree (CO-
LAMD) ordering [14, 15]. The number of nonzeros generated during the LU factorization
with the COLAMD ordering of the 726 diagonal blocks of order 1,331 forOverflowlarge is
132,500,082. The equivalent of these numbers in megabytes is accounted for in the memory
consumed by solvers utilizing BGS.
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TABLE 4.2
Effect of near independence on the decompositional method for the Fail-Repair problem withK = 2, n1 =

n2 = 19, λ1 = 0.4, µ1 = 0.3, λ2 = 0.5, µ2 = 0.4, T = {t1, t2}.

rt1 = rt2 Iteration Residual
1.0 270 9.1e − 09
0.7 260 8.3e − 09
0.6 250 9.0e − 09
0.5 240 9.4e − 09
0.1 90 1.0e − 09
0.05 80 8.4e − 09
0.01 60 8.7e − 09
0.005 50 8.8e − 09
0.001 10 6.3e − 09

The memory requirement of the proposed solver is the smallest after J and GS solvers in
the two problems. Observe that the rates of synchronized transitions in theOverflowlarge
problem are 1. We also remark that theOverflowlarge problem uses the local transition rate
matrices as coefficient matrices in the systems of local equations. However, the behavior
of the proposed method does not change for theOverflowlarge problem even if aggregated
transition rate matrices are used. It is interesting to notethat the decompositional iterative
solver is not timewise competitive with the fastest solver although its number of iterations to
converge can be smaller than that of the respective relaxation method. This is not surprising
since the interactions among the subsystems in this problemare relatively strong. Now we
turn to a problem in which it is advantageous to use the decompositional method.

4.2. Fail-Repair problem. First, we investigate the effect of changing the rates of syn-
chronized transitions. We do this on an instance of the fail-repair problem discussed ear-
lier as an example. The particular system has two subsystemseach with 20 states, i.e.,
n1 = n2 = 19. Hence, we have a system of 400 states. There are two synchronized transi-
tions, the first which takes the system into global state(0, 0) with ratert1 when subsystems
1 and 2 are each in their local state4, and the second which takes the system into global
state(5, 5) with ratert2 when subsystems 1 and 2 are in their local state9. These synchro-
nized transitions can be considered corresponding to batchrepairs of four failed redundant
components in each subsystem. We remark that the two subsystems are not identical since
their local fail and repair rates are different.

Table4.2 shows the number of iterations to converge to the solution with the proposed
solver for various values of the two synchronized transition rates, which are taken to be identi-
cal. When the synchronized transition rates are small, convergence becomes very fast because
the subsystems are nearly independent and the Kronecker product of the local solutions yields
a very good approximation to the global solution early in theiteration.

In the next set of experiments, we consider a larger version of the fail-repair problem
with five subsystems each having 20 states, resulting in a system of 3,200,000 states. There
are four synchronized transitions in this system, the first takes the system into global state
(0, 0, 0, 0, 0) with ratert1 when all subsystems are in their local state4, the second takes
the system into global state(5, 5, 5, 5, 5) with ratert2 when all subsystems are in their local
state9, the third takes the system into global state(10, 10, 10, 10, 10) with rate rt3 when
all subsystems are in their local state14, and the fourth takes the system into global state
(15, 15, 15, 15, 15) with ratert4 when all subsystems are in their local state19. Local failure
and repair rates of subsystems are not identical.
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TABLE 4.3
Numerical results for the Fail-Repair problem withK = 5, nk = 19 for k = 1, 2, . . . , K, λ1 = 0.4,

µ1 = 0.3, λ2 = 0.5, µ2 = 0.4, λ3 = 0.6, µ3 = 0.5, λ4 = 0.7, µ4 = 0.6, λ5 = 0.8, µ5 = 0.7,
T = {t1, t2, t3, t4}, rt1 = rt2 = rt3 = rt4 = 0.5.

Method Iteration Residual Time
J 1,890 9.8e − 09 1,722
GS 910 9.4e − 09 1,237
BGS 244∗ 1.6e − 07 10,060
GMRES(20) 580 1.8e − 09 677
TFQMR 242 4.3e − 10 219
BICGSTAB 117 8.3e − 09 104
BGS GMRES(20) 60 4.2e − 09 2,647
BGS TFQMR 112 2.3e − 10 4,662
BGS BICGSTAB 46 1.2e − 08 1,969
ML GS(W,C) 36 9.3e − 09 142
D 60 9.1e − 09 142

TABLE 4.4
Numerical results for the Fail-Repair problem withK = 5, nk = 19 for k = 1, 2, . . . , K, λ1 = 0.4,

µ1 = 0.3, λ2 = 0.5, µ2 = 0.4, λ3 = 0.6, µ3 = 0.5, λ4 = 0.7, µ4 = 0.6, λ5 = 0.8, µ5 = 0.7,
T = {t1, t2, t3, t4}, rt1 = rt2 = rt3 = rt4 = 0.05.

