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A FAST ALGORITHM FOR SOLVING REGULARIZED TOTAL LEAST SQUARE S
PROBLEMS*

JORG LAMPE' AND HEINRICH VOSS

Abstract. The total least squares (TLS) method is a successful appfoathear problems if both the system
matrix and the right hand side are contaminated by some noise.illfpesed TLS problems Renaut and Guo
[SIAM J. Matrix Anal. Appl., 26 (2005), pp. 457-476] suggessian iterative method based on a sequence of linear
eigenvalue problems. Here we analyze this method carefully,vee accelerate it substantially by solving the
linear eigenproblems by the Nonlinear Arnoldi method (whiebses information from the previous iteration step
considerably) and by a modified root finding method based oorattinterpolation.
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1. Introduction. Many problems in data estimation are governed by overdétean
linear systems

Ar~b, AeR™" beR"™ m>n, (1.2)

where both the matrix4 and the right hand sidg are contaminated by some noise. An
appropriate approach to this problem is the total leastregu@LS) method which determines
perturbationsA A € R™*" to the coefficient matrix andb € R™ to the vecton such that

I[AA, Ab]||2 = min! subject to{ A + AA)z = b+ Ab, 1.2)

where|| - || » denotes the Frobenius norm of a matrix; see, e7g1§).

In this paper we consider ill-conditioned problems whiclsarfor example, from the
discretization of ill-posed problems such as integral équa of the first kind; see, e.g.,
[4, 8, 11]. Then least squares or total least squares methods foingo(l.1) often yield
physically meaningless solutions, and regularizatioreisegsary to stabilize the solution.

Motivated by Tikhonov regularization a well establishegach is to add a quadratic
constraint to the probleni(2) yielding the regularized total least squares (RTLS) pobl

I[AA, Ab]||2 = min! subjectto{A + AA)x = b+ Ab, Lz <5,  (1.3)

where (as in the rest of the papér) || denotes the Euclidean norih;> 0 is a regularization
parameter, and. € R¥*" k < n defines a (semi-) norm on the solution through which
the size of the solution is bounded or a certain degree of 8mees can be imposed on
the solution. Stabilization by introducing a quadratic stoaint was extensively studied in
[2,6,9, 15, 16, 17]. Tikhonov regularization was considered iij.[

Based on the singular value decompositiofiafb], methods were developed for solving
the TLS problem1.2) [7, 18], and even a closed formula for its solution is known. Howgve
this approach can not be generalized to the RTLS probles) (Golub, Hansen and O’Leary
[6] presented and analyzed the properties of regularizafidi_8. Inspired by the fact that
gquadratically constrained least squares problems can lkedsby a quadratic eigenvalue
problem p], Sima, Van Huffel, and Golublfg, 17] developed an iterative method for solv-
ing (1.3), where at each step the right—-most eigenvalue and comdsmpeigenvector of a
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guadratic eigenproblem has to be determined. Using a mingharacterization for nonlin-
ear eigenvalue problem&(], we analyzed the occurring quadratic eigenproblems gxidga
advantage of iterative projection methods and updatintgiigcies we accelerated the method
substantially 13]. Its global convergence was proved it4]. Beck, Ben-Tal, and Teboulle
[2] proved global convergence for a related iteration scheyrexploiting optimization tech-
niques.

A different approach was presented by Guo and Re®atf] who took advantage of the
fact that the RTLS probleni(3) is equivalent to the minimization of the Rayleigh quotieht
the augmented matrix/ := [A, b]”[A, b] subject to the regularization constraint. For solving
the RTLS problem a real equatig¥) = 0 has to be solved where at each step of an iterative
process the smallest eigenvalue and corresponding eigjenvd the matrix

L'L 0
0 -6

is determined by Rayleigh quotient iteration. The iter#geare the current approximations
to the root ofg. To enforce convergence the iteratgsare modified by backtracking such
that they are all located on the same side of the root whichpleasithe convergence of the
method.

