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MATHEMATICAL PROPERTIES OF FLOWS OF INCOMPRESSIBLE
POWER-LAW-LIKE FLUIDS THAT ARE DESCRIBED BY IMPLICIT

CONSTITUTIVE RELATIONS ∗

JOSEF ḾALEK†

Abstract. We report on very recent developments concerning the modelling of the complex behaviour of mate-
rials within the framework of implicit constitutive theory due to K. R. Rajagopal. In this paper, we restrict ourselves
to a hierarchy of power-law-like fluids. For such a class of fluids, we provide an overview of recent results concern-
ing the mathematical analysis of the relevant boundary value problems. Mathematical results are presented for the
(Rothe) time discretizations of evolutionary problems. The main purpose of this paper is to emphasize the mathemat-
ical tools involved in the theoretical analysis and to initiate the development of numerical methods for the problems
presented here.
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1. Introduction. In continuum physics, three different concepts have been recently de-
veloped by K. R. Rajagopal and his co-authors in order to successfully model complex pro-
cesses in materials, which in most cases are of mechanical type. While individual components
of the framework were introduced with a different intent, Rajagopal and his co-workers gen-
eralized these ideas and melded them together to form a meaningful coherent theory. We will
briefly characterize these concepts.

The first approach is based on the notion of a natural configuration, associated to the
current configuration of the body. The natural configurationis the one that the body would
take on the removal of all external stimuli. This notion was introduced by Eckart [16], who,
however, did not recognize either the importance of the symmetry of the natural configura-
tion evolving during the process, or several other related issues. Recall, for example, that the
classical continuum mechanics framework, built upon the notions of current and reference
configurations, is too narrow to enable one to model inelastic behaviour of solid-like materi-
als or viscoelastic properties of materials. Thus, some artificial internal variable models have
been introduced in order to explain these features. On the other hand, an extended methodol-
ogy involving the concept of natural configurations provides a sufficiently robust framework,
which is free of such a deficiency. We refer the reader to Rajagopal [43] and his article in the
current volume for details.

A characteristic feature of the second approach is the application of the assumption of
maximization of the rate of entropy production in order to determine the form of the consti-
tutive relation between the Cauchy stress and relevant quantities, such as, for example, the
shear-rate in the case of fluids. This method, which efficiently selects the appropriate form of
the constitutive relations requires one to know how the bodystores the energy and what are
the relevant dissipative mechanisms; see Rajagopal and Srinivasa [53] for a detailed and trans-
parent description of the method. Note that the notion of maximization of the rate of entropy
production has been considered by several other authors earlier. For instance, Ziegler [62]
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used this idea within the context of plasticity, but the way in which the idea is enforced is
quite different from that of Rajagopal and his co-workers. Adetailed discussion of the same
topic can be found in Rajagopal and Srinivasa [54].

Finally, the third approach, namely the so-called implicitconstitutive theory, shares
a similarity with the first approach as it expands standard continuum mechanics enormously,
so that the framework is sufficiently robust to capture complicated nonlinear responses of
materials. In addition, this approach can eliminate some internal variable theories; observe
that internal variables have mostly a vague physical meaning and it is thus difficult to specify
boundary conditions for them. We refer the interested reader to the original papers of Ra-
jagopal [44] and [45] for details. Implicit constitutive relations have been used to describe
a material response for a long time. However, the idea of obtaining such models by appeal-
ing to the evolution of natural configurations and the maximization of the rate of entropy
production was first considered by Rajagopal and his co-authors.

The above-mentioned approaches turn out to be very efficientin predicting the response
of a wide variety of materials, as they represent a sufficiently robust framework of contin-
uum physics, suitable to capture complex behaviour of materials without any need to intro-
duce internal variable theory, macro-meso or macro-micro-scopic models. To illustrate our
point, see the application of these techniques to viscoelasticity [51, 52, 35], classical plastic-
ity [48, 49, 28], twinning [46, 47], solid to solid phase transition [50], crystallization in poly-
mers [55, 56], single crystal super alloys [42], inhomogeneous incompressible fluids [34],
mixture theory [37], fluids with pressure dependent viscosities or Bingham fluids [33, 54],
etc. Such new approaches are an inspiring source of ideas forthe mathematical formulation
and analysis of the relevant initial-boundary-value problems, and are also useful in the design
and analysis of numerical methods.

The aim of this article is twofold. First of all, in Section2 we would like to illustrate
the efficiency and wide applicability of the implicit constitutive theory, and the selectivity
role of the maximization of the rate of entropy production, focusing on a hierarchy of the
so-called homogeneous power-law-like incompressible fluids. For the fluids considered here,
the natural configuration coincides with the current one, and thus we refer to [51, 53, 35] and
the paper of K. R. Rajagopal in this volume for the demonstration of the usefulness of the
concept of natural (preferred) configuration. We present examples of the explicit and implicit
constitutive relations, and identify those non-Newtonianphenomena that these models can
capture.

The second aim of this paper is to discuss the mathematical properties of these models.
Based on the results available for steady flows, for which theexistence theory is essentially
complete, we formulate directly in Section3 the analogous results for the Rothe approxima-
tions (time discretization) of the evolutionary models. Weproceed from the simplest explicit
to fully implicit power-law-like fluid models, focusing on how the assumptions regarding the
structure of the constitutive relations and the mathematical formulations of problems change.
Concluding remarks and future directions are discussed in Section4.