Method Iteration Residual Time
J 1,910 9.8e − 09 1,734
GS 910 9.9e − 09 1,254
BGS 244∗ 1.7e − 07 10,060
GMRES(20) 800 4.7e − 09 928
TFQMR 258 1.5e − 10 231
BICGSTAB 153 3.1e − 09 135
BGS GMRES(20) 60 4.3e − 09 2,645
BGS TFQMR 112 2.7e − 10 4,658
BGS BICGSTAB 55 3.5e − 08 2,342
ML GS(W,C) 34 8.6e − 09 135
D 30 5.1e − 09 72

This problem is solved for three different values of the synchronized transition rates,
which are taken to be identical in a given instance of the problem. The results are reported in
Tables4.3, 4.4, and4.5. The rates of the four synchronized transitions are decreased gradually
from 0.5 to 0.05 and then to 0.005. In this set of experiments,the diagonal blocks associated
with the BGS solver, as well as and the BGS preconditioner forprojection methods at level 3
(meaning 8,000 diagonal blocks of order 400) are LU factorized using the COLAMD ordering
as in the benchmark problems. We remark that the number of nonzeros generated during the
LU factorization of the 8,000 diagonal blocks of order 400 with the COLAMD ordering is
77,184,000. The equivalent of this number in megabytes is accounted for in the memory
consumed by solvers utilizing BGS.

In none of the instances of the fail-repair problem considered, GMRES(20), BICGSTAB,
and TFQMR benefit from BGS preconditioning. Although the iteration counts of the precon-
ditioned projection methods decrease over those of the unpreconditioned ones, the decrease
is not offset by the increase in time per iteration. The performances of the J, GS, and BGS
solvers are insensitive to the rates of synchronized transitions. BGS performs very poorly
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TABLE 4.5
Numerical results for the Fail-Repair problem withK = 5, nk = 19 for k = 1, 2, . . . , K, λ1 = 0.4,

µ1 = 0.3, λ2 = 0.5, µ2 = 0.4, λ3 = 0.6, µ3 = 0.5, λ4 = 0.7, µ4 = 0.6, λ5 = 0.8, µ5 = 0.7,
T = {t1, t2, t3, t4}, rt1 = rt2 = rt3 = rt4 = 0.005.

Method Iteration Residual Time
J 1,910 9.9e − 09 1,733
GS 920 9.4e − 09 1,255
BGS 244∗ 1.7e − 07 10,060
GMRES(20) 800 8.8e − 09 929
TFQMR 322 9.2e − 11 289
BICGSTAB 143 2.9e − 09 127
BGS GMRES(20) 60 4.3e − 09 2,647
BGS TFQMR 116 8.8e − 10 4,828
BGS BICGSTAB 71 2.7e − 08 3,002
ML GS(W,C) 24 9.5e − 09 99
D 10 4.0e − 09 25

TABLE 4.6
Memory requirements of solvers in megabytes for the Fail-Repair problem withK = 5, nk = 19 for k =

1, 2, . . . , K, T = {t1, t2, t3, t4}.

Method Memory
J 122
GS 122
BGS 717
GMRES(20) 610
BICGSTAB 244
TFQMR 293
BGS GMRES(20) 1,327
BGS TFQMR 961
BGS BICGSTAB 1,010
ML GS(W,C) 232
D 171

due to the large time per iteration and MLGS(W,C) is the fastest solver when compared to J,
GS, and BGS, and improves slightly as the synchronized transition rates become smaller. In
Table4.3, BICGSTAB is the fastest solver. However, when the rates of four synchronized
transitions decrease to 0.05 in Table4.4, the proposed solver becomes the fastest. In Ta-
ble4.5, the proposed solver exhibits the smallest number of iterations to converge and is also
the fastest solver. The time per iteration taken by the proposed solver is larger than that of
GS but less than twice that of GS. As the rates of the synchronized transitions decrease, we
see that the number of iterations taken by the proposed solver to converge decreases similarly
as in Table4.2. The problem seems to become easier to solve for the proposedsolver as the
subsystems become nearly independent.

