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NUMERICAL STUDY OF NORMAL PRESSURE DISTRIBUTION IN ENTRANCE
PIPE FLOW

�
K. SHIMOMUKAI

�
AND H. KANDA �

Abstract. This paper deals with the computation of pipe flow in the entrance region. The pressure distribution
and flow characteristics, particularly the effect of vorticity in the vicinity of the wall, are analyzed for Reynolds
numbers (Re) ranging from 500 to 10000. The pressure gradient in the normal or radial direction is caused by the
normal component of the curl of vorticity, which decreases as Re increases. It is found, for the first time, that the
pressure gradient along the normal direction near the pipe inlet is negative, i.e., the pressure at the wall is lower than
that at the central core for Re � 5000. This result is beyond the scope of the boundary-layer assumption and contrary
to the consequence of Bernoulli’s law.
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1. Introduction.

1.1. Background and objectives. Numerous investigations of laminar incompressible
fluid flow along the entrance region of a smooth circular pipe have been made both exper-
imentally and theoretically since the work of Hagen in 1839 and Poiseuille in 1841. Shah
and London [19] presented an excellent overall review of previous research studies on such
problems. Generally, thus far, three major variables have been studied [6]: (i) the velocity dis-
tribution in all sections, (ii) the entrance length ( ��� ), and (iii) the pressure difference between
any two sections. The results of previous research studies on the velocity distribution, en-
trance length, and pressure difference in dimensionless � coordinates are approximately the
same at Reynolds numbers Re � 500, i.e., these quantities are independent of the Reynolds
number for Re � 500 [3].

Up to now, the problem of transition between laminar and turbulent flows in a pipe has
not yet been solved. Since Reynolds discovered the laminar-turbulent transition problem in
1883, the transition occurs necessarily in the pipe entrance region at Re approximately �
2000 [21].

Therefore, the first objective of this investigation is to find and confirm a variable or pa-
rameter that varies as the Reynolds number increases in order to enable flow stability studies
[10]. To this end, we found, in the previous study of channel flow, that there is a significant
difference between the pressure 	�
 at the wall and 	�� at the centerline in the normal or radial
direction, that decreases as Re increases [20].

It is convenient for computational purposes, to divide the flow region into the entrance
region and the developed region. In the entrance region, the mass flux transported along
the pipe remains the same across each cross section. Since the streamwise velocities near
the wall are retarded by shearing stresses, the velocities at the central parts near the axis
must increase until, finally, an equilibrium condition is established between the pressure drop
and the shear stresses. Accordingly, our assumed uniform velocity profile at the inlet is
gradually transformed, because of viscous forces, into the well–known parabolic, Poiseuille-
type distribution downstream. We denote by “fully developed region”, the downstream region
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after the entrance length; in this region, the velocity distribution and the pressure drop per unit
axial distance are constant.

All of the foregoing solutions involve the boundary-layer assumptions, i.e., the axial dif-
fusion of momentum and normal pressure gradient are neglected; see [2, 4] in Subsection 1.2.
Prandtl’s boundary-layer assumption is that the pressure inside the boundary layer is the same
as that outside the boundary layer in the radial direction. It has been successfully applied for
flows with high Reynolds numbers in many fluid dynamics studies. Moreover, it was applied
to theoretical investigations of pipe flow, in which pressure was assumed to be a function
of the axial distance only and one-dimensional. Hence, we must numerically investigate the
reason why the pressure gradient, ��	������ , is negative near the wall of the entrance region.

Peyret and Taylor [15] state that the two most troublesome boundary conditions to pre-
scribe and satisfy are
(i) the downstream flow conditions and
(ii) the pressure conditions at a solid surface.
Our second objective, thus, is to develop a more accurate algorithm for the calculation of the
pressure distribution, without making any assumptions about the pressure distribution at the
wall.

1.2. Literature review. Very little is known about the radial pressure gradient [9]. Gen-
erally, solutions of the Navier-Stokes (N-S) equations for pipe entrance flow consist of ap-
proximate solutions of restricted forms of the N-S equations, variations in the applications of
the boundary-layer equations, or combinations of these in which a boundary-layer solution
valid near the inlet is coupled with a restricted equation of motion that is valid far from the
inlet.

