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AN OVERLAPPING ADDITIVE SCHWARZ-RICHARDSON METHOD FOR
MONOTONE NONLINEAR PARABOLIC PROBLEMS ∗

M. MUNTEANU† AND L. F. PAVARINO†.

Abstract. We construct and study a scalable overlapping Additive Schwarz-Richardson (ASR) algorithm for
monotone nonlinear parabolic problems discretized implicitly in time. At each time step, the Additive Schwarz
preconditioner is built using the linear part of the nonlinear operator, partitioning the domain of the problem into
overlapping subdomains, solving local problems on these subdomains and solving an additional coarse problem
associated with the subdomain mesh. This preconditioner isthen applied to the nonlinear operator using a Richardson
iteration. We prove first an abstract convergence result andthen convergence rate estimates showing the scalability of
the ASR algorithm. The results of numerical experiments in the plane confirm the theoretical estimates and illustrate
the performance of the one and two-level ASR algorithm and inthe presence of discontinuous coefficients in the
parabolic operator.
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1. Introduction. In recent years, domain decomposition methods have been extended
in different ways to nonlinear problems arising in many application areas. As a first ap-
proach, domain decomposition methods provide preconditioners for the Jacobian system in
a Newton-like iteration. In this context, Schwarz-type preconditioners have been success-
fully used by Cai et al. to solve problems from various applied fields, e.g., computational
fluid dynamics [11, 17], full potential problems [10], cardiac electrical activity [25], and un-
steady nonlinear radiation diffusion [27]. Additive Schwarz methods have been used not only
as inner iterations in a Newton-Krylov-Schwarz (NKS) scheme, but also as outer iterations
in nested solvers such as ASPIN [12, 1] or in the nonlinear additive Schwarz method by
Dryja and Hackbusch [15]. Different approaches have been studied by Lui [19, 20] using the
method of monotone iterations for continuous nonlinear elliptic and parabolic PDEs and by
Boglaev [4] using monotone Schwarz methods at the discrete level for singularly perturbed
reaction-diffusion problems. Extensions of the classicaladditive and multiplicative Schwarz
methods have been studied by Tai and Espedal [31, 32] for convex programming problems
and by Badea [2] for constrained minimization problems.

In this paper, we follow instead the work of Cai and Dryja [9] for monotone elliptic
problems and extend it to monotone nonlinear parabolic problems. The main idea is to build
an overlapping additive Schwarz preconditioner for the linear part of the operator, partition-
ing the domain of the problem into overlapping subdomains, solving local problems on these
subdomains, and solving an additional coarse problem associated with the subdomain mesh.
This preconditioner is then applied to the nonlinear operator using a Richardson iteration. The
linearity of the preconditioner allows us to employ the maintechnical tools of the classical
abstract theory of additive Schwarz methods (see, e.g., [33]), and prove an abstract conver-
gence result for the resulting iterative method. With this result, we can then obtain precise
convergence estimates for the Additive Schwarz-Richardson (ASR) method applied to the
time discretization of monotone nonlinear parabolic problems. The two-level ASR method
turns out to be scalable and with a convergence rate depending only on the ratioH/δ as in the
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linear case, whereH is the subdomain characteristic size andδ the overlap size. Without a
coarse space, the one-level ASR method can still have a constant upper bound if the time step
sizeτ is small enough. Otherwise, the convergence rate depends onthe ratioτ/(Hδ) and
scalability is lost as in the linear case. In case of generousoverlapδ = CH , these estimates
agree with the estimates obtained by Cai [7, 8] for linear parabolic problems.

The rest of the paper is organized as follows. In Section2, we introduce the nonlin-
ear parabolic problem, its main properties and time discretization. In Section3, we define the
ASR method in both its functional and matrix form. An abstract convergence result is given in
Section4, where we prove some technical lemmas leading to the main result of Theorem4.7.
In Section5, this abstract result is applied to the time discretizationof our nonlinear parabolic
problem and convergence rate estimates are obtained for both one- and two-level ASR meth-
ods. Section6 concludes the paper with the results of several numerical experiments in the
plane, confirming the theoretical results obtained and illustrating the scalability of the ASR
method. We also compare the ASR method with the Linearly Implicit Euler method, based
on solving an appropriate linear system involving the Jacobian of the nonlinear operator by
using GMRES with the Additive Schwarz preconditioner as in ASR and we show that the
ASR method is asymptotically less expensive.

2. Continuous and discrete nonlinear parabolic problems.We consider a polyhedral
domainΩ ⊂ Rd, d = 2, 3, with Lipschitz continuous boundary∂Ω, the spaces

V = {v ∈ H1(Ω) : v = 0 on Γ1 ⊂ ∂Ω, meas(Γ1) > 0}, L2(Ω),

and the nonlinear formb : H1(Ω) ×H1(Ω) −→ R satisfying the following properties:
1. b is Lipschitz continuous: ∃L > 0 such that,∀v, w, z ∈ H1(Ω),

|b(v, z) − b(w, z)| ≤ L||v − w||H1(Ω) · ||z||H1(Ω);
2. b is bounded: ∃C > 0 such that|b(v, w)| ≤ C(1 + ||v||H1(Ω))||w||H1(Ω),

∀v, w ∈ H1(Ω);
3. b is hemicontinuous: ∀u, v, w ∈ H1(Ω), the functionα −→ b(u+αv,w) is contin-

uous;
4. b is strictly monotone: b(v, v−w)−b(w, v−w) ≥ 0, ∀v, w ∈ H1(Ω), and equality

holds only forv = w;

5. b is linear in its second argument:b(v,
n∑

i=1

αiwi) =
n∑

i=1

αib(v, wi), ∀v, wi ∈ H1(Ω),

∀αi ∈ R, i = 1, . . . , n;
6. b(v, v) ≥ c||v||2H1(Ω) − c0||v||H1(Ω) − c1||v||

2
L2(Ω) − c2, ∀v ∈ H1(Ω),

wherec > 0, c0 > 0, c1 ≥ 0, c2 ≥ 0 are constants.
We consider the following nonlinear parabolic problem: given u0 ∈ L2(Ω) and

f ∈ L2((0, T );V ∗), find u ∈ W ≡ {u ∈ L2((0, T );V ), u′ ∈ L2((0, T );V ∗)}, such
that