Renaut and Guolf] tacitly assume in their analysis of the functigrihat the smallest
eigenvalue ofB(#) is simple which is in general not the case. In this paper wer dlte
definition of g, and we suggest two modifications of the approach of Guo amélRehus
accelerating the method considerably. We introduce a séivey(6) = 0 based on a ra-
tional interpolation ofy—! which exploits the known asymptotic behavior of We further
take advantage of the fact that the matride®),) converge a9, approaches the root of
g. This suggests solving the eigenproblems by an iteratiogeption method thus reusing
information from the previous eigenproblems.

The paper is organized as follows. In Sectibwe briefly summarize the mathematical
formulation of the RTLS problem, we introduce the modifieddtion g, and we analyze it.
Section3 presents the maodifications of Renaut’s and Guo’s methodhwiére mentioned in
the last paragraph. Numerical examples from the “Regultiam Tools” [LO, 12] in Section3
demonstrate the efficiency of the method.

In this paper the minimum of a Rayleigh quotient on a subspgqears at many in-
stances. It goes without saying that the zero element isidzd of the mentioned subspace
in all of these cases.

B@:M+m;mmN:{

2. Regularized Total Least Squares.lt is well known (cf. [Lg], and [2] for a different
derivation) that the RTLS problem () is equivalent to

| Az — b||?
1L [l

We assume that the probler.y) is solvable, which is the case if the row rankiois n or

if omin([AF,b]) < omin(AF) where the columns of the matriX form an orthonormal basis
of the null spaceV'(L) of L, ando i, (-) denotes the minimal singular value of its argument;
cf. [1].

We assume that the regularization paraméter 0 is less than| Lz rs||, wherezrrs
denotes the solution of the total least squares problef) (otherwise no regularization
would be necessary). Then at the optimal solution2of)(the constraint|Lz|| < ¢ holds
with equality, and we may replacg.() by

Az — b||?
L[|

= min! subject to]| Lz||* < 2. (2.1)

P(z) == = min! subject to]| Lz|* = 6% (2.2)
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The following first order condition was proved ii]
THEOREM2.1. The solutionz g1 s Of RTLS problen(2.2) solves the problem

(ATA4 ML, + A\ LT L)z = ATb, (2.3)

where
A1 = Mi(zrrLs) = —0(xRrLS), (2.4)
A = Auenres) = — 55 (7 (Acgrrs —b) + 6(rnres). (25)

We take advantage of the following first order conditionsahkhivere proved in15]:
THEOREM 2.2. The solutionzrrrs of RTLS problen{2.2) satisfies the augmented
eigenvalue problem

BOw) || = [P
where);, and \; are given in(2.4) and (2.5).

Conversely, if (27, —1)T, —\) is an eigenpair ofB(\ (i) where), (i) is recovered
according to(2.5), thenz satisfieg2.3), and\ = —o(z).

Theoren®.2suggests the following approach to solving the regulariatal least squares
problem @.2) (as proposed by Renaut and Guth]): determineé such that the eigen-
vector (z}, —1)T of B(6) corresponding to the smallest eigenvalue satisfies thetredmts
| Lzg||? = 62, i.e., find a non-negative roétof the real function

| Lao|]? — 52
0):="—-"—— =
90) = T [z

Renaut and Guo claim that (under the conditibhst # 0 and A\ (A) N N(L) = {0}) the
smallest eigenvalue dB(0) is simple, and that (under the further condition that therixat
[A, b] has full rank)g is continuous and strictly monotonically decreasing. Hep¢d) = 0
has a unigue roof,, and the corresponding eigenvector (scaled appropr)ayéyds the
solution of the RTLS problen?(2).

Unfortunately these assertions are not true. The last coey®f an eigenvector corre-
sponding to the smallest eigenvalue/®ft)) need not be different from zero, and in that case
g(9) is not necessarily defined. A problem of this type is giverhimfollowing example.