Let us here consider previous analyses and assumptions [2, 4, 12]. By restricting the
applications of the N-S equations in cylindrical coordinates such that:
(i) the flow is in a steady state,
(ii) the radial component of the N-S equations is negligible, and
(iii) the angular motion (i.e., the axisymmetric flow) is negligible, then the N-S equations can
be simplified as follows:������� �������� � ����! #" $ ��	���%� �& ��')(� ���� � � � ����* �� ��+ ���� +-,/.(1.1)

One or more of the following additional assumptions were made by others for obtaining
solutions to (1.1):
(iv) The axial transport of momentum is negligible, i.e., mathematically,��+ ���� +10 (� ���� � � � ����  32
(v) The axial velocity at the pipe inlet is uniform:

�*4 57698 ";: 8 " ( 2(vi) The effect of radial flow is negligible;� � ���� 0 �<� ���� .
(vii) The pressure is a function of � and is independent of � ; and
(viii) The pressure is obtained by integrating$ �=	��� " �>�<� ����@???? 5A698 .
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1.3. Nomenclature.B
= pipe diameterC 8
= maximum axial point of mesh systemD
= axial point of mesh systemE 8
= maximum radial point of mesh systemF
= radial point of mesh system�G� = dimensionless entrance length = �9HJIK��L BM& �)N	 = dimensionless static pressure = 	�IO��LPL ( � � NRQ : +8 N	�� = dimensionless static pressure at centerline	�
 = dimensionless static pressure at wall	�I = static pressure� = dimensionless radial coordinate = �S� B��I = radial coordinate&
= dimensionless pipe radius =

& I � B = 0.5& I = pipe radius
Re = Reynolds number based on pipe diameter = : 8 B �STU

= dimensionless time = L : 8 � B N U IU I = time�
= axial velocity: 8 = average axial velocity = 1� = radial velocityV
= velocity vector� = dimensionless axial coordinate = ��IK� B��I = axial coordinate��HWI = actual entrance length� = dimensionless axial coordinate = ��IK��L BX& �AN = ��� & �Y
= dimensionless streamfunction =

Y IO��L : 8 B +7NY
’ = streamfunctionZ = dimensionless vorticity = (

B � : 8 N Z IZ ’ = vorticity[
= angle in cylindrical coordinatesT = kinematic viscosityQ = fluid density\ 	 = axial pressure drop from the inlet\ � = radial mesh size\ � = axial mesh size

2. Governing equations. Figure 2.1 is a two dimensional plot of normalized entrance
length against normalized radius of the pipe, with pipe radius � in the range ]_^`�_^`] . a . The
setup comprises a smooth, straight, circular pipe without a bellmouth at the pipe inlet. We
have assumed that at the inlet � = 0, the fluid enters the pipe with a flat axial velocity profile: 8 across the pipe, and that there is no velocity component in the radial direction.

First, we consider dimensionless variables. All lengths and velocities are normalized by
the pipe diameter

B
and the mean velocity : 8 , respectively. The pressure is normalized byL ( � � NbQ : +8 . The Reynolds number is based on the pipe diameter and the mean velocity. Note

that the dimensionless axial coordinate x (= ��IK� B ) is used for calculation and X (= ��IK��L BM& � ))
is used for the presentation of our figures and tables; �9I is the actual axial coordinate.

2.1. Governing equations. We consider unsteady flow of an incompressible Newtonian
fluid with constant viscosity and density, and we disregard gravity and external forces. Our
aim is to initially eliminate the appearance of the pressure term in the equations, and to this
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FIG. 2.1. Velocity development in entrance region.

end, we introduce streamfunction and vorticity formulae in two-dimensional coordinates to
enable computation of the velocity components without any assumptions on the pressure. We
can later compute the pressure distribution using computed values of the velocity.

The transport equation for the vorticity written in dimensionless form [14] is the equation� Z� U $ (� � Y��� � Z��� � (� � Y��� � Z��� � Z� + � Y��� " (& ��' ����dc_(� �*LK� Z N���fe � ��+ Z��� +9, .(2.1)

The Poisson equation for Z is derived from the definition of Z , i.e.,$ Z "hg + Y " ���� L (� � Y��� N � ��+��� + L Y � N .(2.2)

The axial velocity
�

and radial velocity � are defined as derivatives of the streamfunction, i.e.,� "#(� � Y���/i �j" $k(� � Y��� .(2.3)

Only the angular (i.e.,
[
) component of a two-dimensional flow field Z is non-negligible,

and we shall thus write Z for Z L [ N , i.e.,Z " Z*l "nm gpo Vrq l " � ����s$ � ���� .(2.4)

The
Y

– Z solution does not give any information regarding the pressure field. The pres-
sure can be calculated using the steady-state form of the N-S equations [14]. The pressure
distribution for the � derivative is��	���t" $ ���u��� ������3� � ����! v� �& � �w��+ ���� + �p(� � ����x� ��+ ���� +  3i(2.5)

and that for the r derivative is��	��� " $ � � � � ���� �3� � ����y � �& � �<��+ ���� + � (� � ���� $ �� + � ��+ ���� +  .(2.6)

Since
�

and � are known at every point, from (2.3), the derivatives on the right-hand sides
of (2.5) and (2.6) can be computed. Hence, note that the result of (2.5) must satisfy the result
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FIG. 2.2. Development of pressure drop in pipe flow.

of (2.6). Accordingly, a smooth pressure distribution that satisfies both (2.5) and (2.6) is
calculated using Poisson’s equation [18],g + 	 " ��+R	��� + � ��+z	��� + �p(� �=	��� "{(�|' ���� � � �=	���G � ���� � � ��	���} ,(2.7)

" $ �x~ � � ����9 + � � � ���� � ���� � � � ����G + � � +� +_� .
Note that from (2.7), the pressure itself is determined only by the velocities and is independent
of the Reynolds number. In this study, initial values are obtained using (2.5), and then (2.7)
is used to obtain better solutions.