{
< u′(t), w > +b(u(t), w) =< f(t), v >, ∀t ∈ (0, T ) \ Ew, ∀w ∈ V,
u(0) = u0,

(2.1)

whereEw ⊂ (0, T ) is a set of measure zero that depends on the functionw.
The continuous problem (2.1) is discretized implicitly in time by the backward Euler

method and in space by the finite element method. We suppose for simplicity that the time
interval (0, T ) is discretized with a uniform time stepτ = T/M into M equal subintervals
and that the domainΩ is discretized with a regular finite element triangulationTh with mesh
sizeh. The associated piecewise linear finite element spaceVh is defined by

Vh = {v|v is continuous on Ω, v|k is linear ∀k ∈ Th, v = 0 on Γ1}.
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We denote byum
h ∈ Vh the finite element approximation of a functionu ∈ V at time

tm = mτ and letfm = 1
τ

∫ tm

tm−1

f(t)dt.We then obtain the following fully discrete problem:

given an arbitrary sequence{u0
h} ⊂ L2(Ω) of approximations ofu0, such that

lim
h→0

||u0
h − u0|| = 0, find um

h ∈ Vh, such that

(
um

h − um−1
h

τ
, v

)
+ b(um

h , v) =< fm, v >, ∀v ∈ Vh.(2.2)

Results on the existence and uniqueness of the solution of the discrete and continu-
ous parabolic problems can be found, e.g., in [35, Theorems 45.3 and 46.4], respectively.
The convergence of the discrete solution to the continuous one is presented in [35, Theo-
rems 46.4 and 47.1].

3. An Additive Schwarz-Richardson algorithm. Since in the rest of the paper we
only consider discrete functions, for simplicity, we drop the indicesh andm and denote by

u both the finite element approximationu =
n∑

j=1

ujφj of the continuous solution in the finite

element basis{φj , j = 1, . . . , n} of Vh, and its vector representationu = [u1, . . . , un]T .
Problem (2.2) can then be written as the nonlinear algebraic system,

B(u) = ĝ,(3.1)

where

B(u) = [B1, . . . , Bn]T , with Bj = (u, φj) + τb(u, φj),
ĝ = [g1, . . . , gn]T , with gj = τ < fm, φj > +(um−1

h , φj).

Following the abstract Schwarz theory, presented, e.g., in[33], we consider a family of
subspacesVi ⊂ Vh, i = 0, . . . , N, and interpolation (or extension) operatorsRT

i : Vi −→ Vh,
and assume thatVh admits the decomposition

Vh =

N∑

i=0

RT
i Vi.

We suppose that there exists a symmetric, continuous and coercive bilinear form
a : V × V −→ R, such that

b(u, v) = a(u, v) + b̃(u, v),(3.2)

with b̃ a nonlinear form, monotone and Lipschitz continuous with Lipschitz constant̃L. Non-
linear formsb(u, v) with such a structure arise, e.g., in the field of computational electrocar-
diology, where research on parallel solvers for the associated nonlinear parabolic reaction-
diffusion models (known as monodomain and bidomain models)is currently very active; see,
e.g., [25, 13, 30, 22, 24, 21, 23, 28].

Since the bilinear form

aτ (u, v) = (u, v) + τa(u, v)

defines a scalar product onV , we can introduce local symmetric, positive definite bilinear
forms ãτ, i : Vi × Vi −→ R, and we make the standard three assumptions of the abstract
Schwarz theory (see [33] for more details):
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• stable decomposition:there exists a constantC0, such that everyu ∈ Vh admits a

decompositionu =
N∑

i=0

RT
i ui, ui ∈ Vi, i = 0, . . . , N that satisfies

N∑

i=0

ãτ,i(ui, ui) ≤ C2
0aτ (u, u);(3.3)

• strengthened Cauchy-Schwarz inequality:∃ ǫij ∈ [0, 1] i, j = 1, . . . , N, such that
∀ui ∈ Vi, ∀uj ∈ Vj

|aτ (RT
i ui, R

T
j uj)| ≤ ǫijaτ (RT

i ui, R
T
i ui)

1/2aτ (RT
j uj , R

T
j uj)

1/2;(3.4)

(we denote byρ(E) the spectral radius of the matrixE = (ǫij))
• local stability: there existsω > 0, such that

aτ (RT
i ui, R

T
i ui) ≤ ωãτ,i(ui, ui), ∀ui ∈ Vi, 0 ≤ i ≤ N.(3.5)

We define the “projection”-like operators̃Qi : Vh −→ Vi by

ãτ,i(Q̃i(u), vi) = (u,RT
i vi) + τb(u,RT

i vi), ∀vi ∈ Vi, u ∈ Vh,(3.6)

and their extensionsQi : Vh −→ RT
i Vi ⊂ Vh defined by

Qi(u) = RT
i Q̃i(u) and Q(u) =

N∑

i=0

Qi(u).

Let Ãτ,i ≡ (ãτ,i(φj , φl))j,l be the matrix representation of the local bilinear formãτ,i.
LEMMA 3.1. The matrix form ofQ(u) is

Q(u) = M−1B(u),(3.7)

whereM =

(
N∑

i=0

RT
i Ã

−1
τ,iRi

)−1

.

Proof. Let {ψk
i , k = 1, . . . , ni} be a basis of the local subspaceVi. ThenQ̃i(u) ∈ Vi

can be written as̃Qi(u) =
∑
l

Q̃i(u)
lψl

i and the two terms in (3.6) become

ãτ,i(Q̃i(u), vi) = ãτ,i(
∑

l

Q̃i(u)
lψl

i,
∑

k

vk
i ψ

k
i ) =

∑

l

∑

k

Q̃i(u)
lãτ,i(ψ

l
i, ψ

k
i )vk

i

=
∑

k

vk
i

∑

l

Ãkl
τ,iQ̃i(u)

l = vT
i Ãτ,iQ̃i(u),

and

(u,RT
i vi) + τb(u,RT

i vi) = (u,

n∑

l=1

(RT
i vi)

lφl) + τb(u,

n∑

l=1

(
RT

i vi

)l
φl)

=
n∑

l=1

(RT
i vi)

l [(u, φl) + τb(u, φl)] =
n∑

l=1

(RT
i vi)

lBl

= (RT
i vi)

TB(u).
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The definition ofQ̃i(u) implies

vT
i Ãτ,iQ̃i(u) = (RT

i vi)
TB(u), ∀vi ∈ Vi, u ∈ Vh,

and consequently

Ãτ,iQ̃i(u) = RiB(u), ∀u ∈ Vh.

