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Abstract. This paper is concerned with the singular values and vectors of a product Mm =
A1A2 · · ·Am of matrices of order n. The chief difficulty with computing them directly from Mm

is that with increasing m the ratio of the small to the large singular values of Mm may fall below
the rounding unit, so that the former are computed inaccurately. The solution proposed here is to
compute recursively the factorization Mm = QRPT, where Q is orthogonal, R is a graded upper
triangular, and PT is a permutation.
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1. Introduction. This paper is concerned with calculating the singular values
of a product Mm = A1A2 · · ·Am of matrices of order n. The chief difficulty with
the natural algorithm—compute Mm and then compute its singular value decompo-
sition—is that as m increases, the singular values will tend to spread out and the
smaller singular values will be inaccurately computed. The rule of thumb is that sin-
gular values of Mm whose ratio to the largest singular value is less than the rounding
unit will have no accuracy.

The product singular value decomposition (PSVD) is one way of circumventing
this problem [1]. Here the product Mm is decomposed in the form

Mm = (UT1Q
T
1 )(Q1T2Q

T
2 ) · · · (Qm−1TmV

T),(1.1)

where U , V , and the Qk are orthogonal, the Tk are triangular, and

Σ = T1T2 · · ·Tm

is diagonal. Thus the product (1.1) collapses into the singular value decomposition
UΣV T of Mm.

The chief drawback of the PSVD is that it is expressed in terms of all the factors
of Mm. This means that as m increases the storage required for the decomposition
increases. Moreover, there seems to be no easy way to pass from the PSVD of Mm to
that of Mm+1; the multiplication by Am+1 changes the entire decomposition, so that
the work required to append a factor also increases with m.

An alternative is an algorithm for computing the singular value decomposition
of a product of two matrices [4]. Given the singular value decomposition of Mm,
it can be used to calculate the singular value decomposition of Mm+1 = MmAm+1.
However, it is not clear how the increasing spread of the singular values affects this
algorithm.

In this paper we take a different tack and work with decompositions of the form
A = QRPT, where Q is orthogonal, R is upper triangular, and P is a permutation.
The algorithm works to insure that R is a graded; that is, R = DR̂, where the
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elements in the upper half of R̂ are of order one and D is a diagonal matrix whose
diagonal elements decrease in magnitude. The rule of thumb mentioned above—that
the small singular values of a matrix are calculated inaccurately—need not hold for
graded triangular matrices, so that very small singular values of Mm can usually be
calculated from its graded factor Rm. Moreover, the product of graded triangular
matrices is graded, so that in a decomposition analogous to (1.1), we can multiply
out the triangular factors. Thus the passage from a graded QRP decomposition of
Mm to one of Mm+1 does not involve all the previous decompositions.

In the next section, we will show how to compute a graded QRP decomposition
of a product AB from a graded QRP decomposition of A. In Section 3 we argue
informally that the algorithm preserves grading. Here we also point out that good
estimates of the singular values can be obtained with a small amount of additional
work (the mathematical justification is given in Appendix A). In Section 4 we give
numerical examples to show that this procedure can be applied recursively to compute
singular values of a product of matrices whose singular values have ratios far below
the rounding unit. Matlab code for the procedure is given in an appendix to this
paper.

A final point. Although we have chosen to work with QRP decompositions in
which P is a permutation, it will be clear that P could equally well be an orthogonal
matrix. Thus the approach taken here also applies to two-sided orthogonal decompo-
sitions such as the URV decomposition [6].

2. The Algorithm. In this section we will describe the algorithm for updating
graded QRP decompositions. The description will be in two stages: first an overview
at the matrix level, then a detailed description. The latter is required to understand
why the algorithm preserves grading. We will assume that the reader is familiar with
the pivoted QR decomposition and plane rotations.

The input to the algorithm is a graded QRP decomposition

A = QARAP
T
A

of a matrix A and an unfactored matrix B. The output is a graded QRP decomposi-
tion of

C ≡ AB = QCRCP
T
C .(2.1)

The steps are as follows.
1. Compute the pivoted QR decomposition PT

AB = QBRBP
T
C .

2. Compute an orthogonal matrix U such that R̂A = UTRAQB is
upper triangular.

3. Set QC = QAU .
4. Set RC = R̂ARB .

It is easy to verify that the quantities so computed satisfy (2.1).
In some applications it is necessary to work with products of the form AB−1.

