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SOME REMARKS ON THE RESTARTED AND AUGMENTED GMRES METHOD ∗

JAN ZÍTKO†

Abstract. Starting from the residual estimates for GMRES formulated by many authors, usually in terms of the
quotient of the Hermitian part and the norm of a matrix or by using the field of values of a matrix, we present more
general estimates which hold also for restarted and augmentedGMRES. Sufficient conditions for convergence are
formulated. All estimates are independent on the choice of an initial approximation.
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1. Introduction. Let us consider the GMRES algorithm [15] for solution of a non-
singular and non-Hermitian system

Ax = b, A ∈ C
n×n, x, b ∈ C

n. (1.1)

Let x0 be an initial approximation,r0 = b − Ax0 6= 0 the residual,

Km = [r0, Ar0, . . . , A
m−1r0]

the Krylov matrix andKm(A, r0) = Range(Km) the Krylov subspace. The GMRES algo-
rithm constructs the new approximationxm in the affine spacex0 + Km(A, r0) such that

rm = b − Axm ⊥ Range(AKm).

In contrast to systems with normal matrices, eigenvalue distributions do not necessarily de-
termine the speed of convergence. It can happen, in the extreme case, that

‖r0‖ = ‖r1‖ = · · · = ‖rn−1‖ > 0 and ‖rn‖ = 0

for an arbitrary spectrum, if exact arithmetic is used; for more information, see [1, 13]. In
spite of this pessimistic information, the GMRES method is one of the most popular iterative
methods, and various estimates for‖rm‖ are studied. Experience shows that the convergence
is often superlinear, while many bounds indicate only linear convergence. These bounds do
not characterize the behaviour of‖rm‖/‖r0‖, and they can be misleading for highly non-
normal matrices. Bounds for GMRES are based on eigenvalues,or on the field of values (or
pseudospectra), and a discussion on how descriptive these bounds are, can be found in [10].
Usual estimates have the form

‖rm‖2 ≤ (1 − ̺)m‖r0‖
2, (1.2)

where̺ ∈ (0, 1]; see [2, 4, 7, 9, 11, 18]. The bounds of the form (1.2) ensure convergence
of GMRES(m). It is well known (see [9]) that if the matrixH = (A + AH)/2 is positive
definite, then̺ = (λmin(H)/‖A‖)2, and the inequality0 < ̺ ≤ 1 holds. The inequal-
ity (1.2) is proved for a larger class of matrices in [17]. A non-stable situation appears if the
number̺ is near zero. This difficulty can be caused by the presence of eigenvalues close
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to zero (see [12]) as this slows down the convergence of GMRES, especially during the first
iterations, and a restarted version may stagnate. There aremany papers [3, 5, 6, 8, 14, 16] ad-
dressing the question of how to remedy stagnation. The procedure GMRES(m, k), proposed
by Morgan [14], will be considered in this paper, i.e., the restarted GMRES with restartm,
where a subspace of dimensionk is added to the subspaceKm(A, r0). The residual vector
of the GMRES(m, k) method will be denoted byrs, wheres = m + k is the dimension of
the augmented space. In this paper, new estimates for‖rs‖ generalize the results from [11]
and [19], and give new sufficient conditions for convergence of GMRES.

In Section 2, the first restarted run of GMRES(m, k) is considered, and interesting con-
clusions for the GMRES method are discussed. In Section 3, the GMRES(m, k) algorithm is
briefly analysed. In Section 4, new upper bounds for the residual norm are derived and the
convergence of GMRES(m, k) is studied. Remarks and open problems are discussed in the
concluding section.

Let s = m + k, and letr(j)
0 andr

(j)
s denote the initial and resultant residual vector after

the jth restart, respectively. The upper index will be omitted ifit will be evident from the
context that both vectors are considered for the same restart. Throughout the paper we put
v = r0/‖r0‖. Considering the GMRES(m, k) method, let a spaceRange(Yk) of dimension
k be added toKm(A, r0), whereYk ∈ C

n×k.
The symbolSn denotes the unit sphere inCn, and‖ · ‖ is the Euclidean norm. The

symbolP0
s denotes all polynomials of degree at mosts which take the value zero at the

origin. We will assume that all considered Krylov and augmented Krylov subspaces have
maximal dimension. The symbolW (B) denotes the field of values of the matrixB ∈ C

n×n.
Exact arithmetic is assumed throughout the paper.

2. The first restarted run of GMRES(m, k), and conclusions for GMRES(s). If
we carry out the GMRES(m, k) process, we basically perform the GMRES algorithm with
the spaceKm(A, r0)+Range(Yk), instead ofKm(A, r0); for more details, see [19] and [14].

