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APPROXIMATION OF THE MINIMAL GER  SGORIN SET
OF A SQUARE COMPLEX MATRIX *

RICHARD S. VARGA!, LJILJANA CVETKOVIC!, AND VLADIMIR KOSTI Cf

Abstract. In this paper, we address the problem of finding a numerigategmation to the minimal Gersgorin
set,['R(A), of an irreducible matrixA in C™™. In particular, boundary points di”*(A) are related to a well-
known result of Olga Taussky.
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1. Introduction. Given an irreducible matrid = [a; ;] in C™", itsi-th GerSgorin disk
is defined, withV := {1,2,...,n}, by
(11) FZ(A) = {Z eC: |Z - ai,i| < Tz(A) = Z |ai,j|} (Z S N),
JeEN\{i}
and the union of all these disks, denoted by
(1.2) r(A4) = | Ii(4),
ieN
is called theGerSgorin sefor A. A well-known result of GerSgorinZ gives us thaf(A)
contains the spectrum(A), of 4, i.e.,

(1.3) o(A) :={\ e C:det(\[ — A) =0} CT(A).
Continuing, for anyx = [z1,29,...,2,]T > 0inR", i.e.,z; > 0foralli € N,
let X := diag[x1,29,...,x,] denote the associated nonsingular diagonal matrix. Then,

X~'AX has the same eigenvaluess Thus, with the GerSgorin disks fot ~' AX now
given by

(L4)  TU(A) = (2 eCi o] <ri(d) = Y [Waltiy ey

3

JEN\{i}
and with the associated Gersgorin set,
(1.5) I (4) = [ J I (),
ieN
then
(1.6) o(A) CT7(A), forany x >0 in R™.

The inclusion of {.6) is also a well-known result of Gersgori@][ Clearly, the following
intersection,

(1.7) TR(A):= (] T7(A),

x>0 iN R~
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called theminimal Gersgorin sein [4, 6], is always a subset di’”(A), for anyx > 0 in
R™, thereby giving the sharpest inclusion set égrd), with respect tall positive diagonal
similarity transformsX —' AX of A.

This sharpness can also be expressed in the following waj6,cfheorem 4.5]. With

(1.8) Q(A):={B=[b,;] € C"" :b;; = a;; and|b; j| < |ai ;| fori #j (i,5 € N)},
then

(1.9) o(QA) = ] oB)=TFA4),
BeQ(A)

i.e., each point of R (A) is an eigenvalue afomematrix 3 in Q(A).

Unlike the Gerdgorin sef(A) of (1.2 or I (A) of (1.5, the minimal GerSgorin set
I'?(A) of (1.7) is not in general easy to determine numerically. The aimhef paper is
to find areasonable approximatioaf I'*(A), with a finite number of calculations, which
containsI'®(A), and for which a limited number of boundary points of this @pgmation
are actual boundary points 6f%(A4). The determination of these latter boundary points are
then related to a famous sharpening, by Olga Taus3kwf the GerSgorin set ofl(2).

2. Background. Given an irreducible matrixd = [a; ;] in C™", its associated irre-
ducible matrixQ(z) = [g¢; ;(2)], in R™", is defined by

(2.1) ¢i,i(2) == —|z — ai,4|, andg; ;(2) := |a; |, fori # j (i,5 € N).
If
(2.2) plz) = max|z — ai,l,

then the matrixB(z) := [b; ;(2)] € R™", defined by

(2.3) bii(2) == p(2) — |z — aiil, andbi;(z) == lai;l, i # j (i, € N),
satisfies

(2.4) B(z) = Q(z) + p(z)In,

where B(z) is a nonnegative irreducible matrix IR™". Then, from the Perron-Frobenius
theory of nonnegative matrices, the mathixz) possesses a positive real eigenvai&(z)),
called thePerron rootof B(z), which is characterized as follows. For ary> 0 in R™",
either

(25) min (B(2)x),/a:} < p(B(2) < max((B(2)x) /).
or
(2.6) B(z)x = p(B(z))x.

