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NOISE PROPAGATION IN REGULARIZING ITERATIONS
FOR IMAGE DEBLURRING ∗

PER CHRISTIAN HANSEN† AND TOKE KOLDBORG JENSEN‡

Abstract. We use the two-dimensional discrete cosine transform to study how the noise from the data enters
the reconstructed images computed by regularizing iterations, that is, Krylov subspace methods applied to discrete
ill-posed problems. The regularization in these methods is obtained via the projection onto the associated Krylov
subspace. We focus on CGLS/LSQR, GMRES, and RRGMRES, as wellas MINRES and MR-II in the symmetric
case. Our analysis shows that the noise enters primarily in the form of band-pass filtered white noise, which appears
as “freckles” in the reconstructions, and these artifacts are present in both the signal and the noise components of the
solutions. We also show why GMRES and MINRES are not suited for image deblurring.

Key words. Image deblurring, regularizing iterations, Krylov subspaces, CGLS, LSQR, GMRES, MINRES,
RRGMRES, MR-II.
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1. Introduction. Iterative solvers based on Krylov subspaces are important for im-
age deblurring problems [21], and when combined with good preconditioners [7, 24] these
methods are favorable alternatives to the classical FFT-based algorithms. The Matlab pack-
ages RESTORETOOLS [23] and REGULARIZATION TOOLS [13] provide implementations of
many of these methods.

In the setting of matrix computations, the model for the blurring of an image isAx = b,
where the vectorsx andb represent the sharp and blurred images, and the matrixA represents
the blurring process. Since image deblurring is a discrete ill-posed problem, it is necessary
to use regularization in order to compute stable solutions [12, 16]. Moreover, it is often
advantageous to impose boundary conditions on the reconstruction, which is achieved by
a simple modification of the coefficient matrix [16, 23, 25].

One of the main goals of any regularization method is to suppress, as much as possible,
the noise in the reconstruction coming from noise in the data, while at the same time com-
puting a good approximate solution. Hence, for a given regularization method it is important
to understand its approximation properties as well as how itsuppresses or filters the noise.
In this paper we will perform a computational study of these properties, with an emphasis on
how the noise from the data propagates to the reconstruction.

We focus onregularizing iterations, where we apply a Krylov subspace method to the
un-regularized problemmin ‖Ax − b‖2 or Ax = b. The regularization comes from the
restriction of the solution to the Krylov subspace associated with the method, and the number
of iterations plays the role of the regularization parameter. By means of preconditioning
techniques one can modify the Krylov subspace in such a way that a general smoothing
norm‖Lx‖2 is incorporated; see [11, 12, 14].

Objective assessment of the perceived quality of images is adifficult task [27]. In this
paper we use the two-dimensional discrete cosine transform(DCT) to perform a spectral
analysis of the solutions to the image deblurring problem computed by means of regularizing
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iterations, and we focus on CGLS/LSQR and GMRES, and the variants MINRES, RRGM-
RES, and MR-II. In particular, we are interested in how the filtered noise from the data
enters the reconstruction. While error propagation studieshave been carried out before (see,
e.g., [3]), we are not aware of studies of the spectral properties of the reconstructions and the
errors for regularizing iterations.

Our paper is organized as follows. Section2 gives brief descriptions of the image de-
blurring problem and regularization in the SVD basis, and inSection3 we study the spectral
properties of the coefficient (blurring) matrix. Sections4 and5 contain the main analysis of
the iterative methods via a careful study of the Krylov subspaces, as well as a splitting of the
solutions into their signal and noise components. Finally,in Section6 we explain why the
perceived quality appears to be different for low noise levels. Two appendices describe the
blurring used throughout the paper, and the characteristics of band-pass filtered white noise.

2. The image deblurring problem and the SVD basis.Underlying the image deblur-
ring problem is a 2D Fredholm integral equation of the first kind, whose kernel is thepoint
spread function(PSF) for the blurring; see AppendixA. For simplicity of our analysis and
notation, we considern × n images and PSFs that are spatially invariant and separate inthe
variables1. Discretization of the integral equation then leads to the model

Ac X AT
r = B, B = Bexact + E , (2.1)

whereX is the reconstructed image,Bexact is the blurred noise-free image,E represents the
noise, and the twon×n Toeplitz matricesAc andAr represent blurring in the direction of the
columns and rows of the image, respectively. Moreover, we assume that the elements of the
noise matrixE are statistically independent, uncorrelated withX, and coming from a normal
distribution with zero mean and standard deviationη.