In the first restart we usually putYk = [Amr0, A
m+1r0, . . . , A

m+k−1r0]. Hence the
estimate for‖r(1)

s ‖2/‖r0‖
2 is equivalent with the estimate for GMRES(s). The approximation

xs ∈ x0 + Ks(A, r0) is constructed such thatrs = b − Axs ⊥ AKs(A, r0). The residual
vectorrs can be expressed in the formrs = ‖r0‖(v − qs(A)v), whereqs ∈ P0

s fulfills the
condition

qs = arg min
q∈P0

s

‖v − q(A)v‖.

An easy calculation yields, for everyq ∈ P0
s , the relations

‖rs‖
2

‖r0‖2
= 1 −

|vHqs(A)v|2

‖qs(A)v‖2
≤ 1 − min

w∈Sn

|wHq(A)w|2

‖q(A)‖2

= 1 − min
w∈Sn

|wHHqw|2 + |wHSqw|2

‖q(A)‖2
, (2.1)

where the matricesHq andiSq denote the Hermitian and skew-Hermitian part of the matrix
q(A) respectively. Herei denotes the imaginary unit; for a detailed computation, see[11, 19].
We have the following result, formulated in the real case forGMRES in Grcar’s report [11,
Corollary to Theorem 1].

THEOREM 2.1. Let s ∈ {1, 2, . . . , n − 1}. If a polynomialq of degrees with q(0) = 0
exists such that

min
w∈Sn

|wHHqw| > 0 or min
w∈Sn

|wHSqw| > 0, (2.2)
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then GMRES(s) is convergent, i.e., the iterations converge to the uniquesolution of(1.1).
Proof. If the assumption of Theorem2.1 is fulfilled, then in each restart we obtain for

the quotient‖rs‖
2/‖r0‖

2 the estimate‖rs‖
2/‖r0‖

2 < 1−̺, where1−̺ ∈ (0, 1), according
to (2.1). Hence

‖r(j)
s ‖2 ≤ (1 − ̺)‖r

(j)
0 ‖2 = (1 − ̺)‖r(j−1)

s ‖2 ≤ · · · ≤ (1 − ̺)j‖r0‖
2,

and thereforelimj→∞ r
(j)
s = 0.

REMARK 2.2. The estimate forr(j)
s does not describe, in general, the real progress of

the residual vector.
REMARK 2.3. If Hq is positive or negative definite, then the first inequality in(2.2)

holds. The same can be analogously said forSq. Often in the literature the expression “the
matrixHq or Sq is positive or negative definite” is used to refer to the condition (2.2).

For arbitraryx ∈ Sn andq ∈ P0
s there holds

xHq2(A)x = xH(Hq + iSq)
2x = ‖Hqx‖

2 − ‖Sqx‖
2 + 2i Re(xHHqSqx). (2.3)

If

‖Hqx‖ < ‖Sqx‖ or ‖Hqx‖ > ‖Sqx‖, ∀x ∈ C
n, x 6= 0, (2.4)

then, according to (2.3), Re(xHq2(A)x) < 0, ∀x 6= 0, or Re(xHq2(A)x) > 0, ∀x 6= 0,
respectively, andW (q2(A)) does not contain0. Therefore, GMRES(j) is convergent for all
j ≥ 2s, according to the results in [7, 10, 18].

Let us consider the first inequality in (2.4). If Sq is nonsingular, then the first inequality
in (2.4) is equivalent to the following
{

‖HqS
−1
q Sqx‖

‖Sqx‖
< 1,∀x ∈ C

n \ {0}

}

⇔

{

sup
x6=0

‖HqS
−1
q (Sqx)‖

‖(Sqx)‖
< 1

}

⇔‖HqS
−1
q ‖ < 1.

The strict inequalities follow from the continuity of the norm and the compactness of the unit
sphere in finite dimensional spaces. Hence,‖HqS

−1
q ‖ < 1 if and only if

Re(xHq2(A)x) < 0, ∀x 6= 0.

Analogously, if the matrixHq is nonsingular, then‖SqH
−1
q ‖ < 1 if and only if

Re(xHq2(A)x) > 0, ∀x 6= 0.

The concepts here formulated form another proof of the original result by Simoncini and
Szyld [17], which is here generalized, to the complex case, for the matrix polynomialq(A).
Let us summarize the considerations above.

THEOREM 2.4. Let q ∈ P0
s be arbitrary. LetSq or Hq be nonsingular. Then

(a) if Sq is nonsingular, then
{
Re(xHq2(A)x) < 0,∀x ∈ C

n, x 6= 0
}

⇔ ‖HqS
−1
q ‖ < 1;

(b) if Hq is nonsingular, then
{
Re(xHq2(A)x) > 0,∀x ∈ C

n, x 6= 0
}

⇔ ‖SqH
−1
q ‖ < 1.

