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MATHEMATICAL PROPERTIES OF FLOWS OF INCOMPRESSIBLE
POWER-LAW-LIKE FLUIDS THAT ARE DESCRIBED BY IMPLICIT
CONSTITUTIVE RELATIONS *

JOSEF MALEK T

Abstract. We report on very recent developments concerning the modedfithe complex behaviour of mate-
rials within the framework of implicit constitutive theory dtio K. R. Rajagopal. In this paper, we restrict ourselves
to a hierarchy of power-law-like fluids. For such a class afifuwe provide an overview of recent results concern-
ing the mathematical analysis of the relevant boundary valoklems. Mathematical results are presented for the
(Rothe) time discretizations of evolutionary problems. The&parpose of this paper is to emphasize the mathemat-
ical tools involved in the theoretical analysis and to atitithe development of numerical methods for the problems
presented here.
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1. Introduction. In continuum physics, three different concepts have besenity de-
veloped by K. R. Rajagopal and his co-authors in order toessgfally model complex pro-
cesses in materials, which in most cases are of mechanpeal¥hile individual components
of the framework were introduced with a different intentjd&pal and his co-workers gen-
eralized these ideas and melded them together to form a ngdahtoherent theory. We will
briefly characterize these concepts.

The first approach is based on the notion of a natural confignraassociated to the
current configuration of the body. The natural configuratthe one that the body would
take on the removal of all external stimuli. This notion wasaduced by Eckartl[g], who,
however, did not recognize either the importance of the sgtmnof the natural configura-
tion evolving during the process, or several other relatedes. Recall, for example, that the
classical continuum mechanics framework, built upon thigons of current and reference
configurations, is too narrow to enable one to model ineldmthaviour of solid-like materi-
als or viscoelastic properties of materials. Thus, soniécat internal variable models have
been introduced in order to explain these features. On tier bland, an extended methodol-
ogy involving the concept of natural configurations progidesufficiently robust framework,
which is free of such a deficiency. We refer the reader to Rggabj4 3] and his article in the
current volume for details.

A characteristic feature of the second approach is the @gin of the assumption of
maximization of the rate of entropy production in order toedmine the form of the consti-
tutive relation between the Cauchy stress and relevanttifjean such as, for example, the
shear-rate in the case of fluids. This method, which effitiesglects the appropriate form of
the constitutive relations requires one to know how the bstdyes the energy and what are
the relevant dissipative mechanisms; see Rajagopal anid&xa p3] for a detailed and trans-
parent description of the method. Note that the notion ofiméepation of the rate of entropy
production has been considered by several other authdisredor instance, Zieglerop]
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used this idea within the context of plasticity, but the wayaihich the idea is enforced is
quite different from that of Rajagopal and his co-workersdétailed discussion of the same
topic can be found in Rajagopal and Srinivasd] [

Finally, the third approach, namely the so-called implminstitutive theory, shares
a similarity with the first approach as it expands standardiscaum mechanics enormously,
so that the framework is sufficiently robust to capture caoapéd nonlinear responses of
materials. In addition, this approach can eliminate sornteri@al variable theories; observe
that internal variables have mostly a vague physical megenil it is thus difficult to specify
boundary conditions for them. We refer the interested neamléhe original papers of Ra-
jagopal B4] and [45] for details. Implicit constitutive relations have beereddo describe
a material response for a long time. However, the idea ofimibgsuch models by appeal-
ing to the evolution of natural configurations and the mazation of the rate of entropy
production was first considered by Rajagopal and his coeasith

The above-mentioned approaches turn out to be very effizigaredicting the response
of a wide variety of materials, as they represent a suffiienabust framework of contin-
uum physics, suitable to capture complex behaviour of riss$ewithout any need to intro-
duce internal variable theory, macro-meso or macro-mscapic models. To illustrate our
point, see the application of these techniques to viscteilgq 51, 52, 35], classical plastic-
ity [48, 49, 28], twinning [46, 47], solid to solid phase transitio®(], crystallization in poly-
mers b5, 56], single crystal super alloystp], inhomogeneous incompressible fluid¥],
mixture theory B7], fluids with pressure dependent viscosities or Binghand§lys3, 54],
etc. Such new approaches are an inspiring source of idedisefonathematical formulation
and analysis of the relevant initial-boundary-value peotd, and are also useful in the design
and analysis of numerical methods.

The aim of this article is twofold. First of all, in Sectidhwe would like to illustrate
the efficiency and wide applicability of the implicit cortstive theory, and the selectivity
role of the maximization of the rate of entropy productioocudsing on a hierarchy of the
so-called homogeneous power-law-like incompressibldgluFor the fluids considered here,
the natural configuration coincides with the current oné, thas we refer to41, 53, 35] and
the paper of K. R. Rajagopal in this volume for the demonistnadf the usefulness of the
concept of natural (preferred) configuration. We preseatgxtes of the explicit and implicit
constitutive relations, and identify those non-Newtonpioenomena that these models can
capture.