2. Mechanics of power-law-like incompressible materials.A standard point of de-
parture for continuum mechanics dealing with processes, which take place at the uniform
temperature, is the following set of equations (consideredat any timet and any positionx at
the current configuration of the body):

̺t + div ̺v = 0,

(̺v)t + div(̺v ⊗ v) = div T , T = T T , (2.1)

T · D − ρ
dψ

dt
= ξ with ξ ≥ 0,
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where̺ is the density,ψ denotes the Helmholtz free energy,T ·D is the stress power,ξ stands
for the rate of dissipation,v = (v1, v2, v3) is the velocity,T = (Tij)

3
i,j=1 is the Cauchy

stress (symmetric tensor of the second order) andD := D(v) := (∇v + (∇v)T )/2 is the
symmetric part of the velocity gradient. We recall that the above equations (2.1) express
the balance of mass, the balance of linear and angular momentum, and the equation that
is a consequence of the balance of energy and the second law ofthermodynamics if the
temperature is constant; see for example [53] or [33] for details.

We are interested in describing flows of various fluid-like-materials that, while exhibiting
many different and fascinating phenomena, nevertheless share one common feature: these
materials are well approximated asincompressible, homogeneousfluids. This means that the
density̺ and the Helmholtz free energyψ (which is supposed to be a function of density) are
constant and

div v = tr D = D · I = 0. (2.2)

For the sake of simplicity, we multiply the first equation of (2.1) by ̺−1 and writeT , instead
of ̺−1T , in what follows.

Introducing the pressure asp := − 1
3 tr T we can decompose the Cauchy stressT into

its spherical part−pI and the deviatoric (traceless) partS, i.e.,T = −pI + S. Replacing
vt(t, ·) by its discretization1/h

(

v(t, ·) − v(t − h, ·)
)

and setting1 f(t, x) = 1
hv(t − h, x),

we obtain the so-called Rothe approximation of (2.1)-(2.2):

div v = 0 and div(v ⊗ v) − div S +
1

h
v = −∇p+ f , (2.3)

T · D = ξ with ξ ≥ 0. (2.4)

An incompressible fluid is said to be Newtonian if

S = 2µ∗D ⇐⇒ T = −pI + 2µ∗D (µ∗ ∈ (0,∞)). (2.5)

Inserting (2.5) into (2.3), we obtain the Navier-Stokes equations and (2.4) then leads to

ξ = 2µ∗|D|2 = (2µ∗)−1|T |2 = (2µ∗)−1|S|2, (2.6)

where the symbol|A| stands for(A · A)1/2 =
(
∑3

i,j=1(A
2
ij)

)1/2
.

2.1. Implicit constitutive relations. As the broadly used and popular Navier-Stokes
model (2.5) suggests, the relationship between the shear stress (or more generally the Cauchy
stressT ) and the shear rate (the symmetric part of the velocity gradient D(v)) is well ac-
cepted for many fluid-like materials. A general point-wise relation of this type can be written
in the form:

G(t, x,T (t, x),D(t, x)) = 0.

In what follows, we restrict ourselves to the relation

G(T ,D) = 0. (2.7)

Following Rajagopal [45], we can look at the consequences of the assumption thatG in (2.7)
is an isotropic function of the tensorsT and D. It then follows from the representation

1Note thatdiv f = 0 due to (2.2). Although we could consider a more generalf in what follows, for simplicity
we restrict ourselves only tof that satisfiesdiv f = 0.
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theorem of such functions (see [59]) that (2.7) takes the following most general form

α0I+α1T + α2D + α3T
2 + α4D

2 + α5(TD + DT )
(2.8)

+α6(T
2D + DT 2) + α7(TD2 + D2T ) + α8(T

2D2 + D2T 2) = 0,

whereαi, i = 0, . . . , 8, are functions of the invariants

tr T , tr D, trT 2, trD2, tr T 3, tr D3, tr(TD), tr(T 2D), tr(D2T ), tr(D2T 2).

Since we deal with incompressible fluids, there is an interesting subclass of (2.7), namely
those fluids for which the traceless partS andD are related implicitly. More precisely,

T = −pI + S with G(S,D) = 0. (2.9)

In the next section, we intend to point out several examples of the so-called power-law-like
fluids that fall into the categories (2.7) and/or (2.9). We then look at these models from two
different points of view: (i) as special cases of the generalform (2.8) obtained by using the
representation theory for the isotropic second order tensors G of the form (2.7), and (ii) as
models obtained by using the thermomechanical framework based on the assumption that
material response corresponds to the response that maximizes the rate of entropy production.

2.2. Explicitly constituted power-law-like fluids. Besides the Navier-Stokes fluid de-
fined in (2.5), the subclass (2.9) also includes power-law fluids:

T = −pI + 2µ∗|D|r−2D =: −pI + 2µ1(|D|2)D = −pI + S, (2.10)

wherer ∈ [1,∞) is the so-called power-law index andµ1(s) = µ∗ s(r−2)/2, µ∗ ∈ (0,∞). It
is easy to observe that the following relations hold for (2.10):

|S|= 2µ∗|D|r−1, (2.11)

S · D= 2µ∗|D|r =
|S|r/(r−1)

(2µ∗)1/(r−1)
= µ∗|D|r +

1

2

|S|r/(r−1)

(2µ∗)1/(r−1)
, (2.12)

and for allD, E ∈ R
3×3 such thatD 6= E

(

S̃(D) − S̃(E)
)

· (D − E) > 0, where S̃(B) := 2µ∗|B|r−2B. (2.13)