The matrix form ofQ̃i(u) is then

Q̃i(u) = Ã−1
τ,iRiB(u).

SinceQi(u) = RT
i Q̃i(u), the matrix form ofQi(u) is

Qi(u) = RT
i Ã

−1
τ,iRiB(u).

Hence,

Q(u) =

N∑

i=0

Qi(u) =

N∑

i=0

RT
i Ã

−1
τ,iRiB(u) = M−1B(u),

whereM =

(
N∑

i=0

RT
i Ã

−1
τ,iRi

)−1

.

REMARK 3.2. Since the matrixM is symmetric and positive definite, it defines the
M-norm||u||M = (uTMu)1/2.

We defineǧi = Qi(u
∗), whereu∗ is the exact solution of(3.1), i.e: B(u∗) = ĝ. We

consider the nonlinear system

Q(u) = ǧ,(3.8)

whereǧ =
N∑

i=0

ǧi. As in the linear case (see [29, p. 150]),ǧ can be computed without knowing

the exact solutionu∗, since

ǧ =

N∑

i=0

ǧi =

N∑

i=0

Qi(u
∗) =

N∑

i=0

RT
i Ãτ,iRiB(u∗) = M−1B(u∗) = M−1ĝ.

Using the matrix form of the nonlinear operatorQ and the definition of̌g, it is straightforward
to prove that the nonlinear systemB(u) = ĝ is equivalent to the nonlinear systemQ(u) = ǧ.
In other words, we use the symmetric positive definite part asa preconditioner for the original
nonlinear system. This idea has already been used by Cai and Xu [34] for nonsymmetric or
indefinite problems. We can then define the Additive Schwarz-Richardson (ASR) algorithm
for Problem (3.1).

ASR algorithm: given initial guessesu0, r0 = Q(u0) − ǧ and a stopping criterion,
iterate fork = 0, 1, . . . until convergence

solve the preconditioned system:Mrk = B(uk) − ĝ,
update the solution: uk+1 = uk − λrk,

(3.9)

whereλ is a properly chosen parameter; see Theorem4.7.
We prove in the next section that the ASR iterations convergeif λ is chosen properly, and

its convergence rate depends on the parametersC0, ǫij , ω defined previously.
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4. An abstract convergence result.In order to prove our main result, Theorem4.7,
we need a few technical results established in the next few lemmas. We start by recalling a
lemma due to Zhang [36], that plays an important role in proving the equivalence between
|| · ||aτ

and|| · ||M.

LEMMA 4.1. Let P̃i be the projection-like operator fromV onto Vi defined by

ãτ,i(P̃iu, vi) = aτ (u,RT
i vi), vi ∈ Vi andPad =

N∑
i=0

RT
i P̃i = M−1Aτ . Then

aτ (P−1
ad u, u) = min

ui ∈ Vi

u =
∑
RT

i ui

N∑

i=0

ãτ,i(ui, ui).(4.1)

LEMMA 4.2. TheM−norm andaτ−norm are equivalent, i.e.,

1

C2
0

||u||2M ≤ ||u||2aτ
≤ 2ω(1 + ρ(E))||u||2M,

whereC0, ω and ρ(E) are the constants defined in the three assumptions of the abstract
Schwarz theory, inequalities (3.3)–(3.5).

Proof. a) Lower bound.Using Lemma4.1 and the stable decomposition assumption
(3.3), we have

||u||2M = uTMu = uTAτA
−1
τ Mu = aτ (A−1

τ Mu, u)

= aτ (P−1
ad u, u) ≤

N∑

i=0

ãτ,i(ui, ui) ≤ C2
0 ||u||

2
aτ
.

b) Upper bound.Let ū =
N∑

i=1

RT
i ui. From the strengthened Cauchy-Schwarz inequality

(3.4) and the local stability assumption (3.5), it follows that

aτ (ū, ū) =

N∑

i,j=1

aτ (RT
i ui, R

T
j uj) ≤

N∑

i,j=1

ǫijaτ (RT
i ui, R

T
i ui)

1/2aτ (RT
j uj, R

T
j uj)

1/2

≤ ρ(E)

N∑

i=1

aτ (RT
i ui, R

T
i ui) ≤ ρ(E)ω

N∑

i=1

ãτ,i(ui, ui).

Each elementu ∈ Vh can be written asu = RT
0 u0 + ū. Using the bilinearity ofaτ , the local

stability assumption and the last bound, we have

aτ (u, u) = aτ

(
RT

0 u0 + ū, RT
0 u0 + ū

)
= aτ (RT

0 u0, R
T
0 u0) + aτ (ū, ū) + 2aτ (RT

0 u0, ū)

≤ ωãτ,0(u0, u0) + ρ(E)ω

N∑

i=1

ãτi(ui, ui) + 2aτ(RT
0 u0, u).

Since2aτ (RT
0 u0, u) ≤ 2aτ (RT

0 u0, R
T
0 u0)

1/2aτ (u, u)1/2 ≤ aτ (RT
0 u0, R

T
0 u0) + aτ (u, u),

we obtain

aτ (u, u) ≤ 2ω(1 + ρ(E))

N∑

i=0

ãτ,i(ui, ui), ∀ui ∈ Vi, u =

N∑

i=0

RT
i ui.
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Taking the minimum over the all decompositions ofu and using Lemma4.1, we conclude

aτ (u, u) ≤ 2ω(1 + ρ(E)) min
ui ∈ Vi

u =
∑
RT

i ui

∑

i

ãτ,i(ui, ui) = 2ω(1 + ρ(E))aτ (P−1
ad u, u)

= 2ω(1 + ρ(E))||u||2M.
LEMMA 4.3. There exists a constantδ0 = 1

C2

0

> 0, such that

(Q(u+ z) −Q(u), z)M ≥ δ0||z||
2
M, ∀u, z ∈ Vh.

Proof. The definition ofQ(u), the linearity ofb in the second argument, the strict mono-
tonicity of b̃, and the lower bound of Lemma4.2imply

(Q(u+ z) −Q(u), z)M = zTM(Q(u+ z) −Q(u))

= zTMM−1(B(u + z) −B(u))

= zT (B(u + z) −B(u))

=

n∑

j=1

zj(bj(u+ z) − bj(u))

=

n∑

j=1

zj [(u+ z, φj) + τb(u + z, φj) − (u, φj) − τb(u, φj)]

= (z,

n∑

j=1

zjφj) + τ


b(u+ z,

n∑

j=1

zjφj) − b(u,

n∑

j=1

zjφj)




= (z, z) + τ [b(u+ z, z)− b(u, z)]

= ||z||2aτ
+ τ

[
b̃(u+ z, z)− b̃(u, z)

]
≥ ||z||2aτ

≥
1

C2
0

||z||2M.