By introducing the vectorsx = vec(X) and b = vec(B), wherevec(·) stacks the
columns of the matrix, we can rewrite the above system in the “usual” formAx = b, in
which thePSF matrixA is then2 × n2 Kronecker productA = Ar ⊗ Ac. The Kronecker
form of the PSF matrix lets us compute the SVD of large matrices, due to the fact that given
the SVDs of the two matricesAc andAr,

Ac = Uc Σc V T
c , Ar = Ur Σr V T

r ,

we can write the SVD of the PSF matrixA = Ar ⊗ Ac as

A = U ΣV T =
(
(Ur ⊗ Uc)Π

)(
ΠT (Σr ⊗ Σc)Π

)(
(Vr ⊗ Vc)Π

)T
. (2.2)

The n2 × n2 permutation matrixΠ ensures that the diagonal elements ofΠT (Σr ⊗ Σc)Π
appear in non-increasing order. We emphasize that our analysis of the iterative methods is
not restricted to Kronecker products, but it holds for all PSF matrices.

Many regularization methods, including regularizing CGLSiterations, lead to regular-
ized solutionsxreg which take the form

xreg =

n2∑

k=1

fk
uT

k b

σk
vk. (2.3)

For Tikhonov regularization we havefk = σ2
k/(σ2

k + λ2), while the filter factors are 0 or 1
for the truncated SVD (TSVD) method. These methods are sometimes referred to as spectral

1 More general PSFs can be studied by the same approach, but the separable PSFs suffice to illustrate our points.
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filtering methods; in this paper we avoid this term, in order not to confuse it with our DCT-
based spectral analysis. With the conventionxreg = vec(Xreg), equation (2.3) immediately
leads to the expression

Xreg =

n2∑

k=1

fk
uT

k b

σk
V [k], (2.4)

wherefk are the filter factors,σk are the singular values ofA, uk are the left singular vectors,
andV [k] aren × n matrices such thatvk = vec(V [k]) are the right singular vectors. This
relation shows that we can express the regularized solutionXreg as a weighted sum over the
basis imagesV [k].

With the Kronecker-product form of the PSF matrixA, equation (2.2) shows that there
are simple expressions for the singular values and vectors.If σri andσcj are the singular
values ofAr andAc, then their products are the singular values ofA. Moreover, ifuri, ucj ,
vri andvcj are the left and right singular vectors ofAr andAc, then the left and right singular
vectors ofA areucj ⊗ uri andvcj ⊗ vri, respectively. Then (2.4) takes the form

Xreg =
n∑

i=1

n∑

j=1

fij
uT

riB ucj

σri σcj
V [ij]

wherefij is the filter factor associated with the productσri σcj , and the basis images are
given byV [ij] = vri vT

cj .
For two-dimensional problems we often observe a slow decay of the singular values,

and occasionally we have multiple singular values. For the Kronecker product case, the slow
decay can be explained by the fact that the singular values ofA are the productsσri σcj of
the singular values ofAr andAc. Even if we have a rather fast decay of the singular values
of each of these matrices, their products decay much slower,but the matrixA is still very
ill-conditioned, becausecond(A) = cond(Ac) · cond(Ar). We also see that ifAc = Ar then
we must have many double singular values.

3. The DCT and spectral properties of the PSF matrix. The two-dimensional dis-
crete cosine transform is a simple frequency transform thatis often used in image processing.
If X is ann × n image, then the transformed image is

X̌ = dct2(X) = C X CT ,

whereC ∈ R
n×n is an orthogonal matrix that represents the one-dimensional DCT2 [26].

The elements ofC are given by

Cij =

{√
1/n i = 1

√
2/n cos

(
π(i − 1)(2j − 1)/(2n)

)
, i > 1.

The DCT-transformed imagěX provides a frequency representation of the imageX, where
each elemenťXij is the coefficient to a specific basis image; see, e.g., [17, p. 136]. The
elementX̌11 represents a constant, and the elementsX̌1j andX̌i1 correspond to simple cosine
waves of varying frequency in horizontal or vertical directions over the entire image. The
remaining elements of̌X represent combinations of frequencies in the two directions. The
lowest spatial frequencies are represented in the top left corner, and the highest in the opposite
corner; Figure3.1 illustrates this.