The model (2.10) has the ability, at a simple shear flow, to shear-rate thicken (for r > 2)
or thin (if r ∈ (1, 2)). Note that forr = 2 this model coincides with (2.5). Note also
that if r > 2, then the generalized viscosityµ1(|D|2) vanishes as|D| tends to zero, or if
r ∈ (1, 2) the viscosityµ1(|D|2) tends to+∞ as |D| → 0+. While this degenerate or
singular behaviour of the viscosity might be useful to approximate adequately the behaviour
of certain materials, there are many other materials for which µ, considered as a function
of |D|2, attains a proper limit as|D| → 0+. The same goes for the behaviour ofµ1 for large
D as well. As an example, we can state two models suitable to model such a behaviour,

T= −pI + 2µ∗

0D + 2µ∗

1|D|r−2D = −pI + 2(µ∗

0 + µ∗

1|D|r−2)D
(2.14)

=: −pI + 2µ2(|D|2)D , µ∗

0, µ
∗

1 ∈ (0,∞) ,

and

T= −pI + 2µ∗

0(ε+ µ∗

1|D|2)(r−2)/2D
(2.15)

=: −pI + 2µ3(|D|2)D , µ∗

0, µ
∗

1, ε ∈ (0,∞) ,
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which, for obvious reasons, are called the modified and generalized Navier-Stokes fluids,
respectively.

It is worth mentioning that the fluids characterized by the relations (2.14) and (2.15)
satisfy (2.13) and fulfil growth and coerciveness conditions similar to (2.11) and (2.12).

We can require thatT or S behaves as (2.10) or (2.14) only asymptotically, for small or
large values ofD. Such fluids, which we call power-law-like fluids, can be characterized by
the constitutive relation

S = S̃(D) = 2ν(|D|2)D (2.16)

completed by the following assumption: there areC1, C2 ∈ (0,∞) andκ ≥ 0 (usuallyκ = 0
or κ = 1) such that

S̃(D) · D ≥ C1(κ+ |D|2)(r−2)/2|D|2

|S̃(D)| ≤ C2(κ+ |D|2)(r−1)/2,
(2.17)

and (2.13) holds for allD, E ∈ R
3×3, D 6= E.

Sometimes it is more suitable to require a stronger assumption, namely that there are
K1,K2 ∈ (0,∞) andκ ≥ 0 such that, for allD,B ∈ R

3×3,

K1(κ+ |D|2)(r−2)/2|B|2 ≤
∂S̃(D)

∂D
· B ⊗ B ≤ K2(κ+ |D|2)(r−2)/2|B|2, (2.18)

where we use the notation

∂S̃(D)

∂D
· B ⊗ B =

3
∑

i,j,k,ℓ=1

∂S̃ij(D)

∂Dkl
BijBkl.

It is shown, for example in [32], that (2.18) implies (2.17) and (2.13).
More generally, one can assume the constitutive relation ofthe form (2.16), in which the

dependence of̃S on D (or ν on |D|) is not polynomial. Such fluids are called fluids with
shear-rate dependent viscosity. The caseµ(s) = µ∗ exp(s) or µ(s) = µ∗ log(1 + s) are just
two possible examples.

The framework of power-law-like fluids presented above is sufficiently robust to model
behaviour of various types of fluid-like materials. Models are frequently used in many areas
of engineering and natural sciences: mechanics of colloidsand suspensions, biological fluid
mechanics, elastohydrodynamics, ice mechanics and glaciology, food processing, etc. We
refer the reader to [38] for a representative list of relevant references.

Note that all the above-considered relations between (the deviatoric partS of) the Cauchy
stressT andD areexplicit. All of them have the potential to capture the non-Newtonianphe-
nomena of shear-rate thickening or shear-rate thinning; see [33] for a more recent description
of non-Newtonian characteristics.

2.3. Fluids with pressure (and shear-rate) dependent viscosity. In this subsection,
we consider fluids with Cauchy stress of the form

T = −pI + 2µ(p)D or T = −pI + 2µ(p, |D|2)D. (2.19)

These are fullyimplicit constitutive relations that generate a subclass of (2.7). Indeed, fol-
lowing Rajagopal [45] and making a very special choice ofαi in (2.8), namely

α0 = (tr T )/3, α1 = 1, α2 = µ
(

(tr T )/3, |D|2
)

, αi = 0 (i = 3, . . . , 8),

we obtain (2.19).
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Fluids with pressure-dependent viscosity have broad applications not only in elastohy-
drodynamics (see [61]), but they also play an important role in processes involving high
pressures. The fact that the viscosity should depend on the pressure is carefully discussed by
Stokes in [60]. A typical dependence of the viscosity on the pressure is exponential, as docu-
mented in the experimental reports by Andrade in the 1920’s;see the book by Bridgman [9]
and the survey article [36] for further references.

For the sake of completeness we add three examples of the viscosities depending on the
pressure and the shear rate:

µ(p, |D|2) =

(

η∞ +
η0 − η∞

1 + δ|D|2−r

)

exp(γ p)

(2.20)
η0, η∞, δ, γ ∈ (0,∞), r = 1.43,

µ(p, |D|2) = c0
p

|D|
c0 ∈ (0,∞), r = 1, (2.21)

µ(p, |D|2) = (A+ (1 + exp(αp))−q + |D|2)
r−2
2

(2.22)
α,A ∈ (0,∞), r ∈ (1, 2), q ∈

(

0,
1

2α

r − 1

2 − r
A(2−r)/2

)

.