If W (q(A)2) does not contain0, then GMRES(j) is convergent for allj ≥ 2s.
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3. The augmented GMRES method.Let some vectory ∈ C
n \ {0}, be added to

Km(A, r0). The iterationxm+1 is constructed in the linear variety

x0 + Km(A, r0) + span{y};

see [14, 16, 19]. In this cases = m + 1 and, analogously to the previous section, the residual
vectorrm+1 can be written in the form

rm+1 = ‖r0‖(v − qm(A)v) − βm+1Ay,

where the minimal residual conditionrm+1 ⊥ Range(AKm, Ay) determinesβm+1 ∈ C,
as well as the coefficients of the polynomialqm ∈ P0

m. Hence, for an arbitrary polynomial
q ∈ P0

m andβ ∈ C we have

‖rm+1‖ ≤
∥
∥‖r0‖(v − q(A)v) − βAy

∥
∥ =

∥
∥‖r0‖(I − q(A)
︸ ︷︷ ︸

p(A)

)v − Aŷ
∥
∥,

wherep(0) = ‖r0‖ andŷ = βy. The last relations yield the following theorem.
THEOREM 3.1. Let m ∈ {1, 2, . . . , n − 1} andp be a polynomial of degree at mostm,

p(0) = ‖r0‖. If the vectorŷ ∈ C
n which solves the equation

Aŷ = p(A)v (3.1)

is added toKm(A, r0), thenrm+1 = 0.
A similar formulation is given by Saad in [16]. Unfortunately, solving equation (3.1) is

a problem similar to the original one. We carry out another analysis.

4. The second and subsequent restarts.Let the subspaceRange(Yk) be added to
Km(A, r0) in all following restarts, whereYk ∈ C

n×k andm + k < n. The matrixYk,
and thereforeRange(Yk), is fixed here, and this is not the setting of most practical aug-
mented subspace algorithms, where approximations to a “wanted” subspace (for example the
eigenspace corresponding to the smallest eigenvalues) arecalculated and updated during each
restart. In many cases, a good approximation defined by a matrix Yk is achieved after a small
number of restarts, and used in the following restarts. In Section 2, we discussed the first
restarted run of GMRES(m, k). During the next restarts, usually the eigenvalues and eigen-
vectors of the obtained Hessenberg matrix are used for the construction of a matrixYk, which
is subsequently improved. There are many papers in which such techniques are described;
see for example [3, 5, 6, 14]. Our goal is to describe in general the behaviour of the residual
norm for GMRES(m, k).

Let us consider an arbitrary projectionz of the vectorr0 = ‖r0‖v onto the space
Range(AKm, AYk). It can be written in the formz = ‖r0‖q(A)v + Ay, wherey ∈
Range(Yk) andq ∈ P0

m. Let r = r0 − z = ‖r0‖(v − q(A)v) − Ay andU = [q(A)v,AYk].
It is assumed thatU is full rank. The matrixP = U(UHU)−1UH is the orthogonal projec-
tor for the spaceRange(q(A)v,AYk), and for the residual vectorrs ⊥ Range(AKm, AYk),
there holds

‖rs‖
2

‖r0‖2
≤ 1 − vHPv ≤ 1 − ‖UHv‖2λmin((UHU)−1)

≤ 1 −
‖UHv‖2

λmax(UHU)
≤ 1 −

‖UHv‖2

Tr(UHU)

≤ 1 − min
w∈Sn

|wHq(A)w|2 + ‖wHAYk‖
2

‖q(A)‖2 + ‖AYk‖2
F

, ∀ q ∈ P0
m, (4.1)
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whereλmin((UHU)−1) denotes the minimum eigenvalue of the matrix(UHU)−1, and‖ ·‖F

is the Frobenius norm.
Let the(j−1)th restart be performed. In thejth restart, the subspaceRange(Yk) is again

added toKm(A, r0). We have in this caser(j)
0 = r

(j−1)
s , v = r

(j)
0 /‖r

(j)
0 ‖, v ⊥ Range(AYk),

and

UHv =

[
(q(A)v)Hv
(AYk)Hv

]

=

[
(q(A)v)Hv

0 dim k

]

= ((q(A)v)Hv)e1. (4.2)

Hence,

‖r
(j)
s ‖2

‖r
(j)
0 ‖2

≤ 1 − |vHq(A)v|2eT
1 (UHU)−1e1. (4.3)

Now, we estimateeT
1 (UHU)−1e1 from the following inequalities:

1 = (eT
1 e1)

2= (eT
1 (UHU)−

1

2 (UHU)
1

2 e1)
2

≤ ‖(UHU)−
1

2 e1‖
2 ‖(UHU)

1

2 e1‖
2

= (eT
1 (UHU)−1e1)(e

T
1 (UHU)e1),

and, hence,

(eT
1 (UHU)−1e1) ≥

1

eT
1 (UHU)e1

=
1

‖q(A)v‖2
.