The second aim of this paper is to discuss the mathematiopepies of these models.
Based on the results available for steady flows, for whichettistence theory is essentially
complete, we formulate directly in Secti@rthe analogous results for the Rothe approxima-
tions (time discretization) of the evolutionary models. j¥eceed from the simplest explicit
to fully implicit power-law-like fluid models, focusing orow the assumptions regarding the
structure of the constitutive relations and the matherabformulations of problems change.
Concluding remarks and future directions are discusseeéati@4.

2. Mechanics of power-law-like incompressible materials A standard point of de-
parture for continuum mechanics dealing with processes;hwtake place at the uniform
temperature, is the following set of equations (consideteahy timet and any positiorr: at
the current configuration of the body):

0; + div pv = 0,
(ov); +div(ov @ v) =divT, T =T", (2.1)

T~Dfp%:§ with ¢ > 0,
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wherep is the densityy) denotes the Helmholtz free ener@y, D is the stress poweg,stands
for the rate of dissipationy = (v1,v2,v3) is the velocity, T = (Tij)f’jzl is the Cauchy
stress (symmetric tensor of the second order) Bhd= D(v) := (Vv + (Vo)1) /2 is the
symmetric part of the velocity gradient. We recall that tlhewe equations2(1) express
the balance of mass, the balance of linear and angular mameraind the equation that
is a consequence of the balance of energy and the second l#verafiodynamics if the
temperature is constant; see for examplg pr [33] for details.

We are interested in describing flows of various fluid-likaterials that, while exhibiting
many different and fascinating phenomena, neverthelem® sine common feature: these
materials are well approximated msompressible, homogenedilisds. This means that the
densityp and the Helmholtz free energy(which is supposed to be a function of density) are
constant and

divv=trD=D-I=0. (2.2)

For the sake of simplicity, we multiply the first equation &f1) by o—! and writeT", instead
of o~ 1T, in what follows.

Introducing the pressure as:= —3 tr 7 we can decompose the Cauchy str&siito
its spherical part-pI and the deviatoric (traceless) p&ti.e., T = —pI + S. Replacing
vy(t,-) by its discretizationl /h(v(t, ) — v(t — h,-)) and setting f(t,z) = tv(t — h, z),
we obtain the so-called Rothe approximationfij-(2.2):

dive=0 and diviv®@v)—divS+ %v =—-Vp+ f, (2.3)
T -D=¢ with £€>0. (2.4)
An incompressible fluid is said to be Newtonian if
S=2u"D < T =—pl+2u"D (u* € (0,00)). (2.5)
Inserting @.5) into (2.3), we obtain the Navier-Stokes equations abd)(then leads to
€ =2u"|D|* = (2u") 7T = (2p") IS, (2.6)

1/2
where the symbdlA| stands fo A - A)'/2 = (Zf’jzl(Afj)) 2
2.1. Implicit constitutive relations. As the broadly used and popular Navier-Stokes
model @.5) suggests, the relationship between the shear stress (ergaperally the Cauchy
stressT’) and the shear rate (the symmetric part of the velocity gradD(v)) is well ac-
cepted for many fluid-like materials. A general point-wistation of this type can be written

in the form:
G(t,z,T(t,z),D(t,x)) = 0.
In what follows, we restrict ourselves to the relation
G(T,D) = 0. (2.7)

Following Rajagopal45], we can look at the consequences of the assumptior@hat(2.7)
is an isotropic function of the tensof and D. It then follows from the representation

INote thatdiv £ = 0 due to @.2). Although we could consider a more genefah what follows, for simplicity
we restrict ourselves only tf that satisfiegliv f = 0.
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theorem of such functions (se&9) that (2.7) takes the following most general form

OéoI+OélT + OéQD + 043T2 + Oé4_D2 + (0759 (TD + DT)

2.8
+a6(T*D + DT?) + a7(TD? + D*T) + ag(T>*D? + D*T?) = 0, (8)

wherea;,i = 0, ..., 8, are functions of the invariants
trT, tr D, tr T?, tr D?, tr T?, tr D?, tr(T D), tr(T? D), tr(D*T), tr(D*T?).

Since we deal with incompressible fluids, there is an interg@subclass of4.7), namely
those fluids for which the traceless parand D are related implicitly. More precisely,

T=-pI+S8 with G(S,D)=0. (2.9)

In the next section, we intend to point out several exampleékeoso-called power-law-like
fluids that fall into the categorie® (7) and/or €.9). We then look at these models from two
different points of view: (i) as special cases of the genfmah (2.8) obtained by using the
representation theory for the isotropic second order t®rGoof the form @.7), and (ii) as
models obtained by using the thermomechanical framewoskdan the assumption that
material response corresponds to the response that masithiz rate of entropy production.