The above algorithm can be adapted to compute a graded QRP decomposition of
AB−1. The trick is to compute a graded PRQ decomposition of B, so that when
the decomposition is inverted, it becomes a graded QRP decomposition of B−1. This
leads to the following algorithm.

1. Compute the pivoted QR decomposition BPA = PCRBQ
T
B.

2. Compute an orthogonal matrix U such that R̂A = UTRAQB is
upper triangular.
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3. Set QC = QAU .
4. Set RC = R̂AR

−1
B .

In applications in which it is desired to compute powers of a single matrix A, we
may wish to proceed by matrix squaring; that is, by computing the sequence A, A2,
A4, . . . . Thus given a graded QRP decomposition of Ak we wish to compute a graded
QRP decomposition of AkAk. More generally, given graded QRP decompositions of
A and B it is possible to compute a graded decomposition of their product, i.e., of
(QARAPT

A )(QBRBPT
B ). The algorithm goes as follows.

1. Compute the QR-decomposition PT
AQB = V D. Note that D

will be diagonal because PT
AQB is orthogonal.

2. Compute an orthogonal matrix U such that R̂A = UTRAV is
upper triangular.

3. Set PC = PB , QC = QAU , and RC = R̂ADRB.
We will now consider the particulars. Since the three algorithms sketched above

are variants of one another, we will treat only the first. The reader may find it helpful
to consult the matlab program in Appendix B.

The first step in the above algorithm is accomplished with plane rotations. Specif-
ically, rotations in the (i, i+1)-plane eliminate elements in PTB in the order indicated
below: 

b b b b b
b4 b b b b
b3 b7 b b b
b2 b6 b9 b b
b1 b5 b8 b10 b

 .

Before the kth column is processed, the column in the trailing principal submatrix
whose 2-norm is largest is located, and the entire column is swapped with the kth.
(The matlab code in the appendix inefficiently computes the norms ab initio. In
practice, the norms should be downdated as in [2].)

In the second step, the rotations generated in the first are applied to RA. When a
rotation in the (i, i+ 1)-plane is postmultiplied into RA, it creates a nonzero element
in the (i+1, i)-position. This element is eliminated by premultiplying by a rotation in
the (i, i+ 1)-plane. The process is illustrated in Figure 2.1. Here the arrows indicate
the plane of the rotation to be applied, and a hat indicates an element destined to be
annihilated.

The rotations from the first step can be applied to RA as soon as they are gener-
ated, which saves having to store them. Similarly the rotations that make up U can
be accumulated in QA, so that at the end QA will be transformed into QC . Thus in
the implementation steps one, two and three are completely interleaved.

When a product of the form A1A2 · · ·Am is to be processed, the procedure can
be started by setting A = QA = PA = I and B = A1. In this case step two should be
skipped and the rotations from step one accumulated in QA.

The algorithm is quite inexpensive. An operation count shows that it requires
5 1

6n
3 additions and 10 1

6n
3 multiplications. When n is large enough, scaled rotations

[3, §5.1.13] can be used to reduce the number of multiplications to 51
6n

3. In this case,
the algorithm can be compared with five matrix multiplications.

3. Grading. Grading enters into the algorithm in three places: in step one,
where it is established, and in steps two and three, where it must be maintained. We
will consider each step in turn.
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Fig. 2.1. Reduction of RA

�

In step one we have used pivoting on column norms to establish a grading. This
is the simplest method in an arsenal of techniques designed to reveal the rank of a
matrix. Although there is a famous counter-example for which the method fails [3,
§5.5.7], in practice it works well. However, as we mentioned in the introduction, other
rank revealing decompositions may be substituted for the QR decomposition obtained
by pivoting on column norms.

Turning now to step two of the algorithm, let us see how grading in RA can be
lost. The transformation of the trailing 2× 2 matrix is typical. Let it be written(

α β
0 δ

)
.

For definiteness we will suppose that
√
α2 + β2 = 1 and that δ is small, so that

the matrix has a marked grading. After postmultiplying by the rotation from the
reduction of PTB, we have (

ᾱ β̄
γ̄ δ̄

)
,

where
√
ᾱ2 + β̄2 = 1 and

√
γ̄2 + δ̄2 = |δ|. Thus the postmultiplication leaves the

grading unaffected, at least normwise.
We must now premultiply by a plane rotation to reduce γ̄ to zero. This rotation

has the form

1
ν

(
ᾱ γ̄
−γ̄ ᾱ

)
,

where

ν =
√
ᾱ2 + γ̄2.