Using a particular decomposition ofz,we are able to give another proof of this lemma. Since
Pad is invertible (see [33, Lemma 2.5]), we can decomposez ∈ Vh asz =

∑
j

RT
j zj , where

zj = P̃jP
−1
ad z,

aτ (z, z) = aτ (u + z, z)− aτ (u, z) =
∑

j

[
aτ (u+ z,RT

j zj) − aτ (u,RT
j zj)

]

=
∑

j

[
ãτj(Q̃j(u+ z), zj) − ãτj(Q̃j(u), zj)

]
−

∑

j

τ
[
b̃(u+ z,RT

j zj) − b̃(u,RT
j zj)

]

=
∑

j

[
ãτj(Q̃j(u+ z), zj) − ãτj(Q̃j(u), zj)

]
− τ

[
b̃(u+ z, z) − b̃(u, z)

]
.

Using the monotonicity of̃b, we can write

aτ (z, z) ≤
∑

j

ãτj(Q̃j(u+ z) − Q̃j(u), zj).
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By the definition ofzj, P̃j = Ã−1
τj RjAτ , Pad = M−1Aτ , and we have

||z||2aτ
≤

∑

j

ãτj(Q̃j(u + z) − Q̃j(u), zj) =
∑

j

zT
j Ãτj

[
Q̃j(u+ z) − Q̃j(u)

]

=
∑

j

zT
(
P−1

ad

)T
P̃T

j ÃτjÃ
−1
τj Rj [B(u+ z) −B(u)]

= zT
(
P−1

ad

)T


∑

j

P̃T
j Rj


 [B(u + z) −B(u)]

= zT
(
P−1

ad

)T


∑

j

AT
τ R

T
j

(
Ã−1

τj

)T

Rj


 [B(u + z) −B(u)]

= zT
(
P−1

ad

)T
AτM

−1 [B(u+ z) −B(u)] = zT (A−1
τ M)TAτM

−1 [B(u + z) −B(u)]

= zTMT (A−1
τ )TAτM

−1 [B(u+ z) −B(u)] = zTM [Q(u+ z) −Q(u)]

= (z,Q(u+ z) −Q(u))
M
.

We conclude the proof by using Lemma4.2.
LEMMA 4.4. For i = 0, 1, . . . , N , we have that

a) ||Qi(u+z)−Qi(u)||
2
aτ

≤ ω
[
aτ (z,Qi(u+ z) −Qi(u)) + τ b̃(u+ z,Qi(u+ z) −Qi(u))

−τ b̃(u,Qi(u+ z) −Qi(u))
]
;

b) ||Qi(u + z) −Qi(u)||aτ
≤ ω(1 + cL̃)||z||aτ

.
Proof. a) Using the definition ofQi, the local stability assumption, the definition ofQ̃i,

the linearity ofaτ , and the Lipschitz continuity of̃b, we have,

||Qi(u + z) − Qi(u)||
2
aτ

= aτ (Qi(u+ z) −Qi(u), Qi(u+ z) −Qi(u))

= aτ (RT
i (Q̃i(u+ z) − Q̃i(u)), R

T
i (Q̃i(u+ z) − Q̃i(u)))

≤ ωãτ (Q̃i(u+ z) − Q̃i(u), Q̃i(u + z) − Q̃i(u))

= ω
[
(u+ z,RT

i (Q̃i(u+ z) − Q̃i(u))) + τb(u + z,RT
i (Q̃i(u+ z) − Q̃i(u)))

−(u,RT
i (Q̃i(u+ z) − Q̃i(u))) − τb(u,RT

i (Q̃i(u+ z) − Q̃i(u)))
]

= ω [(z,Qi(u+ z) −Qi(u)) + τa(z,Qi(u+ z) −Qi(u))+

τ b̃(u + z,Qi(u+ z) −Qi(u)) − τ b̃(u,Qi(u+ z) −Qi(u))].

b) By the Cauchy-Schwarz inequality, we have

||Qi(u+ z) − Qi(u)||
2
aτ

≤ ω
[
||z||aτ

||Qi(u+ z) −Qi(u)||aτ
+ τL̃||z|| · ||Qi(u + z) −Qi(u)||

]
.
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The coercivity of the bilinear forma(·, ·) implies thatτ ||z||2 ≤ cτa(z, z) ≤ caτ (z, z) and
consequently we have||Qi(u+z)−Qi(u)||

2
aτ

≤ ω(1+cL̃)||z||aτ
||Qi(u+z)−Qi(u)||aτ

.

LEMMA 4.5. There exists a constantδ̆ 2
1 = 2ω2(ρ(E)2 + 1)(1 + cL̃)2 > 0, such that

||Q(u+ z) −Q(u)||aτ
≤ δ̆1||z||aτ

, ∀u, v ∈ Vh.

Proof. DefineQ̄(u) =
N∑

i=1

Qi(u), as in the proof of the upper bound of Lemma4.2. The

bilinearity of aτ , the definition ofQi(u), and the strengthened Cauchy-Schwarz inequality,
imply that

||Q̄(u+ z) − Q̄(u)||2aτ
≤ ρ(E)

N∑

i=1

aτ (Qi(u+ z) −Qi(u), Qi(u+ z) −Qi(u)).

From Lemma4.4, we obtain

|| Q̄(u+ z) − Q̄(u)||2aτ

≤ ωρ(E)

N∑

i=1

[aτ (z,Qi(u+ z) −Qi(u))+

+ τ b̃(u+ z,Qi(u + z) −Qi(u)) − τ b̃(u,Qi(u+ z) −Qi(u))]

≤ ρ(E)ω
[
aτ (z, Q̄(u + z) − Q̄(u)) + τ b̃(u+ z, Q̄(u+ z) − Q̄(u)) − τ b̃(u, Q̄(u+ z) − Q̄(u))

]

≤ ρ(E)ω(1 + cL̃)||z||aτ
||Q̄(u+ z) − Q̄(u)||aτ

.