As it is shown in Table4.6, BGS and BGS preconditioned projection methods require
considerably more memory than the other methods, because ofthe need to store factors of
diagonal blocks and, in the latter case, also a larger numberof vectors. Memorywise, the
proposed solver requires about 1.5 times that of J and GS, butless than MLGS(W,C), and
therefore can be considered to be memory efficient.

In Table4.7, we investigate the scalability of the proposed solver for increasing number
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TABLE 4.7
Performance of the decompositional iterative solver on theFail-Repair problem for increasing number of

subsystemsK with nk = 19 for k = 1, 2, . . . , K, λ1 = 0.4, µ1 = 0.3, λ2 = 0.5, µ2 = 0.4, λ3 = 0.6,
µ3 = 0.5, λ4 = 0.7, µ4 = 0.6, λ5 = 0.8, µ5 = 0.7, T = {t1, t2, t3, t4}, rt1 = rt2 = rt3 = rt4 = 0.005.

K Iteration Residual Time
2 70 9.3e − 09 0
3 70 7.1e − 09 0
4 30 7.4e − 09 2
5 10 4.0e − 09 25

TABLE 4.8
Performance of the decompositional iterative solver on theFail-Repair problem for increasing number of

synchronized transitions inT with K = 5, nk = 19, for k = 1, 2, . . . , K, λ1 = 0.4, µ1 = 0.3, λ2 = 0.5,
µ2 = 0.4, λ3 = 0.6, µ3 = 0.5, λ4 = 0.7, µ4 = 0.6, λ5 = 0.8, µ4 = 0.7, rt1 = rt2 = rt3 = rt4 = 0.005.

T Iteration Residual Time
{t1} 10 3.3e − 14 15

{t1, t2} 10 2.7e − 14 18
{t1, t2, t3} 10 2.0e − 12 21

{t1, t2, t3, t4} 10 4.0e − 09 25

of subsystems when the four synchronized transition rates are relatively small compared to
those in the local transition rate matrices. We see that the number of iterations to converge
decreases as subsystems are added to the system at hand. Thisis due to the decrease in
the throughputs of synchronized transitions for a larger number of subsystems (because the
steady-state probabilities of global states in which synchronized transitions can be trigged
become smaller), leading to more independent subsystems. This is different from the behavior
of the multilevel method, which takes more or less the same number of iterations to converge
as the number of subsystems increases.

In Table4.8, we investigate the scalability of the proposed solver for increasing number
of synchronized transitions when there are 5 subsystems andthe rates of synchronized transi-
tions are relatively small compared to those in the local transition rate matrices. As expected,
the results indicate that the time the proposed solver takesto converge is affected linearly by
an increase in the number of synchronized transitions.

In Table4.9, we investigate the effects of using a larger number of synchronizations and
smaller local failure rates, meaning that the redundant components in each subsystem are
more reliable and therefore fail less often. The sixteen synchronized transitions are from
global state(i, i, i, i) to (i−4, i−4, i−4, i−4), for i = 4, 5, . . . , 19. It seems that the asym-
metry created among the nonzeros of the generator matrix dueto the one order of magnitude
difference between local repair and failure rates does not have a noticeable effect on the pro-
posed solver (other than the fact that convergence takes place in one iteration but cannot be
witnessed from the results due to the residual norm test every 10 iterations), but improves the
situation with the J, GS, BGS, and MLGS(W,C) solvers, and worsens the performance of
others.

4.3. Some randomly generated problems.We consider randomly generated test cases,
which have sparse transition rate matrices with nonzero elements following either the stan-
dard uniform distribution (i.e., nonzero values are chosenuniformly from the interval (0,1))
or the folded unit normal distribution (i.e., nonzero values are absolute values of samples cho-
sen normally with mean 0 and standard deviation 1) and user-specified degrees of sparsity.
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TABLE 4.9
Numerical results for the Fail-Repair problem withK = 5, nk = 19 for k = 1, 2, . . . , K, λ1 = 0.04,

µ1 = 0.3, λ2 = 0.05, µ2 = 0.4, λ3 = 0.06, µ3 = 0.5, λ4 = 0.07, µ4 = 0.6, λ5 = 0.08, µ5 = 0.7,
T = {t1, t2, . . . , t16}, rt1 = rt2 = · · · = rt16 = 0.005.