EXAMPLE 2.3. Let

10 |
A:[O 1],b:[0],L:M§ ?},5:1.
0 0 V3

Then the conditions|[4, b] has full rank’, ¥7' A = (1,0) # 0’, and ‘N (A) N N(L) = {0}
are satisfied. Furthermore,

1420 0 1
BO)=| 0 1+6 0 |,

(2.6)

1 0 4—0
and the smallest eigenvalugsi, (B(0.5)) = 1.5 andAyin(B(1)) = 2 of

2 0

1 3.0 1
B05) =10 15 0| and B(1)=|0 2 0
1 0 35 10 3
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have multiplicity2, and for € (0.5, 1) the last component of the eigenvecter= (0, 1,0)”
corresponding to the minimal eigenvaldg;, (53(6)) = 1 + 0 is equal to). This means that
g is undefined in the intervdD.5, 1) becauséz}’, —1)7 cannot be an eigenvector.

To fill this gap we generalize the definition @fin the following way:

DEFINITION 2.4. Let£(0) denote the eigenspace Bf#) corresponding to its smallest

T
eigenvalue, and lelV := [LOL _%2}. Then
TN L 2 _ 52 2
g(0) = min LY = i Sl 2.7)
veé®) YTy  @Tani)Tec)  zl?+aiy,

is the minimal eigenvalue of the projection¥fto £(6).

This extends the definition @fto the case of eigenvectors with zero last components.

THEOREM 2.5. Assume thatr i, ([AF, b)) < omin(AF) holds, where the columns of
F € R™"~* form an orthonormal basis of the null spacelaf Theng : [0,00) — R has
the following properties:

(i) if omin([A,D]) < omin(4), theng(0) > 0;

(i) if the smallest eigenvalue dB(6y) is simple, thery is continuous at;

(iv) g is monotonically not increasing df, co);

(v) let g(6) = 0 and lety € £(A) be such thay(d) = y"Ny/|y

component of is different fromo;

(vi) g has at most one root.

Proof. (i): Lety € £(0). Fromomin([A4,5]) < omin(A) it follows thaty,,+1 # 0 and
xrrs = —y(1 : n)/y.+1 Solves the total least squares probleh?); see [L8. Hence,
§ < | Lorps| impliesg(0) > 0.

(74): B(0) has exactly one negative eigenvalue for sufficiently l#¢see [L5]) and the
corresponding eigenvector converges to the unit vegtor having one in its last component.
Hencelimg .o, g(0) = —62.

(i) If the smallest eigenvalue @8 (6y) is simple for somd,, then in a neighborhood
of 6, the smallest eigenvalue &f(0) is simple as well, and the corresponding eigenveggor
depends continuously dhif it is scaled appropriately. Henceg,is continuous af,.

(iv): Letyy € £(0) be such thay(0) = yZ Nya/yt yo. Foré, # 05 it holds that

I B(6 I B(6 T B(6 I B(6
Yo, B( 1)21/91 - Ve ( 1)2y92 and Yo B 2)23192 < Yo, ( 2)2?/91
[y, |l [y, | l[ve. [ve,
Adding these inequalities and subtracting equal terms ¢mides yields

2. then the last

T
Yo, Nyo
(21 1 +92

T T T
’ yazNy% <0, yaf_,Nyez ) yelNy‘%
llye, 1y0,

01 2
12 7 e, I

(61 — 62)(g(61) — g(62)) <0,
which demonstrates thatis monotonically not increasing.

(v): Assume that there exists= B] € £(6) with

yT Ny B 2TLTL:

T

0: p—
yTy T3
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Theni € N'(L), and the minimum eigenvalug,;,, (6) of B(f) satisfies

~ /\T ) i

. . 2'B(0)z &0 5(0) {0]

)\min (B(H)) = zg]y"l}rl ZTZ - LIA’}T.’L'
x

T B )

s ) e

= min ————= = min ————.
zeN(L) Tz zeN(L) Tz

That is,
Amin (B(6)) = (0min (AF))*. (2.8)

On the other hand, for evenyc N (L) anda € R, it holds that

wp@): P ®) m

zeRn+t 2Tz~ Ty + a2
T €T T €
B [.’L‘ ’a] M |:a:| ~ a28? [JJ 7(1] M |:a:|
 2Tr+a? T + a2 xTe+a2
which implies
o a0t 7]
= (Umin([AFv b]))Qa

Amin(B(0)) < i —
(B(9)) xeNr(Iil)r,laeR 2Ty + o2
contradicting 2.8) and the solvability conditiomr,,;, ([AF,b]) < omin(AF) of the RTLS
problem @.2).