It follows that the (2, 2)-element is

ε̂ =
ᾱδ̄ − β̄γ̄

ν
,
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whence

|ε̂| ≤
√

2
ε

ν
.(3.1)

Now the way grading is lost is for a large element in one row to overwhelm a small
element in another row. The inequality (3.1) shows that this can happen only if ν is
small or equivalently ᾱ is small. But

ᾱ = cα+ sβ,

where c and s are the cosine and sine from the reduction of PT
AB. Since these numbers

are unrelated to α and β, it is extremely unlikely that α will be very much less than
one.

Finally, consider the grading of the product R̂ARB . Let

R̂A = diag(ε1, . . . , εn)R̂ and RB = diag(δ1, . . . , δn)R,

where the elements of R̂ and R are of order one in magnitude and the ε’s and δ’s are
decreasing. Then the (i, j)-element of R̂ARB is

δiεi
(
r̂iirij +

j∑
k=i+1

δk
δi
r̂ikrkj

)
.

Since δk/δi < 1, we can expect the ith row of RC to be about δiεi in size.
It is hardly necessary to point out that these arguments are informal. Even the

definition of a graded triangular matrix is too stringent: in practice we would expect
the rows of a graded matrix to have occasional elements that are uncharacteristically
small. Nonetheless, experience, folklore, and limited analytical results all suggest than
the ills that can potentially beset graded matrices do not often occur in practice.

If the grading is sharp enough, we can get a cheap estimate of the singular values of
a graded triangular matrix R. Let δ1, δ2, . . . , δn be the grading factors. Suppose that
we have determined an orthogonal matrix V such that RV is lower triangular. Since
postmultiplication by V does not change the norms of the rows of R, the elements of
RV will be of the sizes indicated below for n = 5:

RV ∼=


δ1
δ2 δ2
δ3 δ3 δ3
δ4 δ4 δ4 δ4
δ5 δ5 δ5 δ5 δ5

 .(3.2)

Let ρ1 = 0, ρi = δi/δi−1 (i = 2, . . . , n), and ρn+1 = 0. Then if ρi and ρi+1 are not
too large, the ith diagonal element of RV approximates a singular value of R with
relative error that is approximately bounded by 1

2 (ρ2
i + ρ2

i+1). (For more details see
Appendix A.) Thus for about a third again the work (that is, the cost of computing
RV ) we can obtain estimates of the singular values, estimates that are often very
accurate.

4. Numerical Results. The main problem with testing the algorithm is con-
structing test cases whose answers can be easily recognized. The solution taken here
is an extension of an idea in [4].
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The matrices U and V of left and right singular vectors are calculated from a
random normal matrix, and a diagonal matrix Σ is chosen. Two matrices A and B
are defined by

A = UΣV T and B = V ΣUT.

For a given m, a QRP decomposition of the product

M2m+1 = A

m︷ ︸︸ ︷
BABA · · ·BA

is calculated. The singular value decomposition of M2m+1 is

M2m+1 = UΣ2m+1V T,

so that a correct answer can easily be recognized. Note that B and A are accumulated
individually to avoid working with the positive definite product BA, which might
create a bias in favor of the algorithm.

The first test, in which Σ = diag(1, 0.1, 0.01, 0.001, 0.0001), is designed to push the
singular values toward the underflow point. The following table contains the singular
values of M2m+1 and their relative errors for three values of m.

m=5
1.0e+00 1.0e-11 1.0e-22 1.0e-33 1.0e-44
3.9e-15 1.1e-14 1.1e-14 4.0e-14 6.3e-13

m=10
1.0e+00 1.0e-21 1.0e-42 1.0e-63 1.0e-84
7.4e-15 2.0e-14 2.1e-14 6.2e-14 1.3e-12

m=20
1.0e+00 1.0e-41 1.0e-82 1.0-123 1.0-164
1.4e-14 3.9e-14 4.1e-14 1.0e-13 2.6e-12

For m = 20 the smallest singular value decreases by 160 orders of magnitude, yet it
is computed with almost full accuracy. Incidentally, most of the inaccuracy in this
singular value is not due to the algorithm at all, but to the fact that the singular
value 0.0001 is represented inaccurately in the original matrix.

The second test takes longer run down a gentler grade. For this case

Σ = diag(1, 0.99, 0.8, 0.7, 0.6).