2.2. Axial pressure drop at centerline. For fully developed flow where �=	9����� " ] ,the pressure gradient at the centerline [24] is given by$�� 	� � " �>�& � .
The total pressure drop

\ 	�L���N from the pipe inlet is expressed as the sum of the pressure
drop that would occur if the flow were fully developed, plus the excess pressure drop ��LK��N
to account for the developing region,\ 	�LK��N " 	!L�]=N $ 	!LK��N " $ 	!LK��N " �S� � � �`LK��N .(2.8)

The pressure drop can be conveniently represented by (2.8), as shown in Figure 2.2.

2.3. Normal pressure gradient at wall. Here, we consider the normal pressure gradient��	��>��� . The dimensionless N-S equation in vector form [6] is written as� V� U $ V o Z "�$ (��� ��� � L�	 � V + N $ (& � gpo Z .(2.9)



ETNA
Kent State University 

http://etna.math.kent.edu

NUMERICAL STUDY OF NORMAL PRESSURE DISTRIBUTION IN ENTRANCE PIPE FLOW 15

1

2

J0

Flow

J1

J2

  i1 I0

j

r

x

r

r

Centerline

x

Fluid particle
with vorticity

NWS

(1/2) ∆ r

Pipe  inlet
Pipe  outlet

Pipe  wall

R

FIG. 2.3. Direction of curl of vorticity on wall.

Since the velocity vector
V " ] at the wall, that is, the normal component of (2.9) at the wall,

reduces to ��	����???? � 6y� " $ �& � gpo Z 4 � 6y� " �& � � Z l���;???? � 6y� i(2.10)

the normal pressure gradient is derived from the negative normal component of the curl of
vorticity at the wall. This normal pressure gradient is also presented as�=	��� " $ �& � � Z l���`???? � 6}� i(2.11)

where L�� i �)N are the normal and tangent to the wall [18]. Since � = - � and � = � at the wall,
(2.10) and (2.11) are the same. Equation (2.10) is, however, clearer than (2.11) when we
consider a physical force mechanism in vector form. The normal component of the curl of
vorticity at the wall hereafter is called the normal wall strength (NWS). From (2.10), NWS is
expressed as ���j��� �& �dg�o Z 4 � 6}� " $ �& � � Z�l��� ???? � 6y� " $ �=	��� ???? � 6y� .(2.12)

The following characteristics of NWS are considered.
(i) NWS is effective near the pipe inlet where the vorticity gradient in the x-direction is large
and decreases inversely with the Reynolds number. In the fully developed region, NWS van-
ishes, since the curl of vorticity disappears.
(ii) It is clear from (2.12) that NWS causes a pressure gradient in the radial direction, that
is, the pressure gradient at the wall results from the curl of vorticity. NWS and the normal
pressure gradient ��	9����� have the same magnitude at the wall, but have opposite directions.
When ��	���������] , the direction of NWS is from the wall to the centerline, as shown in Fig-
ure 2.3. NWS causes the fluid particles near the wall to move towards the centerline in the
normal direction.
(iii) When using the boundary-layer assumptions, NWS vanishes since ��	��>��� is always ne-
glected in the assumptions.
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3. Numerical methods. The rectangular mesh system used is schematically shown in
Figure 2.3, where

C ] and
E ] are the maximum numbers of mesh points in the � - and � -

directions, respectively, and
C ( " C ] $ ( , C � " C ] $ � , E ( " E ] $ ( , and

E � " E ] $ � .In this paper, generally,
C ] = 1001 and

E ] = 101. The dimensionless
\ � = 0.0001 grid

space is used for calculations of ��� and ��L���N (see Subsection 4.2); since
\ � " \ � o & � ,\ � and the maximum � -distance, � " L C ] $ ( N \ � , are proportional to Re. On the other

hand, the
\ � = 0.00001 grid space is used for calculations of the pressure distribution in the

radial direction; see Subsection 4.3.