2.2. Explicitly constituted power-law-like fluids. Besides the Navier-Stokes fluid de-
fined in 2.5), the subclass2(9) also includes power-law fluids:

T = —pI +2u*|D|"?D =: —pI + 2u,(|D|*)D = —pI + 8, (2.10)

wherer € [1, 00) is the so-called power-law index apd (s) = pu* s("=2/2, 1* € (0,00). It
is easy to observe that the following relations hold #d.():

|S|=2u7| D[, (2.11)
S|/ (=1 1 |8|/r=1

S.- D=2, D" = 2" _ s Dp[r4 -2 T
w'|D) WIDI 4 5 G

= Gy = (2.12)

and for allD, E € R?**3 such thatD # E
(S(D) - S(E)) - (D - E) >0, where S(B) :=2u*|B"?B. (2.13)

The model 2.10 has the ability, at a simple shear flow, to shear-rate timidker » > 2)

or thin (if » € (1,2)). Note that forr = 2 this model coincides with2(5). Note also
that if » > 2, then the generalized viscosity (| D|?) vanishes asD| tends to zero, or if
r € (1,2) the viscosityu; (| D|?) tends to+oo as|D| — 0*. While this degenerate or
singular behaviour of the viscosity might be useful to agprate adequately the behaviour
of certain materials, there are many other materials forckvjp, considered as a function
of | D|?, attains a proper limit agD| — 0. The same goes for the behaviounaqffor large
D as well. As an example, we can state two models suitable tehsodh a behaviour,

T —pl + 253D + 2D D = I+ 2+ DI D
= _pI+ 2”2(|D|2)D7 MS»NI € (0700)7 .

and

T= —pI + 2uj (e + uj| D]*)" 272D

) . (2.15)
= _pI+2/J'3(|D| )Du /1’07/1“1756(0700)7
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which, for obvious reasons, are called the modified and géimed Navier-Stokes fluids,
respectively.

It is worth mentioning that the fluids characterized by thiatiens .14 and .15
satisfy .13 and fulfil growth and coerciveness conditions similar2dl() and @.12).

We can require thal® or S behaves a=2(10 or (2.14) only asymptotically, for small or
large values ofD. Such fluids, which we call power-law-like fluids, can be ctaerized by
the constitutive relation

S =S(D)=2v(D*>)D (2.16)

completed by the following assumption: there @fie C; € (0, 00) andx > 0 (usuallyx = 0
or x = 1) such that

S(D)-D > Ci(x+ |D)"~2/2|D?

. (2.17)
1S(D)| < Cy(k + | D)1/,

and Q.13 holds forallD, E € R3*3, D # E.
Sometimes it is more suitable to require a stronger assomptiamely that there are
K1, K, € (0,00) andx > 0 such that, for allD, B € R3*3,

0S(D
K+ D)2 < P2D) o B < Ko+ D) P2BE, (218)

where we use the notation
0S(D) & 954(D)
7,7,k 4=1
It is shown, for example in32], that (2.18 implies 2.17) and @.13.

More generally, one can assume the constitutive relatidgheoform @.16), in which the
dependence aof on D (or v on | D]) is not polynomial. Such fluids are called fluids with
shear-rate dependent viscosity. The cag8 = p* exp(s) or u(s) = p*log(1 + s) are just
two possible examples.

The framework of power-law-like fluids presented above ffidantly robust to model
behaviour of various types of fluid-like materials. Models &equently used in many areas
of engineering and natural sciences: mechanics of colmdssuspensions, biological fluid
mechanics, elastohydrodynamics, ice mechanics and lggiofood processing, etc. We
refer the reader ta3@] for a representative list of relevant references.

Note that all the above-considered relations between @hiatbric partS of) the Cauchy
stressI” and D areexplicit All of them have the potential to capture the non-Newtomibe-
nomena of shear-rate thickening or shear-rate thinnirg[3s for a more recent description
of non-Newtonian characteristics.

2.3. Fluids with pressure (and shear-rate) dependent vissity. In this subsection,
we consider fluids with Cauchy stress of the form

T = —pI+2u(p)D or T = —pI+2u(p,|D|*)D. (2.19)

These are fullyimplicit constitutive relations that generate a subclas2ai).( Indeed, fol-
lowing Rajagopal45] and making a very special choice @f in (2.8), namely

ag=(trT)/3, a3 =1, QQZM(<tTT)/3,|D|2), a; =0 (i=3,...,8),

we obtain 2.19).
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Fluids with pressure-dependent viscosity have broad egimins not only in elastohy-
drodynamics (see6fl]), but they also play an important role in processes invavhigh
pressures. The fact that the viscosity should depend orréssyre is carefully discussed by
Stokes in Q). A typical dependence of the viscosity on the pressurep@egntial, as docu-
mented in the experimental reports by Andrade in the 192@s;the book by Bridgmas]
and the survey article3p] for further references.