(vi): Assume that the functiop(d) has two rootgy(61) = g(62) = 0 with 6, # 0s.
With £(6) being the invariant subspace corresponding to the smaligshvalue ofB(#) it
holds that

yT Ny y]TNyj

g(f;) = min =: =0,7=12
2 vee(®;) yly Y7 y;

Hence, the smallest eigenvaldgin, 1 (B(61)) satisfies

TB(f M TN M
N1 (B(01)) = min ¥ Oy _ vy My vi Ny _ v My

v yTy yi vl yiy
which implies
yiMyr . y"B(0)y _ y3 B(01)y2  y3 My
“——— =min T < T = =5 (2.9)
Y11 Y y'y Ya Y2 Y5 Y2

Interchangingl; andé, we see that both sides i@.9) are equal, and therefore it holds that
)\min = )\min,l(B(el)) = Amin,2 (3(92))

By part (v) the last components af, andy, are different from zero. So, let us scale
y1 = [z, —1]" andy, = [7, —1]".

We distinguish two cases:
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Case 1: Two solution pair®,, [z, —1]T7) and(6s, [zT, —1]7) exist, withd; # 6, but
with the same vectat. Then the last row of

x| [ATA+0LTL ATb x| x .
B(aj) [_1] - |: bTA bTb—9j52:| |:_1:| - /\min |:_1:| ’ J = 1527 (210)

yields the contradictiofl; = -5 (b” Az — bTb + Ayin) = 62.
Case 2: Two solution paif®@y, [zT, —1]7) and (s, [zI, —1]T) exist, with¢; +# 6, and
x1 # x2. Then we have

Amin = Mmin yTB(Gl)y — y?B(Ql)yl _ leMyl + 0 yTNyl

1
v yTy ?hTyl yfyl y1Ty1
_uiMy _yiMy o yiNye g By T B(O)y
Yt yin yi yi v yTy

Thereforey, is an eigenvector corresponding to the smallest eigenvalueof both, B(6,)
andB(6,), which yields (according to Case 1) the contradictign= 0. 0

Theoren2.5demonstrates that ifis a positive root of;, thenz := —y(1 : n) /y(n+1)
solves the RTLS problen2(2) wherey denotes an eigenvector Bf(é) corresponding to its
smallest eigenvalue.

However,g is not necessarily continuous. If the multiplicity of theatast eigenvalue of
B(0) is greater than 1 for sonty, theng may have a jump discontinuity 8§, and this may
actually occur; cf. Exampl&.3wherey is discontinuous fof, = 0.5 andf, = 1. Hence,
the question arises whethgmay jump from a positive value to a negative one, such that it
has no positive root.

The following Theorem demonstrates that this is not posstithe standard cade= 1.

THEOREM 2.6. Consider the standard cade= I, whereo i, ([A,b]) < omin(A) and
6% < ||ITLS||2-

Assume that the smallest eigenvalueBgf,) is a multiple one for somé, . Then it
holds that

0¢[,lim g(9),9(60)]-

Proof. LetV,,;, be the space of right singular vectors#fcorresponding t@ i, (A),
andvq, ..., v, be an orthonormal basis ®,;,.
SinceAmin(B(0y)) is a multiple eigenvalue of

AT A+ 001 ATh
B(ao) = 0 :| 5

bl A bT'b — 0,62
it follows from the interlacing property that it is also theallest eigenvalue o™ A + 6, 1.
Hence Amin (B(00)) = omin(A4)? + 0o, and for every € Vp,i, We obtainm € £(0y) with

AT 1 V.
If the last component of an element &ff,) does not vanish, then it can be scaled to

X
{_J . Hence,

AT A+ 001 ATp x x
[ A bTb—eo(s?} {—1] = (omin(4) +00) {_1}
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from which we obtaif A7 A — 0,1, (A)21)x = ATb. Therefore, it holds that = z,,;, + 2
wherez i, = (AT A — o (A)21)T ATb denotes the pseudonormal solution angd Viiy.