Hence,

||Q̄(u + z) − Q̄(u)||aτ
≤ ρ(E)ω(1 + cL̃)||z||aτ

.(4.2)

SinceQ(u) = Q0(u) + Q̄(u), relation (4.2) and Lemma4.4give us

|| Q(u+ z) −Q(u)||2aτ
≤ 2||Q0(u+ z) −Q0(u)||

2
aτ

+ 2||Q̄(u+ z) − Q̄(u)||2aτ

≤ 2[ω(1 + τL̃)]2||z||2aτ
+ 2[ρ(E)ω(1 + τL̃)]2||z||2aτ

= 2ω2(1 + τL̃)2(1 + ρ(E)2)||z||2aτ
.

LEMMA 4.6. There exists a constantδ1 = C2
0 δ̆

2
1 2ω(1 + ρ(E)), such that

||Q(u+ z) −Q(u)||2M ≤ δ1||z||
2
M.

Proof. This bound is a direct consequence of Lemma4.2and Lemma4.5:

||Q(u+ z) −Q(u)||2M ≤ C2
0 ||Q(u+ z) −Q(u)||2aτ

≤ C2
0 δ̆

2
1 ||z||2aτ

≤ C2
0 δ̆

2
1 2ω(1 + ρ(E))||z||2M.
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Using these lemmas, we are now in a position to prove the main convergence result for
our ASR method.

THEOREM 4.7. If 0 < λ < 2δ0/δ
2
1 , then theASR method for Problem (3.8) con-

verges, i.e.,

||uk − u∗||2M ≤ P (λ)k||u0 − u∗||2M,

whereP (λ) = 1 − 2λδ0 + λ2δ21 and δ0, δ1 are the constants defined in Lemma4.3 and
Lemma4.6, respectively.

Proof. Letek = uk−u∗ andrk = Q(uk)−Q(u∗) be the error and the residual at stepk.
Then

ek+1 = uk+1 − u∗ = uk − λrk − u∗ = ek − λrk,

and

||ek+1||2M = (ek+1, ek+1)M(ek − λrk, ek − λrk)M

= ||ek||2M − 2λ(ek, rk)M + λ2||rk||2M.

Lemma4.3with u = u∗ andz = uk − u∗ yields

−(ek, rk)M = −(uk − u∗, Q(uk) −Q(u∗))M

= −(uk − u∗, Q(uk − u∗ + u∗) −Q(u∗))M

≤ −δ0||e
k||2M.

Using Lemma4.6with u = u∗ andz = uk − u∗, we obtain

||rk||
2
M = ||Q(uk) −Q(u∗)||2M = ||Q(uk − u∗ + u∗) −Q(u∗)||2M ≤ δ21 ||e

k||2M.

Therefore

||ek+1||2M ≤ (1 − 2λδ0 + λ2δ21)||e
k||2M = P (λ)||ek||2M.

If we choose0 < λ < 2δ0

δ2

1

, thenP (λ) < 1, and we obtain the convergence of the ASR

method.
REMARK 4.8.P (λ) attains its minimum atλmin = δ0

δ2

1

andP (λmin) = 1 −
δ2

0

δ2

1

< 1.

REMARK 4.9. If we drop the coarse spaceV0 and defineQ(u) =
N∑

i=1

Qi(u), the ASR

algorithm is convergent. It is easy to see that in this caseδ0 = 1
C2

0

andδ1 = C0ρ(E)ω(1+cL̃).

REMARK 4.10. The ASR performance depends on the choice of the parameterλ in the
Richardson iteration. This parameter can be chosen:
i) theoretically, by approximately minimizing the quadratic functionP (λ) in Theorem4.7 if
the constantsδ0 andδ1 can be estimated;
ii) numerically, by running a few tests cases (as we have donein Section6, Figure6.1) and
selecting a value which gives an approximate minimum of the ASR iteration count;
iii) automatically, by using one of the step-length strategies available in the literature of nu-
merical optimization, such as the one described in [26]; see the results reported in Section6,
Table6.2.
We remark that the numerical results of Figure6.1 show that the ASR iteration count is not
very sensitive to the choice ofλ near the minimum, but only near the endpoints of the con-
vergence interval.
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5. Convergence estimates for parabolic problem.Our additive Schwarz precondi-
tioner is build as in the linear case. We partition the domainΩ into shape regular nonover-
lapping subdomainsΩi, 1 ≤ i ≤ N, of characteristic diameterH , defining a shape-regular
coarse meshTH . Each subdomainΩi is extended to a larger one,Ω′

i, by adding the elements
of the fine meshTh within a distanceδi from its boundary. We assume that the partition
{Ω′

i} satisfies the finite covering assumption (see, e.g., [33]), and we denote byδ = maxi δi
the overlap size. Using the above decomposition, a one-level method is defined by the lo-
cal spacesVi = {v ∈ H1

0 (Ω′
i)| v|T is linear, ∀T ∈ Th,i}, 1 ≤ i ≤ N, and the local

bilinear formsãτ,i(ui, vi) = aτ (RT
i ui, R

T
i vi), ∀ui, vi ∈ Vi, with interpolation operators

RT
i : Vi −→ V, 1 ≤ i ≤ N.We then build a two-level algorithm by defining the coarse finite

element spaceV0 = {v ∈ H1
0 (Ω)| v is continuous and v|T is linear, ∀T ∈ TH} and the

operatorRT
0 , which interpolates the coarse functions onto the fine mesh.

We consider the variational parabolic problem: givenu(t0, x) = u0(x) and right-hand
sideG, findu(t) ∈ H1(Ω), such that∀t ∈ (t0, T ),

(
∂u

∂t
, v

)
+ a(u, v) + (F (u), v) = (G, v),(5.1)

where

a(u, v) =

∫

Ω

d∑

i,j=1

aij
∂u

∂xi

∂v

∂xj
dx,

with aij ∈ C1(Ω), such thataij(x) = aji(x), ∀x ∈ Ω ⊂ R
d for all i, j = 1, . . . , d andF a

monotone nonlinear function.
The abstract convergence result of Theorem4.7now can be applied to get explicit bounds

in terms of the discretization parameters. For simplicity,we consider the simplest case, where
we use exact solvers (i.e.,ãτ,i(ui, vi) = aτ (RT

i ui, R
T
i vi), ∀ui, vi ∈ Vi), so thatω = 1 in the

local stability assumption. We also assume that there are atmostN c nonzero elements in each
row of E ≤ N c, so thatρ(E) ≤ N c in the strengthened Cauchy-Schwarz inequality; see [33,
Lemma 2.10]. Therefore, we need only to bound the constantC0 in the stable decomposition
assumption.