The fluid (2.20) was numerically treated in [25], the second model (2.21) was proposed by
Schaeffer [57] in order to model flows of sand in silos. The last example (2.22), proposed
in [31], approximates a pure exponential relationship between the viscosity and the pressure
so that the assumptions (A1)-(A2) required by the current mathematical methods are fulfilled.

Although we have clarified the implicit character of the fluidwith pressure-dependent
viscosity (the relationship betweenT andD is implicit), it is also possible to look at these
models as those with the explicit relations betweenS andD parameterized byp, i.e.,

S = S̃(p,D) = 2µ(p, |D|2)D. (2.23)

In the next subsection we discuss the fluids where the relation betweenS andD is implicit,
thus being of the form (2.9).

2.4. Fluids with activation criteria. The characteristic feature of the fluid considered
in this part is a dramatic change in the material response once the critical value for the stress
or the shear rate is reached. We shall distinguish two cases:(i) the Bingham and Herschel-
Bulkley fluids where the critical value for the modulus of theshear rate is zero, (ii) the fluids
with activation criteria that takes place if|D| = d∗ with d∗ positive. One should take into
account that these are just two prototypes of implicitly constituted power-law-like fluids,
as we shall illustrate in what follows, and it is possible to generate plenty of other models
described by the implicit constitutive relationships.

Referring the reader to (2.10), (2.14) and (2.15) for the definition ofµi, i = 1, 2, 3,
that are all of the power-law type, the description of the Bingham [7] and the Herschel-
Bulkley [26] fluids reads

|S| > 2τ∗ if and only if S = 2τ∗
D

|D|
+ 2µi(|D|2)D,

(2.24)
|S| ≤ 2τ∗ if and only if D = 0.

If the fluid behaves as the Navier-Stokes one once the threshold has been reached (by that we
mean thatr = 2 in µi in (2.24)), the model is called a Bingham fluid. If the fluid response
is that of a power-law-like fluid, we talk about a Herschel-Bulkley fluid. We refer the reader
to [39] for further references dealing with the Bingham and Herschel-Bulkley fluid models.
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For our purpose, it is suitable to follow Rajagopal and Srinivasa [54] and to write (2.24)
as

2µi(|D|2)D
(

2τ∗ + (|S| − 2τ∗)+
)

=
(

|S| − 2τ∗
)+

S. (2.25)

Clearly, (2.25) captures all features of (2.24).
Note that (2.25) is an implicit relation2 betweenS andD. From the point of view of the

mathematical analysis, such a formulation has several advantages. For example, it does not
require one to think in terms of variational inequalities, the penalty method, etc.

Another class of models is used to take into account radical changes of properties of
the fluids (such as the viscosity, for instance) when a certain critical valued∗ ∈ (0,∞) of
the modulus of the shear rate|D| is met. Inspired by Anand and Rajagopal [2], who were
modelling the changes in the blood flow due to the blood platelets activation3, Gwiazda et
al. [23] considered the following model:

S= µα(|D|2)D if |D| < d∗,

S= µβ(|D|2)D if |D| > d∗, (2.26)

S= µ∗D if |D| = d∗,

whereµ∗ takes any value betweenµ∗

α := lims→d∗

−

µα(s) andµ∗

β := lims→d∗

+
µβ(s). Here,

µα, µβ are viscosities of any of the power-law-like models discussed above. To motivate a
response described in (2.26), we could consider a biological fluid that at a particular shear
rate or shear stress undergoes chemical processes at a different (much shorter) time scale.
During such a quick process the viscosity of the fluid can change so dramatically that it is
reasonable to model it as in (2.26). Another possible scenario for such a response is the flow
of a granular material wherein at a certain shear rate the material continues flowing at the
same shear rate even though the stress is increasing. Only after reaching a higher threshold
of stress does the shear rate start to increase.

As in the case of Herschel-Bulkley fluids, we can rewrite (2.26) implicitly in the form

| |D| − d∗ |S = M(|D|2)(|D| − d∗)D

with M(s) := max{µα(s)sgn(s − d∗);µβ(s)sgn(s − d∗)}, where we assume (just for sim-
plicity) thatµα(s) ≤ µβ(s) for all s ∈ R

+
0 .

2.5. An application of the maximal rate of the entropy production in determining
the constitutive relations. The aim of this subsection is to show, following Rajagopal and
Srinivasa [54], how all the power-law like models can be obtained using theassumption
that the material responses to the external stimuli in such away that the entropy production
(in our case the rate of dissipation), considered as a function of the flux of the molecular
momentumS, is maximal provided that the thermomechanical equation (2.4) is fulfilled.

We start with the observation that the decomposition ofT into its spherical and deviatoric
part−pI andS, and the constraint of incompressibility applied to (2.4), lead to the equation

S · D = ξ with ξ ≥ 0. (2.27)

Inspired by (2.6) we start consideringξ of the form

ξ =
g(|D|)

m(p, |D|2)
|S|2 . (2.28)

2In fact, it is an example of the relation whereD is a function ofS.
3For the full treatment of the modelling of blood that takes intoaccount more details of biochemistry; see Anand

et al. [3, 4].
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Assuming thatg(s) ≥ 0 andm(s) > 0 thenξ is non-negative and the second-law of thermo-
dynamics is satisfied.