3.1. Vorticity transport equation. This computational scheme involves the forward-
time, center-space (FTCS) method. For unsteady problems, (2.1) in finite difference form
can be solved efficiently in time using an explicit [8, 9] or implicit Gauss-Seidel iteration
method (this study). The implicit form for vorticity is written asZG�>��  $ ZG�\ U $n(� � Y ���� � ZG�>�� ��� �v(� � Y ���� � ZG�>�� ��� � ZG�S�� � + � Y ����(3.1)

" (& � ' ���� c¡(� �!L�� ZG�>��  N��� e¢� ��+ ZG�>�� ��� +k, i
where � corresponds to the time step.

Consider the initial streamfunction. From (2.3), the initial condition for the streamfunc-
tion is given by Y L D i F N " (� m L F $ ( N \ � q + i ( ^ D ^ C ] i ( ^ F ^ E ] i
where (

D i F ) is the axial point and radial point of the mesh system; see Figure 2.3. Within the
boundaries, the initial vorticity is obtained by solving (2.2). The velocities

�
and � are set

using (2.3) whenever the streamfunction is newly calculated.
The following are the boundary conditions.

(i) At the centerline:
Yw£�¤   " ] i Z £K¤   " ] i ( ^ D ^ C ( .(ii) At the inlet:

Y   ¤ ¥ " ] . a m L F $ ( N \ � q + i Z   ¤ ¥ " ] i � ^ F ^ E ( .(iii) At the wall:
Y�£�¤ ¦ 8 " ] .§a m L E ] $ ( N \ � q + i ( ^ D ^ C ( .The vorticity boundary condition at no-slip walls is derived from (2.4) to beZ " $ � ���� .(3.2)

A three-point, one-sided approximation for (3.2) is used to maintain second-order accuracy:Z £K¤ ¦ 8©¨ $«ª � £K¤ ¦ 8 $ � � £�¤ ¦   � � £K¤ ¦ +� \ � " � � £K¤ ¦   $ � £K¤ ¦ +� \ � .(3.3)

(iv) At the outlet, the linear extrapolation method is used:
YG¬ 8 ¤ ¥ " � Y�¬   ¤ ¥ $ Y�¬ + ¤ ¥ i Z ¬ 8 ¤ ¥ "� Z ¬   ¤ ¥ $ Z ¬ + ¤ ¥ i ( ^ F ^ E ] .3.2. Pressure distribution. The following are the boundary conditions for pressure.

(i) For the pressure at the centerline, we use the three-point finite difference form; since��	��>��� " ] at � " ] , 	 £�¤   " � 	 £�¤ + $ 	 £K¤ ª i ( ^ D ^ C ] .
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TABLE 4.1
Effects of mesh system on velocity development at Re = 2000

Case case 1 case 2 case 3 case 4 case 5 case 6 case 7 case8
I0 11 21 31 51 101 201 1001 10001
J0 11 21 31 51 101 201 101 101

T-steps ( ®   8°¯ ) 200 300 400 400 500 1600 6200 12,000
CPU [s] 870 4890 6370 11,280 12,370 26,340 248,900 2,003,830±

Velocity development
0.00001 – – – – – – – 1.0067
0.00003 – – – – – – – 1.0198
0.00005 – – – – – – – 1.0324
0.0001 – – – – – – 1.0770 1.0606
0.0003 – – – – – – 1.1513 1.1225
0.0005 – – – – – – 1.1809 1.1526
0.001 – – – – 1.2530 1.2515 1.2286 1.2059
0.003 – – – – 1.3823 1.3732 1.3532 1.3389
0.005 – 1.4631 – – 1.4673 1.4581 1.4413 1.4300
0.01 1.5932 1.6284 1.6321 1.6300 1.6228 1.6152 1.6037 1.5959
0.03 1.8778 1.9024 1.9055 1.9057 1.9036 1.9014 1.8993 1.8973
0.05 1.9499 1.9712 1.9741 1.9748 1.9743 1.9736 1.9732 1.9727
0.056 – – – 1.9829 1.9827 1.9822 1.9819 1.9816
0.07 1.9689 1.9891 1.9920 1.9930 1.9930 1.9928 1.9927 1.9926
0.1 1.9753 1.9947 1.9976 1.9987 1.9990 1.9990 1.9982 1.9989² H (99 ³ ) – 0.0569 0.0542 0.0536 0.0538 0.0543 0.0545 0.0547´¶µ¸·@¹

1.453 1.342 1.274 1.217 1.176 1.157 1.220 1.270

(ii) The pressure at the inlet is given as zero throughout the 	   ¤ ¥ " ] i ( ^ F ^ E ( .(iii) The pressure at the wall is derived from (2.10). For the leading edge at � " ]rL D " ( N and� " & L F " E ]=N , the following three-point approximation is used for 	 and Z . The pressure
gradient is expressed as�=	��� ???? £ 6   ¤ ¥ 6 ¦ 8 ¨ ª 	   ¤ ¦ 8 $ � 	   ¤ ¦   � 	   ¤ ¦ +� \ � " �& � � $ Z º¤ ¦ 8 � � Z + ¤ ¦ 8 $ ª Z   ¤ ¦ 8� \ �  .
For the wall with

� ^ D ^ C ( and
E " E ] i��	����???? £�» + ¤ ¥ 6 ¦ 8 ¨ ª 	 £�¤ ¦ 8 $ � 	 £K¤ ¦   � 	 £K¤ ¦ +� \ � " �& � � Z £ �!  ¤ ¦ 8 $ Z £K¼   ¤ ¦ 8� \ �  .