LEMMA 5.1. The stable decomposition constantC0 can be bounded by

a)C2
0 ≤ Cmax

{
1 +

H

δ
, 1 +

τ

Hδ

}
, in the one-level case,

b)C2
0 ≤ C

(
1 +

H

δ

)
, in the two-level case,

whereC is a constant independent ofH, h andδ.
Proof. a) One-level case.Following the classical proof for the linear elliptic case (see,

e.g., [33]), we defineui = Ri(I
h(θiu)), i = 1, . . . , N, where{θi ∈ W 1,∞, 1 ≤ i ≤ N}

defines a partition of unity andIh is the nodal piecewise linear interpolant on the fine mesh
Th. By the approximations properties ofIh and the small overlap lemma (see [33], Lemma
3.10 and eqs.(3.20) - (3.23) or the original Lemma 3.1 in [16]), we obtain

|RT
i ui|

2
H1(Ω) ≡ |Ih(θiu)|

2
H1(Ω′

i
) ≤ C

(
1 +

H

δ

)
|u|2H1(Ω′

i
) +

1

Hiδi
||u||2L2(Ω′

i
).(5.2)

The equivalence between theL2(Ω)−norm and the discreteL2(Ω)−norm implies that

(RT
i ui, R

T
i ui)L2(Ω) ≡ ||Ih(θiu)||

2
L2(Ω′

i
) ≤ C||u||2L2(Ω′

i
).(5.3)
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Using the coercivity ofa(·, ·), (5.2), (5.3), and the finite covering assumption, we have

N∑

i=1

ãτ,i(ui, ui) =

N∑

i=1

aτ (RT
i ui, R

T
i ui) =

N∑

i=1

[
(RT

i ui, R
T
i ui)L2(Ω) + τa(RT

i ui, R
T
i ui)

]

≤ C

N∑

i=1

[
(RT

i ui, R
T
i ui)L2(Ω) + τ |RT

i ui|
2
H1(Ω)

]

≤ C

N∑

i=1

{
||u||2L2(Ω′

i
) + τ

[(
1 +

H

δ

)
|u|2H1(Ω′

i
) +

1

Hδ
||u||2L2(Ω′

i
)

]}

≤ C

N∑

i=1

[(
1 +

τ

Hδ

)
||u||2L2(Ω′

i
) + τ

(
1 +

H

δ

)
|u|2H1(Ω′

i
)

]

≤ C
(
1 +

τ

Hδ

)
||u||2L2(Ω) + τ

(
1 +

H

δ

)
|u|2H1(Ω).

The coercivity of the bilinear forma(·, ·) implies that|u|2H1(Ω) ≤ Ca(u, u) and therefore

N∑

i=1

ãτ,i(ui, ui) ≤ C

[(
1 +

τ

Hδ

)
||u||2L2(Ω) + τ

(
1 +

H

δ

)
a(u, u)

]

≤ Cmax

{
1 +

H

δ
, 1 +

τ

Hδ

}[
||u||2L2(Ω) + τa(u, u)

]
.

b) Two-level case.Suppose that the coarse mesh is quasi-uniform. Then the bound
for C2

0 can be obtained as in [33] by letting IH : L2(Ω) −→ V0 be theL2−projection
of u, (IHu, v)L2(Ω) = (u, v), ∀u ∈ L2(Ω), v ∈ V0, andu0 = IHu, w = u − Ihu0,
ui = Ih(θiw).

REMARK 5.2. The bound a) of Lemma5.1 implies that if the ratioτ/(Hδ) is small

enough, then a constant upper boundC2
0 ≤ C

(
1 +

H

h

)
still holds for the one-level ASR

algorithm.
REMARK 5.3. In case of small overlapδ = h, the estimates of Lemma5.1become

a)C2
0 ≤ C max

{
1 +

H

h
, 1 +

τ

Hh

}
, in the one-level case,

b)C2
0 ≤ C

(
1 +

H

h

)
, in the two-level case.

Therefore, in scaled speed-up tests with constant ratioH/h only the two-level ASR algo-
rithm is scalable, since the termτ/(Hh) asymptotically dominates the one-level bound for
any fixed value ofτ . Nevertheless, for a moderate number of subdomains (i.e., for 1/H

small enough), the one-level bound is dominated by the first term 1 +
H

h
, which yields a

“temporary” scalability; see Figure6.2.
REMARK 5.4. In case of generous overlapδ = CH , the estimates of Lemma5.1agree

with the estimates obtained by Cai [7, 8] for linear parabolic problems. In such case, Cai
proved that ifτ/H2 is small enough, then the one-level Schwarz algorithm is scalable and the
two-level algorithm satisfies an optimal constant bound. Lemma5.1extends these estimates
to nonlinear parabolic problems and to the case of variable overlap.
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TABLE 6.1
Comparison of ASR and Linearly Implicit Euler methods (GMRES with AS preconditioner): scaled speed-up

test with fixed subdomain sizeH/h = 4, small overlap sizeδ = h, and increasing number of subdomainsN (and
nodes). iter = iteration counts, cpu = cpu times, err = relative errors with exact solution.

ASR withλ = 0.4 Lin. Impl. Euler: GMRES with AS prec.
one-level two-levels one-level one-level, rest = 20 two-levels

N iter cpu iter cpu iter cpu iter cpu iter cpu err
2 × 2 40 0.07 43 0.07 10 0.09 10 0.10 11 0.07 6.76e-3
4 × 4 70 0.57 36 0.29 17 0.15 17 0.20 16 0.15 1.67e-3
6 × 6 123 2.88 35 0.87 20 0.59 20 0.84 17 0.49 7.44e-4
8 × 8 197 11.20 36 2.15 23 1.76 20+5 2.93 16 1.26 4.18e-4

10 × 10 293 36.80 36 4.61 26 4.48 20+7 7.78 16 3.02 2.67e-4
12 × 12 410 99.12 36 9.07 29 11.31 20+9 18.54 16 6.63 1.86e-4
14 × 14 549 236.93 36 16.25 31 29.12 20+14 51.33 16 15.69 1.36e-4
16 × 16 709 511.79 36 27.08 34 77.29 20+16 128.71 16 37.42 1.04e-4
18 × 18 891 1013.27 36 43.18 36 162.50 20+18 188.71 16 76.17 8.26e-5

6. Numerical results. In this section, we report the results of MATLAB numerical ex-
periments with the ASR method applied to the nonlinear parabolic problem (5.1) with the
linear elliptic bilinear form and the nonlinear function

a(u, v) =

N∑

i

∫

Ωi

σi∇u∇vdx, f(u) = 0.5u+ u3.