Maximizing ξ of the form (2.28) with respect to all admissibleS fulfilling ( 2.27) results
in (observe that the auxiliary Lagrange function is of the form ξ + λ(ξ − S · D))

1 + λ

λ

∂ξ

∂S
= D.

Using the constraint (2.27) together with (2.28) leads directly to1+λ
λ = 1

2 . Consequently

g(|D|)S = m(p, |D|2)D.

Special choices give particular models. For example, considering the caseg ≡ 1 and taking
m(p, s) = 2µ∗, m(p, s) = 2µ∗

i (s)H, for i = 1, 2, 3, andm(p, s) = 2µ(p, s), we obtain
the Navier-Stokes fluid (2.5), the classical, modified and generalized power-law fluids (2.10),
(2.14) and (2.15), and finally the fluid with pressure and shear-rate dependent viscosity (2.23),
respectively.

It is obvious that there are many other choices ofξ that satisfy the second-law of thermo-
dynamics; they lead to new classes of models. For example, asthe structure ofξ generated
by the power-law-fluids suggests (see (2.12)), the choices

ξ = β(κ+ |S|2)
1
2

(2−r)
(r−1) |S|2 (with β > 0 andκ > 0)

lead to interesting classes of power-law-like models whichhave not been studied so far in this
form.

3. Analysis of PDEs and existence of weak solutions.Models of continuum mechan-
ics that are built on the principles of classical mechanics form huge classes of models de-
signed to capture motions/deformations of bodies. The maintask is then to determine these
motions/deformations from the knowledge of the initial andboundary conditions. Thus, in-
dependently of how precisely these models approximate reality, mathematical analysts ask
about the mathematical consistency (well-posedness) of these problems. What is the appro-
priate notion of solution to the considered initial-boundary-value problems? Is it then possible
to establish its existence and to analyze its further qualitative properties, such as uniqueness,
smoothness for smooth data, long-time behaviour, stability of special flows or deformations,
or to investigate various singular limits? Can one use this information to investigate shape
optimization problems or to control the flows optimally? Howshould one design the numer-
ical schemes that would take advantage of theoretical results so that we know exactly which
object we approximate?

With this aim in mind, we need the appropriate notion of a solution. Since the bal-
ance equations of continuum physics are formulated for any subset of a body, the principles
(assumptions) of classical mechanics are required to hold for average quantities, and so the
notions such as theweak solutionseem to be a sound choice; see the book by Feireisl [17] or
the introductory part of one of his more recent papers [18]. The fact that the notion of a weak
solution is the point of departure of the Finite Element Method (which has a close relation to
the Finite Volume Method) gives even stronger support to thenotion of a weak solution.

It is of interest to mention, referring to [34] for details, that the procedure of maxi-
mization of the rate of entropy production that is based on the knowledge of the constitutive
equations forψ andξ, as appeared in (2.17), also provides the function spaces in which the
weak solution should be constructed.
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The aim of this section is to present results regarding the existence of weak solutions to
the boundary-value problem

div v = 0 and div(v ⊗ v) − div S +
1

h
v = −∇p+ f in Ω, (3.1)

v = 0 on∂Ω,
1

|Ω|

∫

Ω

pdx = p∗, (3.2)

whereS andD = D(v) are related through the power-law-like relationships discussed in
the previous section, andΩ ⊂ R

3 is a bounded open connected set that is, for simplicity,
assumed to have Lipschitz boundary∂Ω, andp∗ ∈ R is a constant that denotes the mean
value of the pressure.

The scheme of this section is the following: first we shall restrict ourselves to Navier-
Stokes fluids and instead of mentioning any existence results4, we outline the standard ex-
istence scheme. Then we shall focus on classical power-law fluids and explain where the
critical values of the power-law index appear and emphasizethe differences in the analysis
of Navier-Stokes fluids and power-law fluids. Finally, we shall discuss existence results for
power-law-like fluids, for fluids with the pressure and shear-rate dependent viscosity, and,
finally, for power-law-like fluids with activation criteria.

We use a standard notation for the Lebesgue and Sobolev spaces5
(

Lr(Ω), ‖ · ‖r

)

and
(

W 1,r(Ω), ‖ · ‖1,r

)

. We also define

W 1,r
0 (Ω) := {u;u ∈W 1,r(Ω), u|∂Ω = 0},

W 1,r
0,div(Ω) := {v;v ∈W 1,r

0 (Ω)3,div v = 0}.

By the symbol· we mean the scalar product inR3 or R
3×3.

3.1. Navier-Stokes fluids.Upon inserting (2.5) into (3.1), we obtain the Navier-Stokes
equations

div v = 0, −µ∗∆v + div(v ⊗ v) +
1

h
v = −∇p+ f in Ω. (3.3)

When completed by boundary conditions, such as those in (3.2), a constructive (i.e., numeri-
cally realizable) proof of the existence of a weak solution proceeds via the following steps:
Step 1.The construction of finite-dimensional approximations(vN , pN ), such as, for exam-
ple, Galerkin or finite element approximations, and a proof of existence for fixedN (that
characterizes the dimension of the finite-dimensional space) using one of the variants of the
Brower fixed-point theorem.

Frequently, one needs some intermediate continuous systems between the Galerkin finite-
dimensional approximations and the original system. To give an example, one can consider,
for ε ∈ (0,∞), the quasicompressible approximation to (3.3) of the form

− ε∆p+ div v = 0, −µ∗∆v + div(v ⊗ v) +
1

h
v = −∇p+ f in Ω. (3.4)

Even more, withη ∈ (0,∞), the system (3.4) can be approximated by a variant of the Oseen
approximation, where the termdiv(v ⊗ v) is replaced bydiv(vη ⊗ v) andvη is a suitable
smooth, divergence-free function that approximatesv.