For the sake of completeness we add three examples of thesitiss depending on the
pressure and the shear rate:

o — "Moo
u(p, |D|?) = (TIoo + 1—|—(5|D|2—’) exp(7p)

(2.20)
70, Mooy 0,7 € (0,00), 7 =1.43,
M(pa |D|2) = CO% co € (0,0())7 r=1, (2_21)
,|D)?) = (A+ (14 exp(a _‘1+D27§2
w(p, | D[7) = (A + (1 +exp(ap)) | D7) (2.22)

Lr=1 e
a,AG(O,oo)J“G(l,Q),qE(072a2_TA )
The fluid .20 was numerically treated ir2p], the second modeR(21) was proposed by
Schaeffer $7] in order to model flows of sand in silos. The last examp@e#®, proposed
in [31], approximates a pure exponential relationship betweervigcosity and the pressure
so that the assumption&1)-(A2) required by the current mathematical methods are fulfilled
Although we have clarified the implicit character of the flwith pressure-dependent
viscosity (the relationship betwedh and D is implicit), it is also possible to look at these
models as those with the explicit relations betw&eand D parameterized by, i.e.,

S = S(p, D) = 2u(p, |D|*)D. (2.23)

In the next subsection we discuss the fluids where the relagtweenS and D is implicit,
thus being of the form2.9).

2.4. Fluids with activation criteria. The characteristic feature of the fluid considered
in this part is a dramatic change in the material response thecritical value for the stress
or the shear rate is reached. We shall distinguish two cggebe Bingham and Herschel-
Bulkley fluids where the critical value for the modulus of 8teear rate is zero, (ii) the fluids
with activation criteria that takes place|iD| = d* with d* positive. One should take into
account that these are just two prototypes of implicitly stdnted power-law-like fluids,
as we shall illustrate in what follows, and it is possible engrate plenty of other models
described by the implicit constitutive relationships.

Referring the reader ta2(10), (2.14 and @.15 for the definition ofu;, i = 1,2,3,
that are all of the power-law type, the description of thedBiam [/] and the Herschel-
Bulkley [26] fluids reads

. . D
|S| > 27 ifandonlyif S =27 +2u;(|D|*)D,
|D|
. . (2.24)
|S| <2r* ifandonlyif D =0.

If the fluid behaves as the Navier-Stokes one once the thicekhas been reached (by that we
mean that = 2 in p; in (2.24)), the model is called a Bingham fluid. If the fluid response
is that of a power-law-like fluid, we talk about a Herschelgey fluid. We refer the reader
to [39] for further references dealing with the Bingham and Hees&ulkley fluid models.



ETNA
Kent State University
http://etna.math.kent.edu

116 J. MALEK

For our purpose, it is suitable to follow Rajagopal and $esa p4] and to write .24
as

2u,(|D*)D (27* + (|S| — 2r*)*) = (18] — 2r*) " 8. (2.25)

Clearly, .25 captures all features o2 (24).

Note that .25 is an implicit relatio’ betweenS and D. From the point of view of the
mathematical analysis, such a formulation has severalndagas. For example, it does not
require one to think in terms of variational inequalitids penalty method, etc.

Another class of models is used to take into account radicahges of properties of
the fluids (such as the viscosity, for instance) when a acedafical valued* € (0, o) of
the modulus of the shear rat®| is met. Inspired by Anand and Rajagopa), [who were
modelling the changes in the blood flow due to the blood pédehctivatioh, Gwiazda et
al. [23] considered the following model:

S—u.(DP)D it |D| < d",
S=us(|D)D if |D|> d, (2.26)
S=u*D if |D|=d",

wherey* takes any value betweerj, := limg_.4« f1a(s) andu; = lims_,gp+ wa(s). Here,
la, 4 are viscosities of any of the power-law-like models disedsabove. To motivate a
response described i2.26), we could consider a biological fluid that at a particulagah
rate or shear stress undergoes chemical processes atrerdiffenuch shorter) time scale.
During such a quick process the viscosity of the fluid can gkaso dramatically that it is
reasonable to model it as iA.26). Another possible scenario for such a response is the flow
of a granular material wherein at a certain shear rate themahtontinues flowing at the
same shear rate even though the stress is increasing. @afyediching a higher threshold
of stress does the shear rate start to increase.

As in the case of Herschel-Bulkley fluids, we can rewrizte2¢) implicitly in the form

||D| - d*|S = M(|D]*)(|D| - d")D

with M (s) := max{pq(s)sgn(s — d*); us(s)sgns — d*)}, where we assume (just for sim-
plicity) that i, (s) < pg(s) forall s € R .

2.5. An application of the maximal rate of the entropy produdion in determining
the constitutive relations. The aim of this subsection is to show, following Rajagopal an
Srinivasa 54], how all the power-law like models can be obtained using aksumption
that the material responses to the external stimuli in suehyathat the entropy production
(in our case the rate of dissipation), considered as a fumaif the flux of the molecular
momentums, is maximal provided that the thermomechanical equatiof) (s fulfilled.