The first two rows of the following results are as above.
m=20

1.0e+00 6.6e-01 1.3e-02 1.0e-04 4.4e-07
1.3e-14 4.6e-15 1.8e-14 4.0e-15 6.5e-15
9.1e-01 7.2e-01 1.3e-02 1.0e-04 4.4e-07
9.3e-02 8.5e-02 7.7e-05 5.0e-06 4.4e-07

m=40
1.0e+00 4.4e-01 1.9e-04 1.4e-08 2.8e-13
2.5e-14 8.6e-15 3.8e-14 7.0e-15 1.3e-14
9.3e-01 4.7e-01 1.9e-04 1.4e-08 2.8e-13
6.8e-02 6.4e-02 3.6e-08 4.3e-10 1.0e-11

m=80
1.0e+00 1.9e-01 4.2e-08 2.4e-16 1.1e-25
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4.8e-14 1.8e-14 7.1e-14 1.5e-14 2.7e-14
9.8e-01 2.0e-01 4.2e-08 2.4e-16 1.1e-25
1.7e-02 1.7e-02 7.9e-14 1.5e-14 2.7e-14

Again the algorithm computes the singular values with almost full accuracy. Rounding
error accumulates, but very slowly.

The third row contains the diagonal elements of RV [see (3.2)], which approximate
the singular values of the product, and the fourth row contains their relative errors.
For m = 20, the last three singular values are well approximated (note how it is the
square of the grading that governs the accuracy). There is even useful information
about the magnitudes of the first two singular values. The approximations become
more accurate as m increases.

To see how the algorithm performs on a matrix of moderate size with a natural
distribution of singular values, A was taken to be a random normal matrix of order
50 with B generated as described above. The algorithm was run for m = 2. The
results are too voluminous to present in their entirity, but the data for the smallest
six singular values illustrates what is happening.

2.9e+00 6.7e-01 1.5e-01 3.7e-02 2.7e-04 1.2e-07
7.4e-15 5.0e-15 1.0e-15 1.1e-14 1.2e-14 1.0e-15
3.0e+00 5.4e-01 1.8e-01 3.8e-02 2.7e-04 1.2e-07
5.9e-02 2.3e-01 1.8e-01 4.7e-03 2.5e-08 7.0e-08

The singular values of the computed product are quite accurate. The approximations
give one or two figures—more when the local grading is strong.

In a completely different example, we tested the algorithm for updating the prod-
uct of two graded QR decompositions by using it to compute A2k . The initial matrix
was A = X−1diag(1, 0.8, 0.7, 0.5)X , where X is a random normal matrix. The ini-
tial graded QRP decomposition of A was computed from the usual algorithm. Then
the algorithm for updating the product of graded QRP decompositions was used to
compute the graded QRP decompositions of A2, A4, . . . .

The smallest eigenvalue of Ck = A2k is 0.52k . Even for modest values of k this
eigenvalue is too small to be computed from Ck itself. However, since the R factor
of the QRP decomposition of Ck is graded, we can accurately compute its inverse
and hence C−1

k . From C−1
k we can compute the inverse of the smallest eigenvalue of

Ck. For k = 8, this eigenvalue is on the order of 10−77. It was represented in the
QRP decomposition of C8 to about thirteen decimal digits.

5. Conclusions. The main recommendation for this algorithm is its simplicity
and efficiency. The matlab code attests its simplicity. Its efficiency is attested by
the operation counts. The only question is: does it work? Here we have only been
able to give an informal analysis and limited examples, either of which alone might be
considered insufficient. Together, I believe, they make a strong case for the algorithm.
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Appendix A: On the Singular Values of Graded Matrices. In this ap-
pendix we show that the singular values of a matrix with the structure (3.2) are
approximated by the diagonal elements of the matrix. We will use the following the-
orem of Mathias and Stewart [5] (which we have weakened slightly for the sake of
simplicity). Here ‖A‖ denotes the spectral norm of A and inf(A) is the smallest sin-
gular value of A.

Let

T =
( k n−k

k P H
n−k 0 Q

)
be a block triangular matrix, and suppose that ‖Q‖/ inf(P ), ‖H‖/ inf(P ) < 1. Let
σ1 ≥ · · · ≥ σn be the singular values of T and σ̂1 ≥ · · · ≥ σ̂n be the singular values of
diag(P,Q). Then

1 ≥ σ̂i
σi
≥ (1− τ2)

1
2 , i = 1, 2, . . . , k,

and

1 ≥ σi
σ̂i
≥ (1− τ2)

1
2 , i = k + 1, k + 2, . . . , n,

where

τ2 =
(‖H‖/ inf(P ))2

1− (‖Q‖/ inf(P ))2
.