Method Iteration Residual Time
J 230 7.8e − 09 265
GS 160 2.1e − 09 499
BGS 100 6.0e − 09 4,138
GMRES(20) 5,000∗ 1.8e − 05 6,951
TFQMR 5,000∗ 1.9e − 05 5,706
BICGSTAB 241 1.7e − 09 271
BGS GMRES(20) 240∗ 6.2e − 05 10,560
BGS TFQMR 152 1.1e − 09 6,391
BGS BICGSTAB 240∗ 9.9e − 06 10,030
ML GS(W,C) 12 5.9e − 09 84
D 10 1.2e − 09 64

To this end, we have written a Matlab script, which generatesthe APNN toolbox input files
randomly for user-specified test cases composed ofK components havingn1, n2, . . . , nK

states,|T | synchronized transition rates, and sparse transition ratematrices with prescribed
degrees of sparsity. We have run many experiments, but here we discuss the results of just
a few that are indicative of the performance of the proposed solver. We remark that due to
randomness, the sparsity patterns of local and synchronized transition rate matrices in the
experiments are arbitrary. In the following,E[·] is the expectation operator, andE[nz(Q

(k)
t0

)]

andE[nz(Q
(k)
te

)] denote the average number of nonzero entries in local and synchronized
transition rate matrices, respectively.

In the first set of experiments, we consider a randomly generated problem with six sub-
systems each having 10 states resulting in a system of 1,000,000 states and four synchronized
transitions. The values of the synchronized transition ratesrt1 = rt2 = rt3 = rt4 are cho-
sen from the set{0.1, 0.01, 0.001, 0.0001}; thus, we experimented with four versions of the
problem. The local and synchronized transition rate matrices, respectively, have an average of
43.5 (excluding the diagonal) and 8.3 nonzero elements randomly generated using the stan-
dard uniform distribution. Hence, the local transition rate matrices are about 54% full and
the synchronized transition rate matrices are about 8% full. In this set of experiments, the
diagonal blocks associated with the BGS solver and the BGS preconditioner for projection
methods at level 4 (meaning 10,000 diagonal blocks of order 100) are LU factorized using
the COLAMD ordering as before. It was not possible to consider the block partitioning at
level 3 due to memory limitations. The number of nonzero entries generated during the LU
factorization of the 10,000 diagonal blocks of order 100 is 59,650,000.

In Table4.10, we present the results of experiments with synchronized transition rate
values of 0.001, and remark that the number of iterations andtime to convergence for the
other solvers do not change except for TFQMR, which takes 94 iterations and 69 seconds to
converge for rate values of 0.1, and BICGSTAB, which takes 54iterations and 40 seconds to
converge for rate values of 0.1 and 0.01, and 59 iterations and 43 seconds to converge for rate
values of 0.0001. However, the proposed solver takes 40, 20 iterations and 68, 35 seconds to
converge for rate values of 0.1, 0.01, respectively.

In the second set of experiments, we consider the same randomly generated problem as in
the first set of experiments, but with nonzero elements in thetransition rate matrices following
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TABLE 4.10
Numerical results forK = 6, nk = 10 for k = 1, 2, . . . , K, T = {t1, t2, t3, t4}, rt1 = rt2 = rt3 =

rt4 = 0.001, standard uniform,E[nz(Q
(k)
t0

)] = 53.5, andE[nz(Q
(k)
te

)] = 8.3.

Method Iteration Residual Time
J 220 7.1e − 09 168
GS 110 6.8e − 09 99
BGS 70 8.8e − 09 4,474
GMRES(20) 60 5.7e − 09 51
TFQMR 5,000∗ 3.0e − 08 3,611
BICGSTAB 60 1.1e − 09 44
BGS GMRES(20) 19 3.0e − 09 1,356
BGS TFQMR 26 1.5e − 09 1,741
BGS BICGSTAB 18 2.1e − 08 1,228
ML GS(W,C) 12 2.3e − 09 33
D 10 1.7e − 09 18

TABLE 4.11
Numerical results forK = 6, nk = 10 for k = 1, 2, . . . , K, T = {t1, t2, t3, t4}, rt1 = rt2 = rt3 =

rt4 = 0.0001, folded unit normal,E[nz(Q
(k)
t0

)] = 53.8, andE[nz(Q
(k)
tj

)] = 8.7.