2There are several types of DCT transforms. The one adopted here is the most commonly used, which is named
DCT-2 in [26].
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X = Io (moon of Jupiter)
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FIGURE 3.1. The DCT transform shows that the image is dominated by low-frequency information.

For discrete ill-posed problems arising from first-kind Fredholm integral equations, we
know from the analysis in [15] that the singular vectorsui andvi of the coefficient matrix
A tend to have an increasing number of sign changes in their elements as the indexi in-
creases. That is, the smaller the singular valueσi, the more high-frequent the appearance of
the corresponding singular vectorsui andvi.

For two-dimensional problems we expect a similar behavior,but the concept of frequency
is more complicated because the singular vectors now correspond to two-dimensional basis
images. The correct way to study the spectral behavior of thesingular vectors is therefore
to study the two-dimensional spectral behavior of the basisimagesV [k] or V [ij] = vri vT

cj ,
e.g., by means of the DCT. We need to sort the latter basis images according to decreasing
singular valuesσiσj using the permutation matrixΠ from equation (2.2); the sorted basis
images are then equal toV [k].

To illustrate this we construct two coefficient matricesA andA as Kronecker products of
32×32 Toeplitz matrices. Referring to AppendixA, the matrixA describes isotropic blurring
with sc = sr = 3 andα = 0, andA describes non-isotropic blurring withsc = 3, sr = 5,
andα = 5. The first four basis imagesV [1] to V [4] of A are shown in Figure3.2, together
with their DCTs|V̌ [1]| to |V̌ [4]|. The rightmost picture in Figure3.2shows the “accumulated

DCT”
(∑150

i=1 |V̌ [i]|2
)1/2

, which collects all the dominating spectral components in the first
150 basis images. We see that the main contributions lie inside a disc in the upper left corner
of the spectrum, showing that all the first basis images are low-frequent.

Figure3.3shows the first four basis images forA. We see that some frequencies in one
direction appear before the corresponding frequency in other directions in the image. This is
clearly seen in the fourth basis imageV [4], which is dominated by the DCT componentV̌

[4]
3,1 ,

while in the symmetric caseV [4] is dominated by̌V [4]
2,2 . We also see from the plot of the “accu-

mulated DCT”
(∑150

i=1 |V̌ [i]|2
)1/2

that the frequency contents are no longer located primarily
inside a disc, but the main contribution is still low-frequent.

The above study corresponds to using zero boundary conditions, but precisely the same
behavior is observed if we use other boundary conditions in (2.1). We conclude that, in
analogy with 1D problems, we can think of the SVD as a 2D spectral decomposition of the
problem.

4. Krylov subspace methods.Given a matrixM and a vectorv, the Krylov subspace of
dimensionk is defined asKk(M,v) ≡ span

{
v,Mv,M2v, . . . ,Mk−1v

}
. Krylov subspaces

have been studied extensively (see, e.g., [8, 22]) and they are necessary for investigating the
regularizing properties of the methods in consideration.

4.1. The methods studied here.The two algorithms CGLS and LSQR, which are de-
signed to solve the least squares problemmin ‖Ax − b‖2, are mathematically equivalent.
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FIGURE 3.2. Basic imagesV [i], i = 1, 2, 3, 4 (top) for the symmetric coefficient matrixA and theirs DCTs
|V̌ [k]| (bottom), together with the “accumulated DCT”(

P150
i=1 |V̌

[i]|2)1/2.

FIGURE 3.3. Similar to Figure3.2, but for the non-symmetric coefficient matrixA.

They work implicitly with the normal equationsAT Ax = AT b and are thus based on the
Krylov subspaceKk(AT A,AT b). LSQR constructs basis vectors for this Krylov subspace
via the Lanczos bidiagonalization algorithm, which gives the partial decomposition

AWk = Uk+1Bk, (4.1)

whereWk is a matrix withk orthonormal columns that span the Krylov subspace. The matrix
Uk+1 hask+1 orthonormal columns, and its first column is chosen asu1 = b/‖b‖2, which
simplifies the implementation considerably. The matrixBk is a(k + 1)× k lower bidiagonal
matrix. The LSQR iteratex(k) minimizes the 2-norm of the residual in the Krylov subspace,
i.e.,x(k) = argminx‖Ax − b‖2 such thatx ∈ Kk(AT A,AT b), and it follows that

x(k) = Wk ξk, ξk = argminξ‖Bk ξ − ρ e1‖2,

wheree1 is the first canonical unit vector inRk+1 andρ = ‖b‖2. This algorithm can be
implemented using short recurrences, and thus one can avoidstoring the partial decomposi-
tion (4.1).