Hence, v 5] [5] [e]]

is a basis o€ () with orthogonal columns and

wt L 0 w
(60) yT' Ny o wIVTNVw 0 ||Zminl* — 62
= min = Ml ——F = ml1
gi%0 yee®) yTy werr+t wTVTVw wERTH1 W I, 0 w
0 H373r1rlir1||2 +1
demonstrating that
. ”xminH2 52} mein”2 — 62 ||55TLSH2 — 52
fp) = min< 1, = > .
o(00) = min {1, e | < e F

The active constraint assumptidrzrrs||> = 62 < |lzrLs|/? finally yields thatg stays
positive atfy. 0

For general regularization matricésit may happen thay does not have a root, but it
jumps below zero at sonty.

REMARK 2.7. Ajump discontinuity ofj(f) can only appear at a valdg if \,in(B(6))
is a multiple eigenvalue aB(6,). By the interlacing theorem,,;, is also the smallest eigen-
value of AT A+6, L L. Hence there exists an eigenveataf A” A+ 6, L™ L corresponding
to the smallest eigenvalug,;,,, such thatt = (v7,0)T € £(6y) is an eigenvector oB(f).
The Rayleigh quotienR y (v) = (v Nv)/(vTv) of N atw is positive, i.e. Ry (v) = || Lv||>.

If g(6y) < 0, there exists some € £(0y) with Ry (w) = g(fy) < 0 andw has a non
vanishing last component. In this case of a jump discortijrhglow zero it is still possible
to construct a RTLS solution: A linear combination@fndw has to be chosen such that
Ry (av + pw) = 0. Scaling the last component v + Sw to -1 yields a solution of the
RTLS problem 2.2), which is not unique in this case.

EXAMPLE 2.8. Let

1 0 1
A=1lo 1], b6=]0 ,L:[\f ﬂ,(s:\/é. 2.11)
0 0 V5
Then,1 = oppin(A4) > dmin([4, b]) = 0.8986 holds, and the corresponding TLS problem has
the solution
wrrs = (ATA—60,,1) T ATh & [5'1326} :

SinceN (L) = {0}, the RTLS problemZ.11]) is solvable and the constraint at the solution is
active, becaus& = 3 < 53.9258 ~ || Lzr1s(|3 holds.

Figure2.1shows the corresponding functigi¥) with two jumps, one af = 0.25, and
another one & = 1, which falls below zero.

The matrixB(0) for 6, = 1

. 30 1
B =0 A +11FF Cl—lo 2 0
0 -0 1 0 3
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Jump below zero in the case L # |
2 T T T T T T T T T

9(6)
151 q
1

0.5+

= L
g 05

L L L L L L L L
0 0.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8 2

or

FIGURE 2.1.Jump below zero af(0) in the casel. # T

has the double smallest eigenvalug,, = 2 and corresponding eigenvectars= (0, 1,0)7
andw = (1,0,—1)T. The eigenvectors witl y () = 0 and last component1 arez; =
v+w = (1,1,-1)T andzy = —v+w = (1, -1, —1)T yielding the two solutions rr 151 =
(1,1)T andzgrrsa = (1,—1)T of the RTLS problemZ.11).

REMARK 2.9. Consider a jump discontinuity ébelow zero and let the smallest eigen-
value of (AT A + LT L) have a multiplicity greater than one (in Exampi&it is equal to
one). Then there exist infinitely many solutions of the RTu8ktem @.2), all satisfying
Ry ([t Rrps: —1") = 0.