Method Iteration Residual Time
J 450 8.3e − 09 360
GS 230 6.6e − 09 228
BGS 160 5.5e − 09 9,762
GMRES(20) 140 2.8e − 09 122
TFQMR 5,000∗ 5.4e − 05 3,774
BICGSTAB 75 7.8e − 09 58
BGS GMRES(20) 24 5.5e − 09 1,664
BGS TFQMR 30 6.4e − 09 1,848
BGS BICGSTAB 25 1.2e − 09 1,602
ML GS(W,C) 12 5.3e − 09 33
D 10 3.3e − 09 19

the folded unit normal distribution. The local and synchronized transition rate matrices re-
spectively have an average of 43.8 (excluding the diagonal)and 8.7 nonzero elements. Hence,
the local transition rate matrices are about 54% full and thesynchronized transition rate ma-
trices are about 9% full. The number of nonzeros generated during the LU factorization of
the 10,000 diagonal blocks of order 100 with COLAMD orderingis 59,190,000.

In Table4.11, we present the results of experiments with synchronized transition rate
values of 0.0001, and remark that the number of iterations and time to convergence for the
other solvers either do not change or do change slightly as inthe first set of experiments
except for TFQMR, which took 116 iterations and 89 seconds toconverge for rate values
of 0.1. However, the proposed solver takes 60, 40, 20 iterations and 109, 73, 36 seconds to
converge for rate values of 0.1, 0.01, 0.001, respectively.

In the first two sets of experiments in which standard uniformly and folded unit normally
distributed nonzero elements are used in the transition rate matrices, we see that the proposed
solver performs better as the synchronized transition ratevalues become smaller. Further-
more, in both sets of experiments there is a value of synchronized transition rates for which
the proposed solver becomes the fastest solver.
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TABLE 4.12
Numerical results forK = 6, nk = 10 for k = 1, 2, . . . , K, T = {t1, t2, t3, t4}, rt1 = rt2 = rt3 =

rt4 = 0.001, standard uniform, 3 sets of 30 test matrices each.

E[nz(Q
(k)
t0

)] E[nz(Q
(k)
tj

)] E[Iteration] E[Residual] E[Time]
53.2 4.4 14 3.9e − 10 20
53.1 8.7 36 4.0e − 09 63
53.1 12.6 103 6.8e − 09 285

TABLE 4.13
Numerical results forK = 6, nk = 10 for k = 1, 2, . . . , K, T = {t1, t2, t3, t4}, rt1 = rt2 = rt3 =

rt4 = 0.001, folded unit normal, 3 sets of 30 test matrices each.

E[nz(Q
(k)
t0

)] E[nz(Q
(k)
tj

)] E[Iteration] E[Residual] E[Time]
53.1 4.4 57 2.6e − 09 79
53.2 8.6 83 5.8e − 09 143
53.0 12.6 104 6.4e − 09 292

In the next two sets of experiments, we investigate the effect of changing the sparsity
of the synchronized transition rate matrices on the proposed solver for the same problem
considered in the first two sets of experiments. To increase our confidence in the results,
the experiments are performed on 30 randomly generated matrices for each degree of spar-
sity, and average results are presented for those 30 matrices. Hence, 180 test matrices are
considered in these sets of experiments.

The results in Tables4.12and4.13indicate that indeed the performance of the proposed
solver is adversely affected by an increasing average number of nonzeros in the synchronized
transition rate matrices. The situation with standard uniformly distributed nonzero elements is
better compared to the situation with folded unit normally distributed nonzero elements when
the synchronized transition rate matrices are relatively sparser. But, as the sparsity decreases,
there seems to be a point beyond which the distribution does not make much difference. Per-
haps, this can be explained by an effective weaking of interactions among subsystems, as
sparsity of synchronized transition rate matrices increase for a constant synchronized transi-
tion rate.

5. Conclusion. A decompositional iterative method for obtaining the steady-state solu-
tion of Kronecker structured Markov chains is presented using disaggregation and aggrega-
tion operators. Currently, the method is applicable to systems that do not have unreachable
states, but have state spaces equal to the cross products of the state spaces of their subsystems.
The interactions among subsystems are not assumed to be weak, but the method works par-
ticularly well when there are weak interactions among subsystems. Numerical experiments
show that as the interactions among subsystems weaken, the subsystems become nearly in-
dependent and the method benefits considerably from this near independence. Future work
should concentrate on extending the method to Kronecker structured Markov systems with
state spaces smaller than the cross products of the state spaces of their subsystems.
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