The GMRES algorithm is based on the Arnoldi process, that constructs an orthonormal
basis for the Krylov subspaceKk(A, b) leading to the partial decomposition

AŴk = Ŵk+1Ĥk, Ŵk+1 = ( Ŵk , ŵk+1 ), (4.2)

where thek columns of̂Wk provide an orthonormal basis for the Krylov subspace, andĤk is a
(k+1)×k upper Hessenberg matrix. The first column in̂Wk is again chosen aŝw1 = b/‖b‖2.
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FIGURE 4.1. Image deblurring examples. Left to right: true imageX, blurred imageB due to the symmetric
PSF matrixA, and blurred imageB due to the nonsymmetric PSF matrixA.

If A is symmetric thenĤk reduces to tridiagonal form, and the construction of the partial
decomposition (4.2) can be done by a three-term recurrence as implemented in MINRES. In
this case the solution can be updated without explicitly storing the partial decomposition. In
the general case, no such short recurrence exists and GMRES needs to store all the constructed
Krylov vectors.

The GMRES/MINRES iteratêx(k) minimizes the residual norm with respect to the above
Krylov subspace, i.e.,̂x(k) = argmin‖Ax − b‖2 such thatx ∈ Kk(A, b), which leads to the
relation

x̂(k) = Ŵk ξ̂k, ξ̂k = argminbξ‖Ĥk ξ̂ − ρ e1‖2,

where againe1 is the first canonical unit vector andρ = ‖b‖2.
There exists a variant of GMRES that usesAb as the starting vector for the Krylov

subspace, instead ofb, leading to the “shifted” Krylov subspaceKk(A,Ab). In the non-
symmetric case the algorithm is called RRGMRES [4, 5], and the algorithm MR-II [9, 10]
is an efficient short-term recurrence implementation of this method for symmetric matrices.
The partial decomposition in RRGMRES/MR-II is written as

AW̃k = W̃k+1H̃k, W̃k+1 = ( W̃k , w̃k+1 ).

The RRGMRES/MR-II iterate is theñx(k) = W̃k ξ̃k with ξ̃k = argmineξ‖H̃k ξ̃ − W̃T
k+1b‖2.

These two methods are now available in REGULARIZATION TOOLS [13].

4.2. Examples of iterates.We illustrate the typical behavior of the iterative methods
using two examples. The true imageX is a175× 175 sub-image of the image “Barbara” [2].
Two PSF matrices are used: a symmetricA and a nonsymmetricA with the following param-
eters (see AppendixA for details)

A : sc = 4, sr = 4, α = 0; A : sc = 8, sr = 10, α = 4. (4.3)

In both cases, we add Gaussian white noiseE scaled such that‖E‖F/‖B‖F = 0.05. The
true image and the two blurred and noisy images are shown in Figure4.1.

Figure4.2shows the LSQR, MINRES, and MR-II solutions after 5, 10, and 25 iterations
for the symmetric PSF matrix, and we see that the algorithms give very different solutions.
The LSQR solutions slowly improve, but after 25 iterations some noise has appeared as small
circular “freckles” (see AppendixB for a characterization of these freckles). The MINRES
solutions get dominated very fast by high-frequency noise;with the noise level defined above,
the iterates are strongly deteriorated by noise after only 5iterations. The MR-II solutions
show artifacts similar to the LSQR solutions, but the convergence seems faster as the solution
after 10 MR-II iterations is visually similar to the LSQR solution after 25 iterations.
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FIGURE 4.2. LSQR, MINRES, and MR-II iteratesx(k), x̂(k) and x̃(k) with the symmetric PSF matrixA, for
k = 5, 10, and 25 iterations.

The solutions for the non-symmetric PSF matrix are shown in Figure 4.3. Here, the
LSQR algorithm is again seen to generate some structured artifacts, observed after 25 iter-
ations. The artifacts are no-longer circular, due to the non-isotropic blurring, but they are
still band-limited and certainly not high-frequent as the noise seen in the GMRES solutions.
The RRGMRES solutions again show artifacts similar to the artifacts for LSQR. But the
difference in convergence speed is not as large as for LSQR and MR-II in Figure4.2.