3. Numerical method. Assuming thaty is continuous and strictly monotonically de-
creasing, Renaut and Gubg derived the following update

0
Op+1 =0 + 6*];9(910

for solvingg(0) = 0, where at ster (x§, , —1)" is the eigenvector oB(6) corresponding
to Amin (B(0k)), andg is defined in 2.6). Additionally, backtracking was introduced to make
the method converge, i.e., the update was modified to

0
Opi1=0r + L5—§g(9k) (3.1)

where. € (0, 1] was reduced until the sign conditi@if¢,.)g(6x+1) > 0 was satisfied. Thus,
Renaut and Guo considered the method described in Algotithm

Although in general the assumptions it5] (continuity and strict monotonicity of as
defined in £.6)) are not satisfied, the algorithm may be applied to the madifiinctiong in
(2.7) since generically the smallest eigenvaluelip) is simple and solutions of the RTLS
problem correspond to the root gf

However, the method as suggested by Renaut and Guo suffedrawbacks: The sug-
gested eigensolver in line 7 of Algorithinfor finding the smallest eigenpair & (0;11) is
the Rayleigh quotient iteration (or inverse iteration iniaexact version, where the eigen-
solver is terminated as soon as an approximatiqugrl, —1)7 is found satisfying the sign
condition). Due to the required LU factorizations at ea@pghis method is very costly. An
approach of this kind does not take account of the fact ttethtricesB(6;) converge as
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Algorithm 1 RTLSEVP [Renaut and Gud.§]]
Require: Initial guessiy > 0
1: compute the smallest eigenvalug,,(B(6y)), and the corresponding eigenvector
(Igv 71>T
2: computeg(6y), and sek = 1
3: while not convergedio
4: =1
5. while g(6x)g(0k+1) < 0do
6: updated, 1 by (3.2)
7 compute the smallest eigenvaldig;, (B(0x+1)), and the corresponding eigenvector

(xz-s-lﬂ _1)T
8: if g(@k)g(QkH) < 0 then
9: L=1/2
10: end if
11:  end while
122 k=k+1
13: end while

14: TRTLS = Tk+1

0, approaches the roétof g. We suggest a method which takes advantage of information
acquired in previous iteration steps by thick starts. Sdlypthe safeguarding by backtrack-
ing hampers the convergence of the method considerably. rdfgge to replace it by an
enclosing algorithm that generates a sequence of shrimkiagrals, all of which contain the
root. The algorithm further utilizes the asymptotic beloawf g.

3.1. Nonlinear Arnoldi. A method which is able to make use of information from
previous iteration steps when solving a convergent segueheigenvalue problems is the
Nonlinear Arnoldi method, which was introduced b9 for solving nonlinear eigenvalue
problems.

As an iterative projection method it computes an approxionato an eigenpair from a
projection to a subspace of small dimension, and it expdresubspace if the approximation
does not meet a given accuracy requirement. These prajsatan be easily reused when
changing the parametéy, A similar technique has been successfully appliedls) [L4] for
accelerating the RTLS solver ii]] which is based on a sequence of quadratic eigenvalue
problems.

Let Ti(u) = M + 6, N — pl, then Algorithm2 is used in step 7 of Algorithri. The
Nonlinear Arnoldi method allows thick starts in line 1, j.solvingT},(A\)u = 0 in stepk of
RTLSEVP we start Algorithn2 with the orthonormal basig that was used in the preceding
iteration step when determining the solution ; = Vz of VI'T},_;(A\)Vz = 0.

The projected problem

VITL () V2 = ([A, V)T (A, WV)z + 0, VINV — ul)z = 0 (3.2)

can be determined efficiently, if the matrices [4,b]V andLV (1 : n,:) are known. These
are obtained on-the-fly appending one column to the curramtixnat every iteration step of
the Nonlinear Arnoldi method. Notice that the explicit foafthe matrices\/ and N are not
needed to execute these multiplications. Moreover, we @lea advantage for the following
updates o by computing the produdfA, b]V)T ([A, b]V) in advance.