We start with the observation that the decompositiof’ @fito its spherical and deviatoric
part—pI andS, and the constraint of incompressibility applied 204j, lead to the equation

S-D=¢ with £ > 0. (2.27)
Inspired by 2.6) we start considering of the form

9(D)) g2
=110 |92, (2.28)
m(p,|D|?)

2|n fact, it is an example of the relation wheF2 is a function ofS.
3For the full treatment of the modelling of blood that takes imteount more details of biochemistry; see Anand
etal. 3, 4].
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Assuming thay(s) > 0 andm(s) > 0 then¢ is non-negative and the second-law of thermo-
dynamics is satisfied.

Maximizing ¢ of the form .28 with respect to all admissibl§ fulfilling (2.27) results
in (observe that the auxiliary Lagrange function is of thenfg + \({ — S - D))

L+X0¢
N 05

Using the constraintX27) together with 2.28) leads directly to““TA = % Consequently
9(|D))S = m(p,|D|*)D.

Special choices give particular models. For example, denisig the case = 1 and taking
m(p,s) = 2u*, m(p,s) = 2uf(s)H, fori = 1,2,3, andm(p,s) = 2u(p, s), we obtain
the Navier-Stokes fluidX 5), the classical, modified and generalized power-law fluidsdj,
(2.14 and @.15, and finally the fluid with pressure and shear-rate dependscosity ¢.23),
respectively.

It is obvious that there are many other choiceg tifat satisfy the second-law of thermo-
dynamics; they lead to new classes of models. For examplbgastructure of generated
by the power-law-fluids suggests (s€el@), the choices

g:ﬁ(n+|5|2)%%|5\2 (with 8 > 0 andk > 0)

lead to interesting classes of power-law-like models whiate not been studied so far in this
form.

3. Analysis of PDEs and existence of weak solutiond/odels of continuum mechan-
ics that are built on the principles of classical mechan@snfhuge classes of models de-
signed to capture motions/deformations of bodies. The i@k is then to determine these
motions/deformations from the knowledge of the initial dmlindary conditions. Thus, in-
dependently of how precisely these models approximatéyealathematical analysts ask
about the mathematical consistency (well-posedness)eskthroblems. What is the appro-
priate notion of solution to the considered initial-boundealue problems? Is it then possible
to establish its existence and to analyze its further catalé properties, such as uniqueness,
smoothness for smooth data, long-time behaviour, stalfispecial flows or deformations,
or to investigate various singular limits? Can one use ftifisrmation to investigate shape
optimization problems or to control the flows optimally? Hetould one design the numer-
ical schemes that would take advantage of theoreticalteesalthat we know exactly which
object we approximate?

With this aim in mind, we need the appropriate notion of a solu Since the bal-
ance equations of continuum physics are formulated for abget of a body, the principles
(assumptions) of classical mechanics are required to looldvierage quantities, and so the
notions such as theeak solutiorseem to be a sound choice; see the book by FeirEisbfr
the introductory part of one of his more recent pap&g.[The fact that the notion of a weak
solution is the point of departure of the Finite Element Metlfwhich has a close relation to
the Finite Volume Method) gives even stronger support tantiteon of a weak solution.

It is of interest to mention, referring tB4] for details, that the procedure of maxi-
mization of the rate of entropy production that is based enkitowledge of the constitutive
equations for) and¢, as appeared ir2(17), also provides the function spaces in which the
weak solution should be constructed.
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The aim of this section is to present results regarding tieence of weak solutions to
the boundary-value problem

divo=0 and div(v —divS + ;Lv——Vp—f—f in Q, (3.1)
v =0 onof, |Q| /pdx P, (3.2

whereS and D = D(v) are related through the power-law-like relationships used in
the previous section, ard C R? is a bounded open connected set that is, for simplicity,
assumed to have Lipschitz boundd2, andp* € R is a constant that denotes the mean
value of the pressure.

The scheme of this section is the following: first we shaltmesourselves to Navier-
Stokes fluids and instead of mentioning any existence Eswe outline the standard ex-
istence scheme. Then we shall focus on classical power-ladsfand explain where the
critical values of the power-law index appear and emphasiealifferences in the analysis
of Navier-Stokes fluids and power-law fluids. Finally, we lsdéscuss existence results for
power-law-like fluids, for fluids with the pressure and shede dependent viscosity, and,
finally, for power-law-like fluids with activation criteria

We use a standard notation for the Lebesgue and SobolevsSpdc(2), || - ||,) and
(W (Q), || - [l1,r). We also define

Wo () == {u;u € WH(9), ulag = 0},
Wy i (Q) = {viv € Wy " ()%, dive = 0}

By the symbol we mean the scalar productl¥ or R3*3,

3.1. Navier-Stokes fluids.Upon inserting 2.5) into (3.1), we obtain the Navier-Stokes
equations

dive =0, —uAv +div(v @ v) + %v =—-Vp+f inQ. (3.3)

When completed by boundary conditions, such as those ), @ constructive (i.e., numeri-
cally realizable) proof of the existence of a weak solutiomcpeds via the following steps:
Step 1.The construction of finite-dimensional approximatiges’, p” ), such as, for exam-
ple, Galerkin or finite element approximations, and a prdoéxastence for fixedV (that
characterizes the dimension of the finite-dimensional epasing one of the variants of the
Brower fixed-point theorem.