4Note that it has been recently proved that, for any smooth data, there is a smooth solution to the Rothe approx-
imation of the Navier-Stokes system independently of dimension; see [22].

5If X denotes a space of scalar functions, thenX
3 or X

3×3 denotes the corresponding space of vector-valued
or tensor-valued functions, respectively.
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Step 2.The establishment of the uniform estimatessupN ‖∇vN‖2
2 + supN ‖pN‖2

2 < ∞, by
takingvN as a “test” function in the Galerkin system.
Step 3. The identification of a candidate(v, p) for the solution by using the fact that the
balls in the infinite-dimensional reflexive separable spaces are weakly compact: for selected
subsequences (for which we use the same index)∇vN → v andpN → p weakly inL2 as
N → ∞.
Step 4.The nonlinear terms require additional analysis, since theweak convergence is not
alone sufficient to guarantee the convergence of these terms. The Navier-Stokes equations
include one quadratic nonlinearityv ⊗ v. The fact thatvN → v strongly inL2 follows from
the compact embeddingW 1,2

0 (Ω)3 into L2(Ω)3 and this is sufficient to identify the limit in
the convective term.
Step 5.The limit in the approximations asN → ∞ that leads to the conclusion that(v, p) is
indeed a week solution of the problem.

When dealing with power-law-like fluids, we have to identify the limit of another nonlin-
ear term, namely, to show that, at almost all points ofΩ, the relationship betweenS andD of
the type (2.9) holds. To identify this relationship in the limit requiresother tools, such as, for
example, some kind of a monotone operator theory, or a higher-differentiability method, etc.
Below, instead of the proofs, we just list the tools that are involved in the analysis of these
problems; and we refer the reader to the original papers, where the details and the complete
proofs are given. Before this, we first point out where the critical exponents arise.

3.2. Critical values for the power-law index. Upon inserting (2.10) into (3.1), we ob-
tain the system

div v = 0, −µ∗ div(|D(v)|r−2D(v)) + div(v ⊗ v) +
1

h
v = −∇p+ f in Ω.

If we proceed as in the case of the Navier-Stokes equations and construct finite-dimensional
approximations, we conclude that

sup
N

‖∇vN‖r
r <∞,

which leads us to expect that the weak solution (weak limit generated byvN ) would belong
to the spaceW 1,r

0,div(Ω).
Next, applying the divergence to the second equation in (3.3), and using the fact that

div f = 0 in our slightly simplified setting, we obtain the equation for the pressure:

p = (−∆)−1 div div(v ⊗ v − µ∗|D(v)|r−2D(v)).

Since, in three spatial dimensions,W 1,r →֒ L3r/(3−r), we observe thatv⊗v ∈ L
3r

2(3−r) . We
also know that|D(v)|r−2D(v) ∈ Lr′

with r′ := r/(r − 1). Thus, the pressure belongs to
the intersection of these two Lebesgue spaces (which form a chain since we are in bounded
domain). Since

r

r − 1
≤

3r

2(3 − r)
⇐⇒ r ≥

9

5
,

we conclude thatp ∈ Lr′

(Ω) if r ≥ 9
5 andp ∈ L

3r

2(3−r) (Ω) if r < 9
5 .

Moreover, as a consequence of this observation, one can see that: (i) if v, φ ∈W 1,r then
v ⊗ v · ∇φ ∈ L1 only for r ≥ 9/5; (ii) for r ≥ 9/5, the energy equality holds and higher
differentiability techniques can be applied. These tools make the analysis of the problem
easier. Consequently, the caser < 9/5 is more complicated.
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There is another bound that comes from the compactness required for the quadratic non-
linearityv ⊗ v. It follows from the compact embedding theorem that

W 1,r →֒→֒ L2 if and only if r >
6

5
.

To summarize, the analysis of the problems for power-law-like fluid models should in
general be easier forr ≥ 9/5 than forr ∈ (6/5, 9/5); in both cases it is more difficult than
the proof of the existence of a weak solution to the Navier-Stokes equations. This type of
analysis is completely open forr ∈ [1, 6/5] in three-dimensional domains.

3.3. Results for explicitly constituted power-law like fluids. Consider the problem
(3.1) with the constitutive relation (2.16), whereS̃ is assumed to satisfy (2.13) and (2.17)6.
This means that we are interested in finding a (weak) solutionof

div v = 0 and div(v ⊗ v) − div(S̃(D(v))) +
1

h
v = −∇p+ f in Ω,

(3.5)
v = 0 on∂Ω,

1

|Ω|

∫

Ω

pdx = p∗.

The following results have been established so far.
THEOREM 3.1. Let S̃(·) fulfil (2.13) and (2.17) with r ≥ 9/5. Assume that

f ∈
(

W 1,r
0 (Ω)3

)

∗

and p∗ ∈ R. (3.6)

Then there is a weak solution(v, p) to (3.5) such that

v ∈W 1,r
0,div(Ω) and p ∈ Lr′

(Ω).

Proof. See Ladyzhenskaya [29] and Lions [30]. Tools: monotone operator theory and the
Minty method (the energy equality) to show the almost everywhere convergence ofD(vN ),
and a compact embedding forvN .