Thus, if we set

@7 v(z) == p(B()) = p(z) (all z€C),

thenv(z) is a real-valued function, defined for alle C. Moreover, from 2.5) and @.6), for
anyx > 0 in R™ and anyz € C, either

2.8) mind (Q(2)x), /i < v(2) < max{ (Q2)x), /i},
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or
(2.9) Q2)x = v(2)x,

the last equation giving us thafz) is an eigenvalue af)(z).
The following connection of the function(z) of (2.7) to the minimal GerSgorin set,
I'?(A), comes from4] and [6]:

(2.10) 2z € IR (A)ifand onlyifv(z) > 0,
and
(2.11) if 2 € OT™(A), thenv(z) = 0.

It is also known (cf. §], Theorem 4.6), from the assumption thdis irreducible, that
(2.12) v(a;;) >0, forall i € N.

Further, given any real numbérwith 0 < 6 < 2, it is known (cf. [], Theorem 4.6) that
there is a largest numbgy(0) > 0 such that

(213) V(am- + @1(9)619) = O, andy(ai_’i + tew) > O, forall 0 <t< éZ(O),

so that the entire complex intenval; ; + te“’]f;(g) lies inT*(A). This implies that the set
27 o

(2.14) U laii + te) 2
0=0

is astar-shapedubset o *(A), for eachi € N, with

(2.15) viai; + 0:(0)e) € OTR(A).

The results of2.14) and .15 will be used below.

Next, we recall the famous result of Olga TaussBly pn a sharpening of the Gersgorin
Circle Theorem: LetA = Ja; ;] in C™" be irreducible. IfA € o(A) is such that
A ¢ int T';(A) foreachi € N, i.e.,|\ — a; | > r;(A) for eachi € N, then
(2.16) A —a; | = ri(A), foreachi € N,

i.e.,eachGersgorin circle{z € C: |z — a; ;| = r;(A)} passes through.
To complete this section, we include the following:

(2.17) Ifv(z) =0, thendet Q(z) = 0.

This follows directly from @.9), sincev(z) is an eigenvalue af)(z). Finally, from [6, Exer-
cise 7, p. 108], we also have that

(2.18) foranyz andz’ in C, |v(z) —v(z)| < |z — 2|,

so thatv(z) is uniformly continuougn C. This also will be used below.
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3. Numerical procedure for approximating ' (A). With the given irreducible matrix
A = [a;;] InC™™, choose any in NV, and set = a; ;. Next, we assume that the nonnegative
irreducible matrixB(a; ;), which has at least one zero diagonal entry fr@nd); is aprimitive
matrix; cf. of [5, Section 2.2]. (We note that this is certainly the case if saliagonal entry
of B(a; ;) is positive. More generally, iB(a; ;) is not primitive (i.e.,B(a, ;) is cyclic of
some indexp > 2), then any simple shift aB(a; ;) into B(a;, ;) + €I, is primitive for each
e>0.)

With B(a; ;) primitive, then, starting with ax(® > 0in R", the power method gives

convergent upper and lower estimates #0B(a; ;)), i.e., it x(™ := B™(a; ;)x©) for all
m > 1, then withx(™) := [xgm), a:gm), e x%m)]T, we have

(m+1) (m+1)

. :Ci o :Ci e
(3.1) Am = 1121]{}{ () } < p(Blaj;) < Igg}\)f{ () b=
forall m > 1, with
(3.2) lim A\, = p(B(aj;)) = lim Ap,.

In this way, using 2.4), (2.7), and @.9), convergent upper and lower estimates/6f; ;)
can be numerically obtained. (These estimations(af; ;) do not need great accuracy for
graphing purposes, as the example in Sectishows).

Next, assume, for convenience, thdt; ;) > 0 is accurately known, and select any real
6, with 0 < 0 < 27. The numerical goal now is to estimate the largggt), with sufficient
accuracy, where, fron2(2),

(3.3) v(a;; + 0j(0)e?) =0, with v(a; ; + (8;(0) +¢)e®?) <0
for all sufficiently smalle > 0. By definition, we then have that
(3.4) a; j + 0;(0)e” is a boundary point of * (A).

This means, from the min-max conditioris)-(2.9), that there is ax > 0, inR", such
that (cf. 2.9)

(3.5) Q(aj; + 0, (0)e?)x = 0, wherex = [z}, 2, ..., z,]7 > 0.