Frequently, one needs some intermediate continuous sy$tetween the Galerkin finite-
dimensional approximations and the original system. Te @i example, one can consider,
for e € (0, 0), the quasicompressible approximation 303 of the form

1 .
—eAp+dive =0, —p*Av+diviv®wv)+ FV= —Vp+ f inQ. (3.4)
Even more, with; € (0, c0), the system3.4) can be approximated by a variant of the Oseen
approximation, where the terdiv(v ® v) is replaced byliv(v, ® v) andwv,, is a suitable
smooth, divergence-free function that approximates

“Note that it has been recently proved that, for any smooth theee is a smooth solution to the Rothe approx-
imation of the Navier-Stokes system independently of dinmmsee 22].

51f X denotes a space of scalar functions, tA&hor X33 denotes the corresponding space of vector-valued
or tensor-valued functions, respectively.
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Step 2.The establishment of the uniform estimaseg ; | Vo™ |2 + supy [[pV]|3 < oo, by
takingv? as a “test” function in the Galerkin system.

Step 3. The identification of a candidate, p) for the solution by using the fact that the
balls in the infinite-dimensional reflexive separable spare weakly compact: for selected
subsequences (for which we use the same infax) — v andp’¥ — p weakly in L? as
N — oo.

Step 4. The nonlinear terms require additional analysis, sincentbak convergence is not
alone sufficient to guarantee the convergence of these tefims Navier-Stokes equations
include one quadratic nonlinearity® v. The fact thaw” — v strongly inL? follows from
the compact embedding, *(22)? into L2(Q)? and this is sufficient to identify the limit in
the convective term.

Step 5.The limit in the approximations a¥ — oo that leads to the conclusion that, p) is
indeed a week solution of the problem.

When dealing with power-law-like fluids, we have to identiftlimit of another nonlin-
ear term, namely, to show that, at almost all point&pthe relationship betwee$ and D of
the type 2.9 holds. To identify this relationship in the limit requirether tools, such as, for
example, some kind of a monotone operator theory, or a hidifferentiability method, etc.
Below, instead of the proofs, we just list the tools that aroived in the analysis of these
problems; and we refer the reader to the original papersrenhe details and the complete
proofs are given. Before this, we first point out where théazai exponents arise.

3.2. Critical values for the power-law index. Upon inserting 2.10) into (3.1), we ob-
tain the system

divo =0, —p*div(|D(v)|"2D(v)) + div(v ® v) + %v =-Vp+ f inQ.

If we proceed as in the case of the Navier-Stokes equatiahs@mstruct finite-dimensional
approximations, we conclude that
sup || VoV |7 < oo,

N
which leads us to expect that the weak solution (weak limitegated byv’") would belong
to the spacéy 7, ().

Next, applying the divergence to the second equatiorBif),(and using the fact that
div f = 0in our slightly simplified setting, we obtain the equation tloe pressure:

p=(=A)""divdiv(v ® v — p*|D(v)["2D(v)).

Since, in three spatial dimension&," < L3"/(3-7) we observe that @ v € L7677 . We
also know that D (v)|["~2D(v) € L" with +' := r/(r — 1). Thus, the pressure belongs to
the intersection of these two Lebesgue spaces (which forhaia since we are in bounded
domain). Since

r - 3r
r—1723-7r)

>

)

ot ©

we conclude thap € L™ () if r > £ andp € L= (Q) if r < 2.

Moreover, as a consequence of this observation, one cahatedi} if v, ¢ € W then
v®wv- V¢ € L only forr > 9/5; (ii) for r > 9/5, the energy equality holds and higher
differentiability techniques can be applied. These too&kenthe analysis of the problem
easier. Consequently, the case 9/5 is more complicated.



ETNA
Kent State University
http://etna.math.kent.edu

120 J. MALEK

There is another bound that comes from the compactnesseddar the quadratic non-
linearity v ® v. It follows from the compact embedding theorem that

Wb e L2 ifand only ifr > g

To summarize, the analysis of the problems for power-l&e-fluid models should in
general be easier far > 9/5 than forr € (6/5,9/5); in both cases it is more difficult than
the proof of the existence of a weak solution to the Naviek& equations. This type of
analysis is completely open fore [1,6/5] in three-dimensional domains.