THEOREM 3.2. Let S̃(·) fulfil (2.13) and (2.17) with r ∈ (6/5, 9/5) and suppose that
(3.6) holds. Then there is a weak solution(v, p) to (3.5) such that

v ∈W 1,r
0,div(Ω) and p ∈ L3r/(2(r−1))(Ω).

Proof. See Frehse et al. [21] and Diening et al. [13]. Tools: Lipschitz approximations of
Sobolev functions (a strengthened version) in order to replacevN − v, which is not admis-
sible as test function, by its Lipschitz approximation; a strictly monotone operator theory; a
compact embedding forvN .

As already observed in the previous section, one could assume a stronger condition,
namely (2.18), which implies both (2.13) and (2.17). A condition very similar to (2.18) will
appear in the next subsection.

3.4. Results for fluids with pressure and shear-rate dependent viscosities. Having
in mind S̃(p,D(v)) of the formµ(p, |D(v)|2)D(v), we are interested in finding a (weak)
solution to the problem

div v = 0 and div(v ⊗ v) − div(S̃(p,D(v))) +
1

h
v = −∇p+ f in Ω,

(3.7)
v = 0 on∂Ω,

1

|O|

∫

O

p dx = p∗,

6This is exactly the characterization of what we mean by power-law-like fluids.
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whereO ⊂ Ω is a typically small open subset, in which we fix the pressure.
We impose the following structural assumptions onS̃(p,D):

(A1) givenr ∈ (1, 2) there areC1 > 0 andC2 > 0 such that for all symmetric matrices
B, D and allp

C1(1 + |D|2)
r−2
2 |B|2 ≤

∂
[

(µ(p, |D|2)D
]

∂D
· (B ⊗ B) ≤ C2(1 + |D|2)

r−2
2 |B|2;

(A2) for all symmetric matricesD and allp

∣

∣

∣

∣

∂[µ(p, |D|2)D]

∂p

∣

∣

∣

∣

=

∣

∣

∣

∣

D
∂µ(p, |D|2)

∂p

∣

∣

∣

∣

≤ γ0(1 + |D|2)
r−2
4 ≤ γ0

and

γ0 <
1

Cdiv,2

C1

C1 + C2
,

where the constantCdiv,q occurs in the following problem: findz ∈W 1,q
0 (Ω) which

solves

div z = g in Ω, z = 0 on∂Ω and ‖z‖1,q ≤ Cdiv,q‖g‖q ,

whereg ∈ Lq(Ω), fulfilling
∫

Ω
g dx = 0, is given. The solvability of such a prob-

lem is discussed in Bogovskiı̆ [8], Amrouche, Girault [1] or in the recent book by
Novotńy and Strǎskraba [40].

Note that (A1) expresses the fact that althoughS̃ depends onp, it behaves as a power-law-like
fluid uniformly with respect top; see (2.18) for a comparison.

THEOREM3.3. Taker ∈ (9/5, 2) and let (3.6) hold. Assume that(A1)-(A2) are fulfilled.
Then there is a weak solution(v, p) to (3.7) such that

v ∈W 1,r
0,div(Ω) and p ∈ Lr′

(Ω).

Proof. See Franta et al. [20]. Tools: quasi compressible approximations in order to iden-
tify the pressure at the early stage of the proof; the structure of the viscosities; the solvability
of the equationdiv z = g; strictly monotone operator theory in theD-variable; compact-
ness for the velocity gradient; compactness for the pressure; the energy equality; a compact
embedding for the velocity.

THEOREM 3.4. Taker ∈ (6/5, 9/5) and let (3.6) hold. Assume that(A1)-(A2) are
fulfilled. Then there is a weak solution(v, p) to (3.7) such that

v ∈W 1,r
0,div(Ω) and p ∈ L3r/(2(r−1))(Ω).

Proof. See Buĺıček, Fǐserov́a [11]. Tools: quasi compressible approximations in order
to identify the pressure at an early stage of the proof; Lipschitz approximations of Sobolev
functions (a strengthened version [13]); the structure of the viscosities; the solvability of the
equationdiv z = g; strictly monotone operator theory in theD-variable; compactness for the
velocity gradient; compactness for the pressure; the decomposition of the pressure; a compact
embedding for the velocity.
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3.5. Implicit power-law-like fluids. For the power-law indexr ∈ (1,∞), we setr′ :=
r/(r − 1) and r̃ := min{r′, r∗/2}, wherer∗ = 3r/(3 − r) if r ∈ [1, 3), andr∗ = ∞
otherwise. We look for the triplet(v, p,S) : Ω → R

3 × R × R
3×3 satisfying

v ∈W 1,r
0,div(Ω), p ∈ Lr̃(Ω), S ∈ Lr′

(Ω)3×3,

div (v ⊗ v + pI − S) +
1

h
v = f in D′(Ω), (3.8)

(Dv(x),S(x)) ∈ A for almost allx ∈ Ω,

whereA shares the following properties:
(B1) (0,0) ∈ A.
(B2) For all (D1,S1), (D2,S2) ∈ A

(S1 − S2) · (D1 − D2) ≥ 0 (A is a monotone graph).

Moreover, ifD1 6= D2 andS1 6= S2 then the inequality is strict (it means thatA is
a strictly monotone graph in a generalized sense).

(B3) If (D,S) ∈ R3×3
sym ×R3×3

sym fulfils

(S − S) · (D − D) ≥ 0 for all (D,S) ∈ A,

then(D,S) ∈ A (A is a maximal monotone graph).
(B4) There are non-negativem ∈ L1(Ω) andC > 0 such that for all(D,S) ∈ A

S · D ≥ −m(x) + c(|D|r + |S|r
′

) (A is ar-graph)7.