(iv) The following linear extrapolation method is used for the outflow boundary conditions:	 ¬ 8 ¤ ¥ " � 	 ¬   ¤ ¥ $ 	 ¬ + ¤ ¥ i ( ^ F ^ E ] .4. Results and discussion. The numerical calculations were carried out on an NEC
SX-7/232H32 supercomputer that has a peak performance of 8.83 G-FLOPS/processor. CPU
times are listed in Table 4.1, including the number of

C ] o E ] and the time steps required
to reach a steady-state solution (with maximum � in (3.1)). The calculations were actually
performed using four parallel processors, so that the actual CPU times were one-quarter of
the listed values.

In order to check the accuracy, numerical calculations were performed for 8 different
mesh spacings from 11 o 11 (case 1) to 10001 o 101 (case 8), as listed in Table 4.1. It is clear,
judging from the �G� value at � = 0.1, that the calculated results of �G� are approximately the
same for mesh systems of above 21 o 21.

Moreover, to evaluate the accuracy of calculations, the calculated velocity development,
entrance length, and excess pressure drop were compared with those obtained by the previous
researchers. The accuracy of the calculations in this study was thus verified, as described in
the following subsections.
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FIG. 4.1. Velocity profile of axial velocity component at Re = 2000.

TABLE 4.2
Velocity development at Re = 2000 for 10001 ½ 101 mesh system (case 8)±

r=0 r=0.1 r=0.2 r=0.3 r=0.4 r=0.45 ¾7¿ ¾ºÀ
0.00001 1.0067 1.0069 1.0079 1.0106 1.0206 1.0420 -0.0193 -0.0217
0.00003 1.0198 1.0205 1.0233 1.0306 1.0544 1.0908 -0.0312 -0.2210
0.00005 1.0324 1.0336 1.0378 1.0480 1.0751 1.1015 -0.0518 -0.2067
0.0001 1.0606 1.0622 1.0675 1.0781 1.0959 1.0766 -0.1000 -0.1885
0.0003 1.1225 1.1229 1.1239 1.1254 1.1248 0.9369 -0.2198 -0.2307
0.0005 1.1526 1.1527 1.1530 1.1534 1.1367 0.8500 -0.2864 -0.2893
0.001 1.2059 1.2059 1.2060 1.2060 1.1142 0.7273 -0.4114 -0.4119
0.003 1.3389 1.3389 1.3385 1.3112 0.9797 0.5632 -0.7494 -0.7487
0.005 1.4300 1.4299 1.4238 1.3369 0.9078 0.5063 -1.0015 -1.0006
0.01 1.5959 1.5897 1.5401 1.3322 0.8245 0.4480 -1.5085 -1.5075
0.03 1.8973 1.8407 1.6521 1.2933 0.7419 0.3941 -3.0609 -3.0599
0.05 1.9727 1.8988 1.6725 1.2833 0.7256 0.3836 -4.4160 -4.4150
0.056 1.9816 1.9056 1.6748 1.2822 0.7238 0.3824 -4.8113 -4.8103
0.07 1.9926 1.9140 1.6777 1.2807 0.7214 0.3809 -5.7254 -5.7244
0.1 1.9989 1.9189 1.6794 1.2799 0.7201 0.3801 -7.6696 -7.6686

Hornbeck [7]
0.0005 1.1503 1.1503 1.1503 1.1502 1.1293 0.8434 -0.3220 –
0.005 1.4332 1.4324 1.4214 1.3292 0.9107 0.5102 -1.0506 –
0.01 1.5977 1.5893 1.5358 1.3308 0.8261 0.4496 -1.5610 –
0.03 1.8920 1.8366 1.6509 1.2943 0.7429 0.3947 -3.1064 –
0.05 1.9698 1.8969 1.6721 1.2840 0.7263 0.3840 -4.4520 –

4.1. Velocity development. The calculated results of axial velocity development for
case 8 (mesh system of size 10001 o 101 in Table 4.1 are shown in Figure 4.1 and the de-
tails are listed in Table 4.2. The circles show the velocity profiles given by Hornbeck [7].
The results for our 10001 o 101 mesh agree well with those obtained by Hornbeck, although
Hornbeck solved the problem numerically with the (250+ Á ) o (10+ Á ) mesh system. Note
that in Figure 4.1 and Table 4.2, the velocity distribution is concave in the central portion for�Â^�] . ]=]S] � at Re = 2000, as Wang and Longwell found for channel flow [23], and Vrentas
et al. found for pipe flow [22].