3.3. Results for explicitly constituted power-law like fluds. Consider the problem
(3.1) with the constitutive relation(16), whereS is assumed to satisfi2(13 and @.17°.
This means that we are interested in finding a (weak) solation

dive=0 and div(v®wv)—div(S(D ()))+%'v:7Vp+f in €,

(3.5)
v =0 onol, /pdx—
9]
The following results have been established so far.
THEOREM3.1.Let S(+) fulfil (2.13 and .17 withr > 9/5. Assume that
fe(wr@?) and  p'€R. (3.6)

Then there is a weak solutidw, p) to (3.5) such that
veW, () and  peL”(Q)

Proof. See Ladyzhenskaya9] and Lions BQ]. Tools: monotone operator theory and the
Minty method (the energy equality) to show the almost evéwre convergence dd(v?),
and a compact embedding fof'. 0

THEOREM 3.2. Let S(+) fulfil (2.13 and .17 with » € (6/5,9/5) and suppose that
(3.6) holds. Then there is a weak soluti¢n, p) to (3.5 such that

v e Wg,giv(g) and pc Lgr/(Q(Tfl))(Q).

Proof. See Frehse et aR]] and Diening et al.13]. Tools: Lipschitz approximations of
Sobolev functions (a strengthened version) in order toaeghY — v, which is not admis-
sible as test function, by its Lipschitz approximation; ictfy monotone operator theory; a
compact embedding far". O

As already observed in the previous section, one could assustronger condition,
namely @.18, which implies both2.13 and @.17). A condition very similar to 2.18) will
appear in the next subsection.

3.4. Results for fluids with pressure and shear-rate depenai viscosities. Having
in mind S(p, D(v)) of the formu(p, | D(v)|?)D(v), we are interested in finding a (weak)
solution to the problem

dive=0 and div(v®v)—div(S(p, ()))Jr%v:prJrf in €,

(3.7)
v =0 ono, /pdx p*,
[0]

6This is exactly the characterization of what we mean by pdaerlike fluids.
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whereO C Q) is a typically small open subset, in which we fix the pressure.
We impose the following structural assumptions$ip, D):

(Al) givenr € (1,2) there areCy, > 0 andCsy > 0 such that for all symmetric matrices
B, D and allp

9 [(u(p,|D|*)D] -

Ci(1+|DP*) 7 |Bf < =52 07— - (B® B) < C2(1+ D)= |BJ;

(A2) for all symmetric matriced and allp

ou(p,|D?)
op

r—

’a[/‘(vaz)D]’ <1+ ‘1)|2)T2 <

‘D

and
P S ¢ S
o Caiv2 C1+Cy’

where the constartt,;, , occurs in the following problem: fing € Wol’q(Q) which
solves

divz=¢ inQ, z=00ndQ and |z|14 < Caivqllalq,
whereg € L(Q), fulfilling [, gdz = 0, is given. The solvability of such a prob-
lem is discussed in BogovsKi8], Amrouche, Girault {] or in the recent book by
Novotrny and Str&kraba {£0].

Note that A1) expresses the fact that althou§ilepends op, it behaves as a power-law-like

fluid uniformly with respect tp; see .18 for a comparison.

THEOREM3.3. Taker € (9/5,2) and let 3.6) hold. Assume thgA1)-(A2) are fulfilled.
Then there is a weak solutidm, p) to (3.7) such that

veW, 5, (Q) and  peL”(Q)

Proof. See Franta et al2[)]. Tools: quasi compressible approximations in order toide
tify the pressure at the early stage of the proof; the streatfithe viscosities; the solvability
of the equationdiv z = ¢; strictly monotone operator theory in th@-variable; compact-
ness for the velocity gradient; compactness for the pressiie energy equality; a compact
embedding for the velocity]

THEOREM 3.4. Taker € (6/5,9/5) and let 3.6) hold. Assume thatAl)-(A2) are
fulfilled. Then there is a weak solutidm, p) to (3.7) such that

veWy,(Q)  and  pe L¥/C0-D(Q),

Proof. See Builcek, FBerowa [11]. Tools: quasi compressible approximations in order
to identify the pressure at an early stage of the proof; lhfigapproximations of Sobolev
functions (a strengthened versialf]); the structure of the viscosities; the solvability of the
equationdiv z = g; strictly monotone operator theory in tii2-variable; compactness for the
velocity gradient; compactness for the pressure; the dposition of the pressure; a compact
embedding for the velocityl
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3.5. Implicit power-law-like fluids. For the power-law index € (1, 00), we setr’ :=
r/(r — 1) and7 := min{r’,r*/2}, wherer* = 3r/(3 —r) if r € [1,3), andr* = o
otherwise. We look for the triplgt, p, S) : @ — R? x R x R3*3 satisfying

veEW L (Q), pe LT(Q), SeL ()