For the preconditioner, it is appropriate to chod3€ ~ N~!, that stays constant
throughout the whole algorithm. This can be computed clyeapice L and N are typi-
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Algorithm 2 Nonlinear Arnoldi
1: Start with initial basis/, VTV =1
2: For fixedd), find smallest eigenvalye of V7 T}, (11)V z = 0 and corresponding eigenvec-
tor z
: Determine a preconditiond?C' =~ T}, " (1)
csetu=Vz,r=T(p)u
. while ||7]|/||u]| > € do
v = PCr
v=v—-VVTy
9 =v/|lvl, V = [V, 7]
Find smallest eigenvalye of VI Ty (1)V 2 = 0 and corresponding eigenvector
10:  Setu=Vz,r="Tg(u)u
11: end while

© XN R ®

cally banded matrices. Otherwise a coarse approximatialsésgood enough; in most cases
even the identity matrix (that means no preconditionerjde aufficient.

3.2. Root-Finding algorithm. Figure3.1 shows the typical behavior of the graph of a
functiong close to its roof. On the left off its slope is often very steep, while on the right of
6 it approaches its limit-62 quite quickly. This makes it difficult to determirieby Newton’s
method, and this made the backtrackinglif][necessary to enforce convergence.

x107* Plot of g(6)
T T

L L L L L L L L L
[o] 1 2 3 4 5 6 7 8 9 10
[¢]

FIGURE 3.1. Plot of a typical functiory(6)

Instead, we apply an enclosing algorithm that incorportitesasymptote of, since it
turned out that this has still dominant influence on the beaf ¢ close to its root. Given
three pairg6;, g(9;)), j = 1,2, 3, with

01 <0y <05 and g(01) > 0> g(0s) 3.3)

we determine the rational interpolation
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wherep is a polynomial of degree 2 andis chosen such that(g(0;)) = 6;, j = 1,2,3.

If ¢ is strictly monotonically decreasing i, 03] then this is a rational interpolation of
gt 1 [9(63),9(61)] — R. As our next iterate we choogg = h(0). In exact arithmetic
04 € (01,05), and we replacé; or 03 by 6, such that the new triple satisfie3 ).

It may happen, due to nonexistence of the invgrseon [g(63), g(f1)] or due to round-
ing errors very close to the ro6t thaté, is not contained in the intervédy, 05). In this case
we perform a bisection step such that the interval is guaeghto still contain the root. If
two positive valueg(6;) are present, then sét = (6, + 03)/2 otherwise, in the case of two
negative valueg(6;) setf; = (01 + 63)/2.

If a discontinuity is encountered at the root, or close tehien a very smalt = 65 —
0, appears with relatively largg(61) — g(6s). In this case we terminate the iteration and
determine the solution as described in Exanipk

4. Numerical Example. To evaluate the performance of the RTLSEVP method for
large dimensions we use test examples from Handeetgilarization Tool$§10]. The eigen-
problems are solved by the Nonlinear Arnoldi method accaydd Sectior8.1and the root-
finding algorithm from the SectioB.2is applied.

Two functionsphillips andderiv2, which are both discretizations of Fredholm integral
equations of the first kind, are used to generate matuigse € R”*", right hand sides
btrue € R™ and solutions:trye € R™ such that

Atrue Ttrue = btrue

In all cases the matrices$rye and[Atrye, btrud are ill-conditioned.