4.3. The power basis of the Krylov subspace.The regularizing properties of the
Krylov subspace methods come from the fact that for discreteill-posed problems, the right-
hand sideb is rich in SVD components corresponding to the large singular values. For this
reason, the basis vectors for the Krylov subspaces are also rich in these directions. We il-
lustrate this in Figure4.4, which shows the coefficients of the first five Krylov vectors in the
SVD basis (the columns ofV ) for all methods.

Consider first the Krylov vectors in the left part of Figure4.4, corresponding to the
symmetric matrixA. For all methods, it is evident that all the Krylov vectors are rich in
right singular vectors corresponding to the largest singular values, and that the coefficients
are damped according to the multiplication withAT A or A.

However, the fact that the noisy right-hand sideb is present in the MINRES basis has
a dramatic impact, because the noise componente = vec(E) in b is present in the Krylov
subspace, leading to a large amount of white noise in the firstKrylov vector, and therefore
in all the MINRES solutions. While the remaining Krylov vectors are identical to those of
MR-II, we see that it is crucial to avoid the noisy vectorb in the Krylov subspace.
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FIGURE 4.3.LSQR, GMRES, and RRGMRES iteratesx(k), x̂(k) andx̃(k) with the nonsymmetric PSF matrix
A, for k = 5, 10, and 25 iterations.
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FIGURE 4.4. The coefficients in the SVD basis of the first five Krylov subspace vectors for the different algo-
rithms. The first vector is always the one on top. Note that theaxes for GMRES and RRGMRES are scaled differently
from the rest.
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FIGURE 4.5. DCTs associated with selected Krylov and Arnoldi vectors, i.e., columns ofWk, cWk, and fWk

(converted to images), fork = 40 iterations. From left to right, we show columns 1, 3, 15, and 40.

The SVD coefficients for the first five Krylov vectors for the non-symmetric matrixA
are shown in the right part of Figure4.4. The CGLS/LSQR Krylov vectors exhibit a behavior
similar to the symmetric case where the coefficients are damped by the multiplication with

A
T
A.
For GMRES and RRGMRES the situation is different. For GMRES the noise compo-

nentse = vec(E) is again clearly present in the first Krylov vector, and for both methods
the vectors do not exhibit much damping from one vector to thenext. As explained in [18],
this is caused by a mixing of the SVD components when multiplying with A, where each
SVD component in thekth Krylov vectors is a linear combination of (in principle) all SVD
components in the previous iteration.

4.4. Two orthonormal bases of the Krylov subspace.Another perspective on the
Krylov subspaces is provided by the orthonormal basis vectors that span these subspaces.
Obvious choices of these vectors are the Lanczos and Arnoldivectors, i.e., the columns of
the matricesWk, Ŵk, andW̃k generated by the three methods. Figure4.5 shows the DCTs
associated with selected columns of these matrices fork = 40 iterations. It is evident that we
include higher frequency components in the bases as we take more iterations. The white-noise
component, arising frome, is clearly visible in the GMRES/MINRES basis.

However, there are other sets of bases that provide important information. If the SVD of
the bidiagonal matrixBk in (4.1) is given by

Bk = Pk Σk QT
k ,

then we can write the CGLS/LSQR iterates asx(k) = (Wk Qk)Σ−1
k (ρPT

k e1), and the or-
thonormal columns of the matrixWk Qk provide an alternative basis for the CGLS/LSQR
Krylov subspace. Similarly, with the SVDs of the HessenbergmatricesĤk and H̃k from
GMRES and RRGMRES, we have

Ĥk = P̂k Σ̂k Q̂T
k , H̃k = P̃k Σ̃k Q̃T

k ,
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FIGURE 4.6. DCTs associated with selected columns ofWk Qk, cWk
bQk, andfWk

eQk (converted to images)
for k = 40 iterations. From left to right, we show columns 1, 3, 15, and 40.

and thus the columns of̂Wk Q̂k andW̃k Q̃k provide orthonormal bases for the Krylov sub-
spaces of GMRES/MINRES and RRGMRES/MR-II, respectively.

Figure4.6 shows the DCTs associated with selected columns of the matricesWk Qk,
Ŵk Q̂k, andW̃k Q̃k for k = 40 iterations. As we take more iterations, the dominating spectral
components in these basis vectors are band-limited and lie in a fairly narrow band of spatial
frequencies (showing up as freckles in the solutions). These DCTs thus confirm that, for each
new iteration, we tend to keep the existing low-frequency information in the iteration vector,
and add components with slightly higher frequencies. Again, the white noise component is
clearly present in all the GMRES/MINRES basis vectors.