1 .
div(v®’v+pI—S)+Ev:f in D'(9), (3.8)
(Dv(z),S(x)) € A foralmost allz € (2,

where.A shares the following properties:
(B1) (0,0) € A.
(82) For all (.D17 Sl), (.D27 Sg) ceA

(81 —82)-(Dy—D3) >0 (Aisamonotone graph

Moreover, if D, # D, andS; # S, then the inequality is strict (it means thatis
a strictly monotone graph in a generalized sense).
(B3) If (D, S) € ngxn?; X ngxn?; fulfils

(S—-S)-(D-D)>0 forall(D,S) € A,

then(D, S) € A (Ais a maximal monotone graph).
(B4) There are non-negative € L'(Q2) andC > 0 such that for all D, S) € A

S.-D > —m(x)+c(|D]" +1|S|") (Ais ar-graph’.

One could assume (seE) that A is anz-dependent graph without any essential difficulties.
Here, we assume that(x) is the same at all points € 2.

Before formulating the results that have been recentlybéisteed, we would like to em-
phasize the symmetric role & and D in the assumptionB1)-(B4) that thus fully reflects
the implicit character of the constitutive relationshifs3|s or (2.9).

THEOREM3.5. Taker € (9/5,2) and let 8.6) hold. Assume thgB1)-(B4) are fulfilled
and consider Herschel-Bulkley or Bingham fluids. Then them@ weak solutior{v, p, S)
to (3.9).

Proof. See Malek et al. B9]. Tools: the local regularity method performed in such a way
that the whole analysis does not involve the pressure; hidifferentiability; uniform mono-
tone operator properties; a compact embedding for the #gland the velocity gradient;
Shelukhin’s approactbB] to identify jumps in the constitutive equatioris.

THEOREM 3.6. Taker > 9/5 and let 3.6) hold. Assume thaiB1)-(B4) are fulfiled.
Then there is a weak solutidw, p, S) to (3.9).

Proof. See Gwiazda et al2[B]. Tools: Young measures (generalized version); the en-
ergy equality; a strictly monotone operator; propertiegpproximations of discontinuous
functions; a compact embedding for the velodiy.

THEOREM 3.7. Taker > 6/5 and let 8.6) hold. Assume thaB1)-(B4) are fulfilled.
Then there is a weak solutidw, p, S) to (3.9).

Proof. See BliCek et al. L2]. Tools: the characterization of maximal monotone graphs
in terms of1-Lipschitz continuous mappings due to Francfort et &%); Young measures;
the biting lemma %$, 10]; Lipschitz approximations of Sobolev functions (a strévaned
version [L3]); a compact embedding for the velocity.

“Compare with2.12).
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4. Concluding remarks. We have considered a hierarchy of so-called power-law-like
(homogeneous, incompressible) fluids within the framewadrkmplicit constitutive theory,
developed recently by K. R. Rajagopal #¥] 45] and [54]. Following these studies, we have
shown that the class of fluids considered is thermomechnimansistent. We have also
briefly mentioned that the models have the ability to capthree types of non-Newtonian
characteristics: shear thinning and thickening, presthickening and “jumps” in the stress
due to activation. Focusing on how the definition of the (WesMution and the structural
assumptions change when going from explicit to impliciatieins between the shear rate and
the shear stress, we have presented available mathenmrascéts concerning the existence
of weak solutions to the Rothe approximations of the releesnlutionary problem. While
for the explicit relations the unknown functions are onlg trelocity and the pressure, for
the problems with implicit relations the set of unknown ftioas also includes the deviatoric
part of the Cauchy stress. Most of the results are recernit;ghaof required a development
of new tools such as the strengthened properties of the hifzsgpproximations of Sobolev
functions [L3], or the characterization of maximal monotone graphs imgeof 1-Lipschitz
continuous mappingslp]. The tools involved differ depending on whether we dealhwit
models that are characterized by the power-law indbring in the subcritical regime (that
isr > 9/5 in three spatial dimensions), or in the supercritical reg{mhenr < 9/5).

There are studies dealing with numerical schemes for sontteegfroblems discussed,
starting from the notion of a weak solution, and also manyrspon the results of compu-
tational simulations; see for example4| 15, 6] and [41, 27]. One of the aims of this article
is to call for a unified view of these numerical and computaionethods in the spirit of the
available theoretical results summarized here.

The framework presented here is not complete. One shoulsidmmfluids with shear-
rate dependent viscosity that are not of a power-law type [58 for a very recent result in
this direction) include different types of boundary coratis, including those that describe
inflow or outflow, and treat unsteady flows; we refer the re&ol§#3] for a survey concerning
the mathematical results available prior to 2005. In ordénc¢lude viscoelastic properties of
fluid-like materials, attention should be devoted to thestigation of rate type and integral
type fluids with material coefficients depending on the pressthe shear rate, etc.
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