Equivalently, on callingz; ; + 0;(0)e? =: z;(#), we can express3(5), using the definition
of (2.1), as

(3.6) 12i(0) — aiil = Y laikloe/zi, (alli€ N),
keN\{i}

which can be interpreted, fron2 (L6, simply as Olga Taussky’s boundary result. What is
perhaps more interesting is that it is geometricaliynecessarmow to determine the com-
ponents of the vectat > 0 in R™, for which (3.6) is valid. This follows since knowing the
boundary point; () of I'’*(A), and knowing each of the centefs; ; }c ', of the associ-
atedn Gersgorin disks, then all the circles &.6) can be directly drawn, without knowing
the components of the vectar
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We return to the numerical estimation ¢f(#), which satisfies 3.3)-(3.5. Setting
z:=aj;andz’ = a;; + 0;(0)e’, we know from .18 that

(37) @7(9) > V(am) > 0.

Consider then the numbera; ; + v(a; ;)e'). If this number is positive, then increase the
number/(a; ;) tov(a; ;) +A, A > 0,untilv(a; ; + (v(a;,;) + A)e?) is negative, and apply
a bisection search to the intenjala; ;), v(a; ;) + A] to determineg; (), satisfying 8.3).
(Again, as in the estimation of(a; ;), estimates o;(¢) do not need great accuracy for
graphing purposes.) We remark that a similar bisectioncéeanz, can be directly applied
to

(3.8) det Q(v(a;; + 0;(0)e”)) =0,

as a consequence ¢f.(L1) and .15, but this requires, however, the evaluation ofrar n
determinant.

To summarize, given an irreducible matrix= [a; ;] in C™™, our procedure for approx-
imating its minimal Gersgorin sef,* (A), is to first determine, with reasonable accuracy, the
positive number$v(a; ;)};en, and then, again with reasonable accuracy, to determing a fe
boundary point§wy, }7, of I*(A). For each such boundary point of I®(A), there is an
associated Gersgorin set, consisting of the union ofitleerSgorin disks, namely,

(3.9) Y% (A) := U {zeC: |z —aii| <|wk — aiil},
iEN

and their intersection,
(3.10) (T
k=1

gives an approximation t6”(A), for whichT*(A) is asubsetand for whichm points, of
the boundary of);"_, I'“* (4), areboundary point®f I'*(A).

4. An easy example.Consider the irreduciblg x 3 matrix

|

whose minimal Gersgorin set% (C), is shown with the inner blue boundary in Figure.
(This minimal Gersgorin sef,*(C), also appears as the set with boundary (1) (2) (3ppf [
Figure 4.4].) For the vectax, = [1,1,1]7 € R3, the associated Gersgorin g&t " (C),
turns out to be simply

2 0
(4.1) c=|01
1 1

DO =

(4.2) I"(C)={zeC:|z -2/ <2}.

The boundary of this set is the (outdfack circlein Figure4.1

Next, starting with the diagonal entry,= 2, of the matrixC, we estimate/(2), which is
positive from @.12). As u(2) = 1 from (2.2), the associated nonnegative irreducible matrix
B(2) from (2.3) is
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FiGc. 4.1.

and a few power method iterations (s&elj-(3.2), starting withx, = [2, 1,2]7, gives that
p(B(2)) = 2.2. More precisely, p(B(2)) = 2.24697, so that from 2.7) we havev(2) =
1.24697.

Next, we search on the r&y+ ¢, with ¢ > 0, for the largest valuéfor whichv(2 + ) =
0andv(2 +t) > 0forall 0 < ¢t < t. Using the inequality ofZ.18), it follows that
t > v(2) = 1.24697. However, in this particular case, it happens that 1.24697, so that
21 = 3.24697 is such that/(z;) = 0, with z; € 9T*(C). Similarly, on considering the
diagonal entryl = c3 2, we approximate/(1), which turns out to be/(1) = 0.80194, and
then searching on the ray— ¢, ¢ > 0, we similarly obtainv(z2) = 0 with z2 = 0.19806,
and withz, € 9T*(C). CallingT'"T (C') andI'2 (C)) the associated Gersgorin sets, then the
intersection of the three set@fzo 77 (C), is shown in Figuret.1 with the red boundary
where the boundary of the minimal Gersgorin $&¢,C), is shown inblue

We see from Figurd.1that the set with the red boundary is a set in the complex plane
which containd™®(C) and has two real boundary points, shown as the black squasesd
29, in common with[T®(C'). Continuing, knowingv(a11 = azs = 2) = 1.24697 and
v(az2 = 1) = 0.80194, we then look for four additional points &f"* (C) which are found
on the four rays2 + it, ¢ > 0, and1 £ it, ¢ > 0. This gives us the following four points
{2j}f=5 Of T%(C):

25 = 1+4(1.150963), 24 = 73, 25 = 2 + i(1.34236), 2z = Zs.