5. Study of signal and noise components.We now study in more detail how the noise
propagates to the solutions, by considering how the three methods treat, on one hand, the
wanted signal contents from the exact componentbexact = vec(Bexact) and, on the other
hand, the contents from the noise componente = vec(E). This analysis is, of course, only
possible when the noise is explicitly known.

The LSQR solution, given byx(k) = Wk B†
k UT

k+1b, can be split into the signal and noise

componentsx(k) = x
(k)
bexact + x

(k)
e , with

x
(k)
bexact = Wk B†

k UT
k+1b

exact and x(k)
e = Wk B†

k UT
k+1e.

Similarly, for the GMRES and RRGMRES methods we have the splitting

x̂(k) = x̂
(k)
bexact + x̂(k)

e and x̃(k) = x̃
(k)
bexact + x̃(k)

e .

The Lanczos bidiagonalization process is generated byb (and notbexact), and thereforex(k)
bexact

differs from the LSQR solution produced withbexact as starting vector. The same is true for
GMRES and RRGMRES. This situation, where the signal component depends on the noise
in the data, is unique for regularizing iterations, due to the dependence of the Krylov subspace
onb = bexact+e. In regularization methods, such as Tikhonov and TSVD, the filter factorsfk
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————— SymmetricA ————— ———— NonsymmetricA ————

FIGURE 5.1.Splitting of the solutions by LSQR (top), GMRES (middle), and RRGMRES (bottom) afterk = 10
iterations, in the signal and noise components.

in (2.3) depend only onA, and thus the signal component

n2∑

k=1

fk σ−1
k uT

k bexact vk

is independent one.
The above splitting is often used in studies of regularization methods, where one writes

the reconstruction errorx(k) −xexact as a sum of the regularization errorx
(k)
bexact −xexact and

the perturbation errorx(k)
e [12]. For example, it was used in [3] and [20] to study error prop-

agation and ringing effects for Tikhonov image deblurring.The situation is more complex
here, because the signal and noise components are coupled differently for different Krylov
subspace methods and, in fact, for different right-hand sides. The purpose of this section is to
illustrate this aspect.

Figure5.1illustrates the splitting for LSQR, GMRES, and RRGMRES for the “Barbara”
image. Both the symmetric and the non-symmetric PSF matrices are studied. We see how the
noise propagates very differently in the three methods, dueto the differences in the associated
Krylov subspaces.

The LSQR algorithm produces low-frequent ringing effects in the signal component
x

(k)
bexact for both the symmetric and the nonsymmetric coefficient matrix, and no freckles are

present in this component. In accordance with the observations in the previous section, the
noise componentx(k)

e consists of bandpass-filtered noise in the form of freckles,and the
shape of the freckles depends on the shape of the point-spread function. It is interesting to



ETNA
Kent State University 

http://etna.math.kent.edu

NOISE PROPAGATION 215

———— SymmetricA ———— ——— NonsymmetricA ———

k = 10 k = 25 k = 10 k = 25

FIGURE 5.2. The LSQR noise componentsx
(k)
e and the corresponding DCTs.

see how both the ringing in the signal component and the freckles in the noise component are
correlated with the contours of the image, caused by the specific Krylov subspace.

As we have already observed, MINRES and GMRES propagate a white-noise compo-
nent in the signal componentx̂

(k)
bexact , caused by the explicit presence of the noise in the basis

vectors for the Krylov subspace. The white-noise componentis particularly pronounced in
the GMRES signal component. This example clearly illustrates why MINRES and GMRES
cannot be recommended as general regularization methods, apoint that is substantiated fur-
ther in [18].

The RRGMRES and MR-II signal components behave much like theLSQR signal com-
ponents, except that they tend to carry more details after the same number of iterations. The
noise components resemble those of the LSQR method. For the symmetric matrix, the freck-
les are smaller in diameter than for LSQR, and they are more visible in the signal component.
For the nonsymmetric matrix, both components are quite similar to the LSQR components.
Avoiding the noisy vectorb in the RRGMRES/MR-II subspace gives a huge improvement of
the quality of the solutions.

To study the freckles in more detail, we consider the LSQR method and compute the
DCT of the noise componentsx(k)

e for iterationsk = 10 andk = 25, as shown in Figure5.2
for both the symmetric and the nonsymmetric coefficient matrix. This figure confirms that
the freckles are indeed bandlimited noise, because they correspond to a bandlimited ring of
frequencies in the DCT domain, and the ring moves towards higher frequencies as the number
of iterations increases.