One could assume (see [12]) thatA is anx-dependent graph without any essential difficulties.
Here, we assume thatA(x) is the same at all pointsx ∈ Ω.

Before formulating the results that have been recently established, we would like to em-
phasize the symmetric role ofS andD in the assumptions(B1)-(B4) that thus fully reflects
the implicit character of the constitutive relationships (3.8)3 or (2.9).

THEOREM 3.5. Taker ∈ (9/5, 2) and let (3.6) hold. Assume that(B1)-(B4) are fulfilled
and consider Herschel-Bulkley or Bingham fluids. Then thereis a weak solution(v, p,S)
to (3.8).

Proof. See Ḿalek et al. [39]. Tools: the local regularity method performed in such a way
that the whole analysis does not involve the pressure; higher-differentiability; uniform mono-
tone operator properties; a compact embedding for the velocity and the velocity gradient;
Shelukhin’s approach [58] to identify jumps in the constitutive equations.

THEOREM 3.6. Taker ≥ 9/5 and let (3.6) hold. Assume that(B1)-(B4) are fulfiled.
Then there is a weak solution(v, p,S) to (3.8).

Proof. See Gwiazda et al. [23]. Tools: Young measures (generalized version); the en-
ergy equality; a strictly monotone operator; properties ofapproximations of discontinuous
functions; a compact embedding for the velocity.

THEOREM 3.7. Taker > 6/5 and let (3.6) hold. Assume that(B1)-(B4) are fulfilled.
Then there is a weak solution(v, p,S) to (3.8).

Proof. See Buĺıček et al. [12]. Tools: the characterization of maximal monotone graphs
in terms of1-Lipschitz continuous mappings due to Francfort et al. [19]; Young measures;
the biting lemma [5, 10]; Lipschitz approximations of Sobolev functions (a strengthened
version [13]); a compact embedding for the velocity.

7Compare with (2.12).
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4. Concluding remarks. We have considered a hierarchy of so-called power-law-like
(homogeneous, incompressible) fluids within the frameworkof implicit constitutive theory,
developed recently by K. R. Rajagopal in [44, 45] and [54]. Following these studies, we have
shown that the class of fluids considered is thermomechanically consistent. We have also
briefly mentioned that the models have the ability to capturethree types of non-Newtonian
characteristics: shear thinning and thickening, pressurethickening and “jumps” in the stress
due to activation. Focusing on how the definition of the (weak) solution and the structural
assumptions change when going from explicit to implicit relations between the shear rate and
the shear stress, we have presented available mathematicalresults concerning the existence
of weak solutions to the Rothe approximations of the relevant evolutionary problem. While
for the explicit relations the unknown functions are only the velocity and the pressure, for
the problems with implicit relations the set of unknown functions also includes the deviatoric
part of the Cauchy stress. Most of the results are recent; their proof required a development
of new tools such as the strengthened properties of the Lipschitz approximations of Sobolev
functions [13], or the characterization of maximal monotone graphs in terms of1-Lipschitz
continuous mappings [19]. The tools involved differ depending on whether we deal with
models that are characterized by the power-law indexr being in the subcritical regime (that
is r ≥ 9/5 in three spatial dimensions), or in the supercritical regime (whenr < 9/5).

There are studies dealing with numerical schemes for some ofthe problems discussed,
starting from the notion of a weak solution, and also many reports on the results of compu-
tational simulations; see for example [14, 15, 6] and [41, 27]. One of the aims of this article
is to call for a unified view of these numerical and computational methods in the spirit of the
available theoretical results summarized here.

The framework presented here is not complete. One should consider fluids with shear-
rate dependent viscosity that are not of a power-law type (see [24] for a very recent result in
this direction) include different types of boundary conditions, including those that describe
inflow or outflow, and treat unsteady flows; we refer the readerto [33] for a survey concerning
the mathematical results available prior to 2005. In order to include viscoelastic properties of
fluid-like materials, attention should be devoted to the investigation of rate type and integral
type fluids with material coefficients depending on the pressure, the shear rate, etc.

REFERENCES

[1] C. AMROUCHE AND V. GIRAULT , Decomposition of vector spaces and application to the Stokes problem in
arbitrary dimension, Czechoslovak Math. J., 44 (1994), pp. 109–140.

[2] M. A NAND AND K. RAJAGOPAL, A mathematical model to describe the change in the constitutive character
of blood due to platelet activation, C. R. Mecanique. Acad. Sci. Paris, 330 (2002), pp. 557–562.

[3] M. A NAND , K. RAJAGOPAL, AND K. R. RAJAGOPAL, A model incorporating some of the mechanical and
biochemical factors underlying clot formation and dissolution in flowing blood, Journal of Theoretical
Medicine, 5 (2003), pp. 183–218.

[4] , A model for the formation and lysis of blood clots, Pathophysiol Haemost Thromb, 34 (2005),
pp. 109–120.

[5] J. M. BALL AND F. MURAT, Remarks on Chacon’s biting lemma, Proc. Amer. Math. Soc., 107 (1989),
pp. 655–663.
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[23] P. GWIAZDA , J. MÁLEK , AND A. ŚWIERCZEWSKA, On flows of an incompressible fluid with a discontinuous

power-law-like rheology, Comput. Math. Appl., 53 (2007), pp. 531–546.
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