The intersection now of the above associated six Gersgetisis shown in Figuré.1with
the greenboundary, which includeg™(C) and has six boundary points in common with
AT (C), shown as solid black squares. The region between the gmerdary of [ *(C)
and its blue boundary is colored yellow, which can be seen as small “roofs” composed of
segments of circular arcs.

The amount of numerical calculation to obtain a good appnation tol * (C') is moder-
ate. Itis further evident thdtetterapproximations ta@"* (C'), having more points in common
with OT*(C'), can be similarly constructed.

5. Comparisons with Brualdi sets. Given an irreducible matrid = [a,;] in C™™,
n > 2, one can similarly associate witha minimal Brauer setC™*(A), as well as a minimal

1Al such numbers are truncated after five decimal digits.



ETNA

Kent State University
http://etna.math.kent.edu

404 R. VARGA, L. CVETKOVIC, AND V. KOSTIC

Brualdi setB™(A), as described ing, Section 4.3]. However, it is known (se@ [Theorem
4.15]) that all of these sets are equal, i.e.,

(5.1) DR (4) = KR (4) = BR(A),

but the approximation of, say, the minimal Brualdi &8t(A), would now differ from our
approximations of the minimal Gersgorin s&f¥(A), described earlier in this paper. For
matrices having a verlarge number of nonzero off-diagonal entries, ituslikely (see B,
Section 2.3]) that a similar numerical approximation of thimal Brualdi set,37%(A),
which from (5.1) equalsI'*(A), would be numericallcompetitivewith our numerical ap-
proach of Sectior8 for approximatingl*(A). But, in the case of the matri€' of (4.1),
there are just two associated Brualdi cycles= (13) and~y, = (23), for this matrixC, so
that the approximation df®* (C'), via Brualdi sets, in this case, is easy. In particular, foy a
x = [11, 72, 23]T > 0in R?, its associate®@rualdi lemniscategcf. [6, eq. (4.78)]) are

r* . x x €r3 T+ X2 r1 + X2
(5:2) B(C)={z€Cxlz =2 <r(C) 3(C) = (1) (- =) = =}
and
- €3 xr1 + T2 Tl + X2
(5.3) B,YZ(C)Z{ZE(C:|Z—1||Z—2|§(x—Q)-( o )= - 1

so that its associated Brualdi set is (&, €q. (2.40)])
(5.4) B (C) =B (C)| B, (C).

Now, knowing thatz; = 3.24697 is a boundary point of *(C), we determinex; > 0 and

xo > 0 so thatz; = 3.24697 is a boundary point oB”' (C)). For this particular point
z1 = 3.24697, the associated Brualdi set, consisting of the union of twaeaRli lemniscate
sets, is such that the boundaryaafchBrualdi lemniscate passes through (This is exactly
the analog of Olga Taussky Theorem in the GerSgorin casefl$@and [6, Theorem 2.8].)
The union of these two Brualdi lemniscate sets can be vetifieedduce to

BT (C)={z€C:|z—1]-|z—2| < 2.80193}.

Similarly, for the pointzo = 0.19806, the associated Brualdi set has its two lemniscate sets
passing through,, and the union of these two Brualdi lemniscate sets can héedeto
reduce to the disk

B (C)={z€C:|z—2| <1.80193}.

The boundary of the intersectid&*ﬁcl ) ﬂBgzz (C) is shown in Figures.1with thegreen
boundary. Also shown in Figurg.1, with the red boundary, is the related Gersgorin set
from Figure4.1, which also hag; andz, as common points with the minimal GerSgorin set
INS ()]

From Figure5.1, we see thatl’j‘;f1 (C)ﬂBgf(C) is a proper subsebdf the related
Gersgorin set, where the difference between these sel®vensin yellow. This is not un-

expected, as it is known (cf6] eq. (4.80)]) that, for any matrid in C™",

B (A) CT7(A), foranyx > 0inR".
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