4.2. Entrance length and excess pressure drop. The entrance length, which is defined
as the distance from the inlet to the point where the centerline velocity reaches 99 Ã of the
fully developed pipe flow (

�*Ä � 698 " ( . ÅSÆ ), is expressed by Chen [3] as�G� " � H IBX& � " ] . � ]& ��L�] . ] ª a & � � ( N � ] . ] a � .(4.1)

From (4.1), �G� = 0.0573 at Re = 100, 0.0562 at Re = 300, and 0.0561 at Re = 400, whereas�G� takes a constant value of 0.056 at �Ç� a ]=] .
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TABLE 4.3
Entrance length È�É and excess pressure drop Ê¡ËOÌXÍ

Author Year
² H (99 ³ )

´¶µ¸·Î¹
I0 J0 Note

Experiment
Rieman [17] 1928 – 1.248 – – –
Reshotko [16] 1958 0.06 – – – Re=7600
Leite [13] 1959 0.052 – – – Re=13000

Analytical
Atkinson Ï Goldstein [1] 1938 0.06 1.41 – – –
Langhaar [12] 1942 0.0568 1.28 – – –
Chen [3] 1973 0.056 1.219 – – Re=2000

Numerical
Hornbeck [7] 1964 0.0565 1.280 250+ Ð 10+ Ð
Christiansen Ï Lemmon [4] 1965 0.0555 1.274 200 200 With radial term
Vrentas et al. [22] 1966 0.0535 1.28 20 20 Complete Eqs.
Vrentas et al. [22] 1966 0.0563 1.18 20 20 Boundary-layer
Kanda [8] 1986 0.055 – 150 21 Re Ñ 50
Durst et al. [5] 2005 0.0565 – 400 80 Re=1000
Present result (a) 2007 0.0544 1.217 1001 101 Re=500Ò ±

= 0.0001 2007 0.0545 1.218 1001 101 Re=1000
2007 0.0545 1.220 1001 101 Re=2000
2007 0.0545 1.220 1001 101 Re=3000
2007 0.0544 1.221 1001 101 Re=5000
2007 0.0544 1.221 1001 101 Re=10000

Present result (b) 2007 0.0547 1.270 10001 101 Re=2000Ò ±
= 0.00001 2007 0.0547 1.266 10001 101 Re=10000

If the axial distance � is longer than the entrance length ��� , ��L���N is assumed to
be ��LÓ�`N for the fully developed region. Chen [3] obtained expression (4.2) for ��LÓ�`N .
From (4.2), ��L���N is 1.219 at Re = 2000 and 1.204 at Re = 10000,��L���N " ( . � ] �#ª Æ& � .(4.2)

Our calculated values of �G� and ��LÓ�`N are listed in Table 4.3. We studied the effects of
(a) the mesh system and (b) the Reynolds number on �G� and �`LÓ�`N .

The following are our main calculated results.
(i) We see, from case 1 for an 11 o 11 mesh in Table 4.1, that ��� was unable to reach 99 Ã
of its fully developed value (

�*4 � 698 =1.98) even at � " ] . ( , and that
�

at the centerline and� =0.1 was 1.9753. ��� reached 99 Ã of its limiting value at around � " ] . ] a � $ ] . ] a�Ô for
meshes finer than 21 o 21. The value of �`LÓ�`N decreases as the mesh system becomes more
refined, e.g., from 1.447 for an 11 o 11 mesh, to 1.157 for a 201 o 201 mesh (see case 2-6).
(ii) In the present results concerning (a) in Table 4.3 with

\ � " ] . ]=]S] ( , we obtained a near
constant value of �G� in the range 0.0544–0.0545 for all Re � 500. Our computed value of��L���N attained an approximately constant value in the range 1.217-1.221 for all Re � 500.
Our results thus agree well with those predicted using (4.2).
(iii) For the refined mesh with

\ � " ] . ]S]S]=] ( (present results for (b) in Table 4.3), the value
of ��� is 0.0547, which is equal to that in the present results for (a) in Table 4.3. The value
of �`LÓ�`N , however, is 1.266-1.270, which is slightly larger than that in the present results for
(a).