To construct a suitable TLS problem, the normbgf{,e is scaled such thabiryellz =
max; ||Atrye(:, 7)||2 holds. The vectorirye is scaled by the same factor. The noise added to
the problem is put in relation to the maximal element of thgraented matrix

maxval= max (max (abs[Atrye btrud))-

We add white noise of level 1-10% to the data, setting= maxval- (0.01,...,0.1), and
obtain the systemdx ~ b to be solved wherel = Atrye + o F andb = birye + oe, and
the elements off ande are independent random variables with zero mean and uingtnea.
The matrix L € R(®~D*" approximates the first order derivative, afids chosen to be
§ = 0.9[| Latryel2-

TABLE 4.1
Example phillips, aver. CPU time in sec.

noise ‘ 1% ‘ 10%
n 1000 2000 4000 1000 2000 4000
CPUtime| 0.06 0.15 0.57] 0.05 0.14 0.54
MatVecs | 19.8 19.0 20.0| 18.8 18.2 18.9

TABLE 4.2
Example deriv2, aver. CPU time in sec.

noise 1% 10%
n 1000 2000 4000 1000 2000 4000
CPUtime| 0.07 0.20 0.69/ 0.07 0.19 0.68
MatVecs | 249 246 24.1| 23.6 234 23.6
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The numerical test were run on a 3.4 GHz PentiumR4 computar83B RAM under
MATLAB R2007a. Tablest.1and4.2 contain the CPU times in seconds and the number
of matrix-vector products averaged over 100 random sinauatfor dimensions = 1000,

n = 2000, andn = 4000 with noise levelsl% and 10% for phillips and deriv2, respec-
tively. The outer iteration was terminated if the residuaim of the first order condition
was less tham0—8. The preconditioner was calculated with UMFPACH, [i.e., MATLAB’s
[L,U, P,Q] = lu(N), with a slightly perturbedV to make it regular.

It turned out that a suitable start basisfor the Nonlinear Arnoldi is an orthonormal
basis of the Krylov spac& (M, e,,+1) of M with initial vector e,,1 of small dimension
complemented by the vecter:= onegn + 1, 1) of all ones. In the starting phase we de-
termine three value&; such that not ally(6;) have the same sign. Multiplying tltg either
by 0.01 or 100 depending on the sign af(¢;) leads after very few steps to an interval that
contains the root of(6).

Figure4.1 shows the convergence history of the RTLSEVP algorithm. fieblem is
phillips from [10], with a dimension of: = 2000 and a noise level of%.

Convergence history of RTLSEVP
T T T T

T

EVPres
O Nires ||
O 9

residual norm

. . . . . .
6 8 10 12 14 16 18 20
matrix—vector multiplications

FIGURE 4.1. Convergence history of RTLSEVP

This convergence behavior is typical for the RTLSEVP methdare the eigenvalue
problems in the inner iteration are solved by the Nonlineamoddi method. An asterisk
marks the residual norm of an eigenvalue problem in an irteeation, a circle denotes the
residual norm of the first order condition in an outer itevatand a diamond is the value
of the functiong(6;). The cost of one inner iteration is approximately one matexgtor
product (MatVec), whereas an outer iteration is much chedpenly consists of evaluating
the functiong(6y,), solving a 3x3 system of equations for the néw ; and evaluating the
first order condition. The outer iteration together with #waluation of the first residual of
the next EVP can be efficiently performed by much less than\ei/ec.

The size of the starting subspace for the Nonlinear Arnadidqual to six, which cor-
responds to the six MatVecs at the first EVP residual. AfteMEgVecs the three starting
pairs(6;, g(0;)) are found. This subspace already contains such good infarmabout the
solution that only two more MatVecs are needed to obtain fHeS=solution. The main costs
of Algorithm 1 with the Nonlinear Arnoldi method used in step 7 and the pseploroot-
finding algorithm in step 6 are only matrix vector multipliicens. The number of MatVecs is
much less than the dimension of the problem, hence the catiqual complexity is of order
O(n?) with n being the smaller matrix dimension df
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5. Conclusions. Regularized total least squares problems can be solveieafficby
the RTLSEVP method introduced by Renaut and GLig {ia a sequence of linear eigen-
problems. Since in general no fixed point behavior to a glatialmizer can be shown, the
function ¢(#) is introduced. A detailed analysis of this function and aahie root-finding
algorithm are presented. For problems of large dimensieretpenproblems can be solved
efficiently by the Nonlinear Arnoldi method.
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