A closer analysis of the LSQR noise componentx
(k)
e reveals that it tends to be dom-

inated by contributions from the last few columns in the matrix Wk Qk, and similarly the
RRGMRES noise component tends to be dominated by the last fewcolumns ofW̃k Q̃k.
These vectors represent the highest spatial frequencies inthe reconstruction, thus explain-
ing the presence of the freckles. A simple mechanism for removing (some of) the freckles is
thus to remove these particular components in the solution via a truncated SVD solution to
the “projected problems”min ‖Bk ξ − ρ e1‖2 andmin ‖H̃k ξ̃ − W̃T

k+1b‖2, using a truncation
parameter close tok. This use of regularization applied to the projected problem is advocated
in [11, 19], and the resulting method is sometimes referred to as ahybrid method.
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—————— LSQR —————— ————— RRGMRES —————

FIGURE 5.3. Comparison of LSQR and RRGMRES solutions fork = 25 with those obtained by TSVD
regularization of the projected problem. The removal of thesmallest SVD component dramatically reduces the
amount of freckles.

Figure5.3 compares the standard and regularized LSQR and RRGMRES solutions for
k = 25; the removal of the smallest SVD components in the projectedproblem clearly re-
moves a substantial amount of freckles. At the same time, themodified solutions appear less
sharp, because the highest frequencies (that gave rise to the freckles) are explicitly removed.

6. Low noise levels are different.For a very low noise level, GMRES was reported
in [6] to exhibit faster convergence than LSQR and produce “better” solutions. This seems
contradictory to our results, and the purpose of this final section is to study the quality of the
reconstructions for low noise levels. We use the nonsymmetric PSF matrix, and the noise
level is reduced to‖E‖F/‖Bexact‖F = 5 · 10−4.

The two top rows in Figure6.1 show the LSQR, GMRES, and RRGMRES solutions
after 30 iterations, together with their DCTs. From the top row, it appears that the GMRES
solution has the highest amount of visual detail, and it seems to be superior to the RRGMRES
and LSQR solutions. But from the second row we also see that the GMRES solution carries
a much larger amount of white noise than the LSQR and RRGMRES solutions.

The two bottom rows show the corresponding noise componentsand their DCTs. As
before, the noise component appears as freckles, and the location of the freckles is correlated
with the contours in the image. For all iterationsk ≤ 30 the norm of the noise component is
much smaller than the norm of the solution component. Hence,the error in the reconstruc-
tions is primarily due to the error in the solution component.

For low noise levels, the GMRES solution appears to be visually superior to the other
solutions because the freckles are not as visible as for higher noise levels. The freckles
are very disturbing to the human eye, while this is not the case for the propagated white
noise in the signal component. In fact, the white noise inx̂(k) “masks” the freckles and
creates an illusion of improved resolution through higher spatial frequencies, even though no
information can be reliably reconstructed beyond the spatial frequencies associated with the
freckles.

The LSQR and RRGMRES solutions, on the other hand, do not carry a large white-noise
component that “masks” the freckles, and hence these solutions behave similar to the case of
larger noise levels, and they appear as inferior to the GMRESsolution. However, all recon-
structions have errors of the same magnitude, the errors just appear in different incarnations
with very different spectral properties.

7. Conclusion. We used the two-dimensional DCT to study the properties of regu-
larizing iterations for image deblurring. First, we showedthat the SVD provides a two-
dimensional frequency decomposition similar to the one-dimensional case. Turning to the
algorithms, we show that all the Krylov subspace methods produce reconstructions that can
be considered as low-pass filtered versions of the “naive” reconstruction (similar to Tikhonov
and TSVD). The main difference is that, for regularizing iterations, noise and artifacts in the
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LSQR GMRES RRGMRES

FIGURE 6.1. Top rows: LSQR, GMRES, and RRGMRES solutions after 30 iterations and their DCTs, for
the nonsymmetric PSF matrixA with a very low noise level‖E‖F/‖Bexact‖F = 5 · 10−4. Bottom rows: the
corresponding noise components and their DCTs. The GMRES solution is the visually most pleasing.

form of “freckles” are present in both the signal and noise components. CGLS/LSQR and
RRGMRES/MR-II are superior to GMRES/MINRES for regularization problems because
they provide better suppression of the noise; for our examples there is no clear winner among
the two methods.