The elliptic coefficientsσi are equal to 1 in Tables6.2-6.4, while they are piecewise con-
stant with jump discontinuities across subdomain boundaries in the last tests of Figures6.3
and6.4. The domain is the unit squareΩ and the right-hand sideg is chosen so thatu∗(t, x) =
t sin(πx) sin(πy) is the exact solution whenσi = 1. We considert0 = 0, u0(x) = 0,
and we compute the solution fort = τ = 0.01. The iteration process is stopped when
||rk||M/||r0||M ≤ 1e−8, and we denote the relative error byerr = ||u−u∗||l2(Ω)/||u

∗||l2(Ω).
Comparison between ASR and Linearly Implicit Euler methods. We start with a

comparison between our ASR method (3.9) and the Linearly Implicit Euler method, consist-
ing in applying to the original nonlinear problem (2.2) a single Newton step, see e.g. Deu-
flhard [14], Lang [18], and solve the resulting linear system by GMRES with the Additive
Schwarz preconditionerM defined in (3.7). This method has the advantage of requiring only
the solution of a linear problem per time step, but it requires the computation of the Jacobian
of the nonlinear operator. We remark that the Jacobian is notneeded in our ASR algorithm
and it might even be practically uncomputable for some nonlinear problems, such as the mon-
odomain and bidomain systems coupled with realistic ionic models; see Munteanu [21]. In
our notations, the Linearly Implicit Euler method for the nonlinear system (3.1) B(um) = ĝ
at time steptm becomes:

solve the Jacobian system:Jm
B s

m = ĝ −B(um)
by GMRES with the Additive Schwarz preconditionerM in (3.7),

update the solution: um+1 = um + sm,

whereJm
B is the Jacobian of the nonlinear operatorB atum. Given our assumption (3.2) on

the structure ofB, this Jacobian matrix also can be written in terms of the nonlinear form
b(u, v) and the mass matrixM asJm

B = M + τJm
b , with Jm

b equal to the Jacobian ofb at
um.

Table6.1compares the two algorithms by reporting their iteration counts (iter) and MAT-
LAB cpu times (cpu) on a PC (Acer Aspire 3680) in a scaled speed-up test, where the subdo-
main sizeH/h = 4 is kept fixed and the number of subdomains (hence nodes) is increased
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TABLE 6.2
ASR scaled speed-up test with fixed subdomain sizeH/h = 4, small overlap sizeδ = h, and increasing

number of subdomainsN (and nodes): ASR with fixedλ = 0.4 and random RHS (second and third columns); ASR
with step-lenght strategy forλ and exact solution (fourth and fifth columns). iter = iteration counts, err = relative
errors with exact solution.

ASR withλ = 0.4 ASR with step-lenght strategy forλ
random RHS exact solution RHS

one-level two-levels one-level two-levels
N iter iter iter err iter err

2 × 2 40 42 25 6.76e-3 24 6.76e-3
4 × 4 70 38 37 1.67e-3 25 1.67e-3
6 × 6 122 39 69 7.44e-4 24 7.44e-4
8 × 8 196 40 117 4.18e-4 24 4.18e-4

10 × 10 291 42 157 2.67e-4 27 2.67e-4
12 × 12 407 41 223 1.86e-4 22 1.86e-4
14 × 14 544 42 - - 25 1.36e-4
16 × 16 703 43 - - 23 1.04e-4
18 × 18 882 43 - - 24 8.26e-5

from 2 × 2 to 18 × 18. For both algorithms the right-hand side is chosen so that the ex-
act solution isu∗ given above and we can determine the relative errors (err) reported in the
last column of the table, that decrease proportionally to the mesh refinement (i.e., increasing
subdomains) as expected. In agreement with the theory (see Remark5.3), in the one-level
case the number of iterations of both algorithms increases (much less for Linearly Implicit
Euler, column 5), while in the two-level case the iteration counts remain bounded and both
algorithms are scalable (with a better upper bound of 16 for Linearly Implicit Euler, column
6, than 36 for ASR, column 3). The cpu times behave accordingly, i.e., they increase strongly
for the one-level algorithms and show a more moderate increase for the two-level algorithms.
The most relevant comparison between the two-level algorithms shows that the ASR cpu
times are initially slightly larger than the Linearly Implicit Euler cpu times, but as the prob-
lem size increases (forN ≥ 14 × 14) the ASR times equal and then definitely improve over
the Lineary Implicit Euler times (27.08 v. 37.42 sec. forN = 16 × 16 and 43.18 v. 76.17
sec. forN = 18 × 18). These results indicate that ASR can be asymptotically more efficient
than Linearly Implicit Euler as the problem size and number of subdomains increase. We
remark that this is only a partial indication because of the serial implementation of the two al-
gorithms, where the subdomain problems of the Additive Schwarz preconditioners are solved
sequentially; it would be much more significant to compare the parallel cpu times for the two
algorithms on modern distributed computing architectures(which is beyond the scope of this
paper).

ASR scalability with random RHS and λ step-lenght strategy.Table6.2 reports the
results of a scaled speed-up test analogous to Table6.1, but focuses only on the ASR al-
gorithm with minimal overlapδ = h. In the left part of the table (columns 2 and 3), the
parameterλ is again fixed at 0.4 but the RHS is randomly distributed. In the right part of
the table (column 4 and 5),λ is chosen by the step-length strategy of [26] (columns 4 and
5) and the RHS is again the one associated to the exact solution u∗ given above. The results
confirm that in the one-level case the number of ASR iterations (iter) increases, while in the
two-level case this number remains bounded and the ASR algorithm is scalable. The step-
length strategy for the selection ofλ yields better iteration counts (around 22 - 27 iterations)
than the fixedλ = 0.4 selection (around 36 iterations), but at the expense of a much larger
cpu time (not shown). The results with a random right-hand side show the same scalability
of the two-level ASR algorithm, only with slightly larger iteration counts (now with an upper
bound of 43 iterations).
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TABLE 6.3
ASR standard speed-up test with fixed mesh sizeh = 1/48, small overlap sizeδ = h, and increasing number of

subdomainsN (of decreasing sizeH/h). ASR with fixedλ = 0.4 (second and third columns); ASR with step-lenght
strategy forλ (fourth and fifth columns). iter = iteration counts, err = relative errors with exact solution.