Substitution to (4.3) yields the estimate

‖r
(j)
s ‖2

‖r
(j)
0 ‖2

≤ 1 −
|vHq(A)v|2

‖q(A)v‖2
,

wherev ⊥ Range(AYk). Let us summarize all previous investigations and results in the
following theorem.

THEOREM 4.1. Let m, k, s ∈ {1, 2, . . . , n − 1}, s = m + k < n, andYk ∈ C
n×k be a

rankk matrix. Let the subspaceRange(Yk) be added to the corresponding Krylov subspace
for all restarted runs. Letj > 1 be an integer. Then, for thejth restart and for allq ∈ P0

m,
the following estimate holds

‖r
(j)
s ‖2

‖r
(j)
0 ‖2

≤ 1 − min
w∈Sn

w⊥Range(AYk)

|wHq(A)w|2

‖q(A)‖2
. (4.4)

It follows immediately from(4.4) that if an integerm exists such thatm + k < n and
the system of equations

wHq(A)w = 0 (4.5)

wHAYk = 0 (4.6)

does not have any solution onSn (or equivalently has only the solutionw = 0 in C
n), then

GMRES(m, k) is convergent.
REMARK 4.2. The same theorem can be formulated if the condition (4.5) is replaced

either by the equalitywHHqw = 0 or wHSqw = 0.
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Let the equation (4.5) have a nontrivial solution, i.e.,0 ∈ W (q(A)). Moreover let

M = {u ∈ Sn|u
Hq(A)u = 0}.

The condition (4.6) suggests to findYk such thatuHAYk = 0 implies thatu 6∈ M , and
therefore to make the quotient in (4.1) less than 1. Let us remark that the last implication is
equivalent with the relation

u ∈ M ⇒ uHAYk 6= 0, (4.7)

which may be easier to verify.
REMARK 4.3. If Range(Yk) is an A-invariant subspace, then the productAYk in the

relations (4.2), (4.4), (4.6), and (4.7) can be substituted byYk.
In [19] we find an estimate for the case when the spaceRange(Ỹk) is added to the Krylov

subspace, and the gap betweenRange(Ỹk) and an A-invariant spaceRange(Yk) is less than
some small numberε. The estimate is similar to (4.4), only the set for the minimum is larger
and depends onε.

5. Conclusions and some open questions.Restarting tends to slow down convergence,
and the difficulty may be caused by the eigenvalues closest tozero. These are potentially bad,
because it is impossible to have a polynomialp of degreem such thatp(0) = 1 and|p(z)| < 1
on any Jordan curve around the origin; see [12, p. 55]. Usually, an eigenspace corresponding
to the smallest eigenvalues is taken forRange(Yk), and the corresponding algorithms give
good results [14, 16]. If we consider a normal matrixA with the eigenvalues having only
positive or negative real part andq(z) = z, thenW (A) is the convex hull of the spectrum
of A. If the Krylov subspace is enriched by an eigenspace corresponding to the smallest
eigenvalues, and these eigenvalues are therefore removed from the spectrum, then the convex
hull of the remaining eigenvalues can be far from zero and, consequently, the right hand
side of (4.4) is smaller and the estimate is better. When an eigenspace corresponding to the
smallest eigenvalues is added to the Krylov space, the convergence is faster and stagnation is
removed in practical computation.

In our theoretical considerations, an arbitrary subspace was considered, and the question
“to find some sufficient condition for convergence” was transformed into the question whether
the intersection of fields of values and sets of the form (4.6) contains zero or not. The above
investigations imply some open problems.

1) How to estimate generally, for a given polynomialq, all solutions of the equation
wHq(A)w = 0, for w ∈ Sn, with the constraintw ⊥ Range(AYk), and vice versa
how to construct the polynomialq fulfilling the assumption of Theorem4.1?

2) How to obtain, for special matrices and polynomials, the behaviour of the integer
function

f(j) = 1 − min
w∈Sn

w⊥Range(AYk)

|wHqj(A)w|2

‖qj(A)‖2
, j ∈ [1, s],

and comparef(j) with the behaviour of the sequence‖rj‖
2/‖r0‖

2, for j between 1
and the index of the restart? (This would be the answer on the question on how
descriptive these bounds are.)

3) How to find an inexact solution of (3.1) very fast?
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