All our Matlab codes used in the examples in this work are available from the home page
http://www.imm.dtu.dk/ ˜ pch/NoisePropagation.html .

Appendix A. Isotropic and non-isotropic blurring matrices . Underlying the image
deblurring problem is a 2D Fredholm integral equation of thefirst kind

∫ 1

0

∫ 1

0

K(x′, y′, x, y)F (x, y) dx dy = G(x′, y′), 0 ≤ s, t ≤ 1, (A.1)

whereF andG represent the exact and blurred images, and the kernelK is thepoint spread
function (PSF) for the blurring. Our work here is restricted to the case where the PSF is
spatially invariant and separates in the variables, i.e.,K(x′, y′, x, y) = κc(x

′−x)κr(y
′−y),

whereκc andκr are given functions.
When we discretize (A.1) by means of the midpoint quadrature rule with collocation in

then × n grid of midpoints of the pixels, then we obtain two matricesX andB which are

http://www.imm.dtu.dk/~pch/NoisePropagation.html
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FIGURE A.1. The isotropic (left) and non-isotropic (right) PSFs used inour numerical experiments, obtained
by means of the parameters in equation (4.3).

samples of the imagesF andG. Moreover, the matricesAc andAr in equation (2.1) are
Toeplitz matrices whose elements are samples of the functionsκc andκr.

For our numerical experiments we need both isotropic and non-isotropic PSFs, and we
use a generalization of the normal distribution. Let

φ(x) =
1

s
√

2π
exp

(
− (x − µ)2

2s2

)
and Φ(x) =

∫ x

−∞

φ(t) dt

be the standard Gaussian density function and its distribution function, and define

Fα(x) = 2φ(x)Φ(αx).

ThenFα is the density function for theskew-normal distribution[1], in which α is the skew-
ness parameter. The scale parameters controls the width ofFα, and by a proper choice of the
location parameterµ we can ensure that the maximum of the density functionFα is centered
atx = 0.

By setting the functionsκc and κr equal toFα for different choices ofα and s, we
obtain point-spread functions that are, in general, non-isotropic. The pseudo-Matlab code for
generating the Toeplitz matricesAc andAr takes the form

vecAc = skewnormal(-n+1:n-1, µc, sc, α);
Ac = toeplitz(vecAc(n:-1:1),vecAc(n:end));
vecAr = skewnormal(-n+1:n-1, µr, sr, α);
Ar = toeplitz(vecAr(n:-1:1),vecAr(n:end));

where the functionskewnormal , which computes the skew-normal density functionFα, is
given by

function y = skewnormal(x, s, alpha)
mu = fminsearch(@SN,0,[ ],0,s,alpha);
y = -SN(x,mu,s,alpha);
function y = SN(x, mu, s, alpha) % Subfunction.
y = -2 * normpdf(x+mu,0,s). * normcdf(alpha * (x+mu),0,s);

Here we use functions from Matlab’s STATISTICS TOOLBOX to generate the Gaussian density
and distribution functions. FigureA.1 shows two PSFs generated by this approach.

Appendix B. “Freckles” are band-pass filtered white noise.A white-noise random
imageX is characterized by having pixels whose values are statistically uncorrelated and
have the same variance. Since the DCT is an orthogonal transformation, it follows that the
DCT imageX̌ is also a white-noise image.

A filtered random image is obtained by filtering its spectral components. In particular,
if F is a matrix of zeros and ones, then we can generate an image of filtered Gaussian white
noise by means ofXfilt = idct2(F. * randn(n)) .
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Low pass Band pass High pass
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FIGURE B.1. Top: the filtered DCT imagesidct2(F. * randn(n)) . Bottom: the corresponding filtered
imagesXfilt = idct2(F. * randn(n)) . Band-pass filtered white noise appears as “freckles”.

The choice of the locations of the ones inF determines the type of filtering. IfFij = 1 for
i2+j2 < k2 for somek <

√
2 n, then we obtain low-frequency noise, while high-frequency

noise is obtained fori2+j2 > k2. If the indices forFij = 1 satisfyklo < i2+j2 < khi, then
we keep only spectral components in a range of spatial frequencies, and we say thatXfilt is
band-pass filtered white noise. This kind of noise has the characteristic visual appearance of
the “freckles” that we often see in the reconstructions. SeeFigureB.1 for examples of filtered
noise.
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