4.3. Radial pressure distribution. Let us now discuss the value of the pressure as a
function of radial distance from the centerline, that is, as a function of � , where 	}� " 	!L�]=Ndenotes the pressure at the centerline, and 	!L & N " 	�
 denotes the pressure at the wall. We
first examine this issue symbolically, via our difference approximation. Since the axial ve-
locity

� £�¤ ¦ 8
is zero at the wall, the � component of velocity,

�
, can be approximately linear
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as follows: � £K¤ ¦   ¨ L � £�¤ ¦ 8 � � £K¤ ¦ + N� "�(� � £K¤ ¦ + .(4.3)

From (3.2), (3.3), and (4.3), the vorticity at the wall is simply approximated as follows:Z £�¤ ¦ 8 "Õ$ � ���� ???? � 6y� ¨ � £K¤ ¦  \ �×Ö ] .(4.4)

Substituting (4.4) into (2.10) gives��	��� ???? � 6y� " �& � � Z*l��� ???? � 6y�(4.5) ¨ �& � ���� L � £�¤ ¦  \ � N ¨ �& � � � £ ��  ¤ ¦   $ � £�¼   ¤ ¦  � \ � \ �  ^t] .
Since

� £ ��  ¤ ¦   � � £�¼   ¤ ¦   in the entrance region, the normal pressure gradient at the wall is
negative. It thus follows from (4.5) that pressure gradient in the radial direction is negative at
the wall of the entrance region.

On the other hand, the normal pressure gradient at the wall of the fully developed region
becomes 0, so that the pressure distribution becomes constant in the radial direction. The
velocity in the fully developed region is given by� LK�>N " � � ( $ � +& +  .(4.6)

Differentiating (4.6) with respect to � givesZ 4 � 6}� "Õ$ � ����¶???? � 6y� "Õ$ �G� $ � && +  Ø" � (& " Æ i
where the dimensionless value of

&
is 0.5. Thus, the value of Z decreases monotonically

from a large positive value at the leading edge to 8 in the fully developed region.
Next, let us discuss the above deductions using the calculated results. The mesh system

used is 1001 o 101,
\ � = 0.00001, and �Ù^ 0.01. The pressure drop

\ 	 and pressure
difference (	�� $ 	�
 ) at �Ø^;] . ] ( are listed in Table 4.4. The pressure difference (	9� $ 	�
 )
across the radius of the pipe at �Ú^Û] . ]S] � is shown in Figures 4.2 through 4.8. Here, the
squares and circles denote the pressure drop

\ 	�
 at the wall and
\ 	�� at the centerline,

respectively.
Consider the pressure in the radial direction. For example, at Re = 1000, it is clear from

Figure 4.4 (a) that (i) there is a large difference across the radius of the pipe between
\ 	y


and
\ 	�� at �Ç�`] . ]=] ( , and that this difference decreases as X increases.
Note that

\ 	�
 is larger than
\ 	�� . This indicates that (ii) the pressure 	�
 at the wall is

lower than the pressure 	�� at the centerline, i.e., that 	�
1�Ü	�� . This difference contradicts
results obtained by others via the boundary layer theory, and it also contradicts Bernoulli’s
law, although Bernoulli’s law does not apply to viscous flow. In addition, it is seen from
Figures 4.2 through 4.8 (a) that (iii) the difference (	�� $ 	�
 ) decreases as Re increases.
Values of (	�� $ 	�
 ) are listed in Table 4.4, where we assumed that the (	9� $ 	�
 ) values
above approximately 0.01 are effective, as compared with 	y� $ 	�
 = 0.089 at Re = 2000 and
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TABLE 4.4
Pressure drop at centerline ( Ý�Þ>ß ) and pressure difference (Þ>ß}àáÞSâ )

Re ã ± 0.0001 0.0002 0.0003 0.0005 0.001 0.002 0.003 0.005 0.007 0.01
Pressure drop at centerline

µ Ò ¾ ¿ )
500 0.054 0.109 0.163 0.261 0.433 0.629 0.777 1.025 1.241 1.529

1000 0.074 0.144 0.204 0.290 0.421 0.606 0.756 1.008 1.224 1.514
2000 0.100 0.172 0.220 0.286 0.411 0.599 0.749 1.002 1.219 1.509
3000 0.115 0.179 0.220 0.284 0.410 0.597 0.748 1.001 1.218 1.508
5000 0.129 0.181 0.219 0.284 0.409 0.597 0.748 1.000 1.217 1.507

10000 0.134 0.181 0.220 0.284 0.409 0.596 0.747 0.999 1.216 1.505
Pressure difference

µ ¾ ¿ ¼ ¾ À ¹
500 0.435 0.308 0.236 0.142 0.040 0.006 0.002 0.0 0.0 0.0

1000 0.212 0.124 0.074 0.027 0.005 0.001 0.0 0.0 0.0 0.0
2000 0.089 0.030 0.011 0.003 0.001 0.0 0.0 0.0 0.0 0.0
3000 0.043 0.008 0.003 0.001 0.00 0.0 0.0 0.0 0.0 0.0
5000 0.012 0.001 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

10000 0.001 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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FIG. 4.2. (a) Axial pressure drop and (b) pressure in ä -direction, Re = 100.� = 0.0001: 	 � $ 	 
 = 0.011 = 12 Ã of 0.089 at Re = 2000 and � = 0.0003; 	 � $ 	 
 = 0.001
= 1.2 Ã of 0.089 at Re = 2000 and � = 0.001.