λ = 0.4 λ: step-length strategy
one-level two-levels one-level two-levels

N iter err iter err iter err iter err
2 × 2 155 1.74e-4 70 1.74e-4 86 1.74e-4 43 1.74e-4
4 × 4 192 1.74e-4 58 1.74e-4 114 1.74e-4 32 1.74e-4
6 × 6 245 1.74e-4 47 1.74e-4 149 1.74e-4 27 1.74e-4
8 × 8 301 1.74e-4 41 1.74e-4 - - 23 1.74e-4
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FIG. 6.1.ASR iterations counts as a function of the parameterλ; N = 2 × 2, overlap sizeδ = h.

ASR standard speed-up.We study the ASR performance in a standard speed-up test
where the global problem size is fixed (h = 1/48) and the number of subdomains is increased
from 2 × 2 to 8 × 8, hence decreasing the ratioH/h. The same quantities (iter and err) of
Table6.2 are reported in Table6.3. As predicted by the theory, only in the two-level case,
the ASR iteration counts improve as the subdomain sizeH decreases, since the termτ/(Hh)
dominates the one-level bound in Remark5.3b).

ASR dependence onλ. Figure6.1 confirms the theoretical prediction of Theorem4.7,
showing the ASR iteration counts as a function of the parameterλ forN = 2×2 subdomains,
overlapδ = h, and two mesh sizesh = 1/8 (continuous line),h = 1/16 (dashed line). The
explicit formula of Theorem4.7 shows that the parabolaP (λ) attains its minimum inside a
right interval of 0 and tends to 1 at its endpoints; correspondingly, the ASR convergence rate
attains a minimum inside an interval(0, α), α > 0 and degenerates at the interval endpoints.

ASR dependence onδ. Table6.4 shows that the ASR iteration counts improve with
increasing overlap sizeδ, for both the one- and two-level ASR algorithms, in agreement with
Lemma5.1. In the two-level case, the improvement becomes irrelevantfor overlap sizes
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TABLE 6.4
Effect of increasing the overlap sizeδ in one- and two-level ASR methods for fixed mesh sizeh = 1/48, number

of subdomainsN = 2 × 2, λ = 0.4 iter = iteration counts, err = relative errors with exact solution.

overlap size one-level two-levels
δ iter err iter err
h 155 1.74e-4 70 1.74e-4
2h 82 1.74e-4 46 1.74e-4
3h 59 1.74e-4 37 1.74e-4
4h 49 1.74e-4 37 1.74e-4
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FIG. 6.2. One-level ASR iterations counts for increasing number of subdomains1/H and different time-step
sizesτ , fixed ratioH/h = 4, δ = h.

larger than3h.
ASR scalability dependence onτ . Figure6.2 reports a different validation of the one-

level bound by reducing the time-step sizeτ and performing a scaled speed-up test as in
Table6.2(H/h fixed and small overlapδ = h). While we already know that for a given value
of τ the one-level ASR algorithm is not scalable (Remark5.3and Table6.2), we nevertheless
expect a reduction ofτ to give bounded iteration counts up to a critical number of subdomains
Nτ (“temporary” scalability) since the first term dominates the maximum in Remark5.3a),
while forN > Nτ we expect increasing iteration counts since the second termdominates the
maximum in Remark5.3a). The results in Figure6.2 show that this is indeed the case: for
τ = 1e− 3, Nτ ∼ 4 × 4, for τ = 5e− 4, Nτ ∼ 6 × 6 and forτ = 1e− 4, Nτ ∼ 12 × 12.

ASR performance for elliptic coefficients with jump discontinuities across subdo-
mains. Finally, Figures6.3 and 6.4 report the ASR results when the coefficientsσi of
the linear elliptic operator are piecewise constant and present jump discontinuities across
subdomain boundaries. We considered a decomposition ofΩ into 7 × 7 subdomains with
H/h = 4, δ = h; we chose a larger tolerancetol = 1e− 4 in the stopping criterion in order
to test the convergence (or lack thereof) of the unpreconditioned algorithm, up to a maximum
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1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 σi σi σi 1 1
1 1 σi σi σi 1 1
1 1 σi σi σi 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1

σi one-level two-levels no prec
iter iter iter

10−2 63 17 -
10−1 66 17 -
1 77 17 29818
10 76 17 -
102 72 17 -

FIG. 6.3.Iteration counts of one- and two-level ASR method withλ = 0.4 for a test problem with discontinuous
coefficientσi in the linear elliptic operator; the domain is decomposed into N = 7×7 subdomains (left panel, with
values ofσi indicated),H/h = 4, tol = 1e − 4

0 -3 1 0 -1 2 0
-2 2 0 1 -3 3 0
1 0 -2 2 3 2 1
2 -3 2 0 2 1 -3
3 0 1 2 0 1 3
-3 1 0 3 -3 3 0
0 -1 1 2 -2 3 -3

one-level two-levels
iter iter
40 17

FIG. 6.4. Iteration counts of one- and two-level ASR method withλ = 0.4 for a test problem with random
discontinuous coefficientσi in the linear elliptic operator; the domain is decomposed into N = 7 × 7 subdomains
(left panel), with indicated the values of the exponentsαi in the coefficientsσi = 10αi , H/h = 4, tol = 1e − 4

number of iterationsmaxit = 3 · 104. We first considered a configuration where inside the
3 × 3 central subdomainsΩi (see Figure6.3, left) the elliptic coefficientsσi have varying
values ranging from1e− 2 to 1e+ 2, while they are equal to 1 in the other surrounding sub-
domains. The table in Figure6.3, right, show that the two-level ASR method is unaffected
by the size of the discontinuity, the one-level is almost unaffected but with iteration counts
more than four times larger, and the unpreconditioned Richardson iteration essentially does
not converge withinmaxit iterations. We also considered a second configuration wherethe
coefficientsσi = 10αi have random exponentsαi given in Figure6.4, left, with a variation of
six orders of magnitude. The two-level ASR iteration countsare the same as before (17), the
one-level iteration counts are a bit better (40) and the unpreconditioned method again does
not converge.
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