It is clear from Table 4.4 that at Re ^ � ]=]S] and � = 0.0003, there exists a significant
pressure difference in the radial direction. Figures 4.2 through 4.8 (b) show the calculated
results of the radial pressure distribution. At Re ^ ( ]=]S] , it is clear that (iv) the pressure
gradient near the wall is higher than that at the central core. This indicates that (v) the pressure
difference near the wall in the radial direction might be caused by NWS.

Note that the axial pressure distribution and Re are similarly related. Figure 4.9 illustrates
the pressure drops at the wall and at the centerline for Re = 1000, 2000, and 3000. It is clear
from Figure 4.9 that the difference (	�� $ 	�
 ) depends strongly on Re when Re ^ ª ]=]S] near
the inlet. Figure 4.9 and Table 4.4 also show that the pressure difference (	 � $ 	 
 ) disappears
for �Ú� 0.001 and Re � 1000. More specifically (see Table 4.4), the pressure drop at the
wall becomes the same as that at the centerline for �å�j] . ]S]=] ª and Re � ª ]S]=] . It is clear
that at �t� 0.01, the pressure drop at the centerline for Re = 500 becomes approximately the
same as that for Re � 1000 within a relative error of 1 Ã .

In summary, there exists a large difference in pressure in the radial or normal direction
near the inlet when Re = 2000 and X ^ 0.0003. This pressure difference becomes negligible
when Re increases beyond 10000. As discussed in Subsection 4.2, �G� and ��L���N are ap-
proximately constant for Re � a ]=] . However, even when Re � a ]=] , the pressure difference
(	 � $ 	 
 ) depends strongly on Re for Re ^ a ]=]S] .We finally note that for an actual pipe of

B
= 2.6 cm and Re = 2000, � = 0.0003
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FIG. 4.3. (a) Axial pressure drop and (b) pressure in ä -direction, Re = 500.
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FIG. 4.4. (a) Axial pressure drop and (b) pressure in ä -direction, Re = 1000.

indicates that the actual axial pipe length is � ’ = 0.0003 o 2.6 o 2000
¨

1.6 cm. The radial
pressure difference is effective over this length. Kanda’s experiments [11] have shown that
the critical Reynolds number is determined by the entrance shape of pipes, and a detailed
numerical study is thus necessary for various entrance shapes of pipes. We also intend to
study the relationship between NWS and the critical Reynolds number.

5. Conclusions. An analysis of flow development at Reynolds numbers from 500 to
10000 in the entrance region of a pipe was presented. In this study, the calculation procedure
for pressure distribution was carried out without any preliminary assumptions. The Navier-
Stokes equation can be expressed in vector form as (2.9). At the wall, the viscous term is
expressed by the curl of vorticity so that the pressure gradient in the normal or radial direction
is given by the vorticity gradient in the radial direction; see (2.10).

As a result, the radial pressure distribution was obtained for the first time for the above
range of Reynolds numbers. The conclusions obtained can be summarized as follows.

1. The mesh systems from 21 o 21 to 201 o 201 are sufficient to calculate the velocity
development, entrance length, and excess pressure drop, and the results agree well
with those reported by previous researchers. However, with such meshes, we cannot
see the radial pressure gradient. With refined meshes of

\ �æ� 0.0001, we could
determine the normal or radial pressure gradient for the first time.

2. There is a significant difference between 	�
 and 	�� near the pipe inlet for
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FIG. 4.5. (a) Axial pressure drop and (b) pressure in ä -direction, Re = 2000.
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FIG. 4.6. (a) Axial pressure drop and (b) pressure in ä -direction, Re = 3000.

Re ^ 5000, where 	 
 is smaller than 	 � . This contradicts the results obtained using
the boundary layer theory, as well as Bernoulli’s law, although the law does not ap-
ply to viscous flow. The difference between 	 
 and 	 � disappears at Re � 10000.
This indicates that the boundary-layer assumptions hold for Re � 10000. Note that
NWS causes the difference (	�
 $ 	�� ) and forces the fluid particles to move towards
the centerline.

3. The calculated ��� and ��L���N values are approximately the same at Re � 500, re-
spectively. Since the minimum critical Reynolds number is in the neighborhood of
2000, it is important to find a variable that varies at Re � 500. We found that a
pressure difference in the radial direction exists even when Re � 500, and it varies
inversely with increasing Re and disappears at Re � 10000.
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