The theorem states that approximations of the singular values of T with high relative
accuracy can be found in the diagonal blocks of P and Q.

To apply the theorem, let the matrix L = RV of (3.2) be written in the form

L = diag(δ1, δ2, . . . , δn)L̂,

where the rows of L̂ have norm one. Partition L in the form


k−1 1 n−k

k−1 L11 0 0
1 `T21 λ22 0
n−k L31 `32 L33

.
We wish to assess the accuracy of λ22 as a singular value of L. The approach is to
apply the above theorem twice.

In the first application we set P = L11, which amounts to throwing out `T21 and
L31. In this case

inf(P ) = inf(L11) = inf(diag(δ1, . . . , δk−1)L̂11) ≥ δk−1 inf(L11).
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Moreover, since the rows of L̂ have norm one,

‖H‖, ‖Q‖ ≤ δk
√

1 + (δk+1/δk)2 + · · · (δn/δk)2.

Consequently if we set

ρ1k =
δk
√

1 + (δk+1/δk)2 + · · · (δn/δk)2

δk−1 inf(L11)

≡ ρk
√

1 + (δk+1/δk)2 + · · · (δn/δk)2

inf(L11)
,

(A.1)

then

τ2
1 =

ρ2
1k

1− ρ2
1k

bounds the perturbation in the singular values.
The second step is to take P = λ22 in the matrix(

λ22 0
`32 L33,

)
,

which amounts to setting `32 to zero, leaving λ22 as a singular value of the perturbed
matrix. Here inf(P ) = |λ22|. Moreover,

‖H‖, ‖Q‖ ≤ δk+1

√
1 + (δk+2/δk+1)2 + · · · (δn/δk+1)2.

Consequently, if we set

ρ2,k+1 = ρk+1

√
1 + (δk+2/δk+1)2 + · · · (δn/δk+1)2

|λkk|/δk
,

then

τ2
2 =

ρ2
2,k+1

1− ρ2
2,k+1

bounds the effect of the second perturbation.
For small ρ1k and ρ2,k+1, the total bound on the relative perturbation is approx-

imately (ρ2
1k + ρ2

2,k+1)/2. Note that in (A.1) we have written ρ1k as the product of
ρk with a magnification factor that in general will be greater than one. If the grading
is strong the denominator

√
1 + (δk+1/δk)2 + · · · (δn/δk)2 will be very near one. In

our application, the pivoting in the algorithm tends to keep inf(L11) from becoming
very small. Hence it is the ratio ρk = δk/δk−1 that controls the accuracy of the kth
diagonal element as an approximate singular value. Similar comments can be made
about ρ2,k+1.
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Appendix B: Program Listings.

function [rc, qc, pc] = prodqrp(ra, qa, pa, b, first)

%

% Given a qrp factorization of a matrix a and a matrix b

% prodqrp computes a qrp factorization of a*b.

% To start the factorization set invoke

%

% prodqrp(eye(n), eye(n), 1:n, a, 1)

%

% Designed and coded by G. W. Stewart, April 8, 1994.

%

n = size(ra, 1);

qc = qa;

%

% Accumulate the permutation pa in b.

%

for i=1:n-1

b([i,pa(i)],:) = b([pa(i),i],:);

end

%

% Compute a qrp factorization of b and update.

%

for k=1:n-1

for j=k:n, nrm(j)=norm(b(k:n,j)); end

[xx, pc(k)] = max(nrm(k:n));

pc(k) = pc(k)+k-1;

b(1:n, [k,pc(k)]) = b(1:n, [pc(k),k]);

for i=n-1:-1:k

[c, s, nu] = rotgen(b(i,k), b(i+1,k));

b(i,k) = nu; b(i+1,k) = 0.;

b(i:i+1, k+1:n) = [c, s; -s, c]*b(i:i+1, k+1:n);

if (first == 0)

ra(1:i+1, i:i+1) = ra(1:i+1, i:i+1)*[c, -s; s, c];

[c, s, nu] = rotgen(ra(i,i),ra(i+1,i));

ra(i,i) = nu; ra(i+1,i) = 0;

ra(i:i+1, i+1:n) = [c , s; -s, c]*ra(i:i+1, i+1:n);

end

qc(i:i+1, 1:n) = [c, s; -s, c]*qc(i:i+1, 1:n);

end

end

rc = ra*b;
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function [c, s, norm] = rotgen(a,b)

%

% This function generates a plane rotation.

%

scale = abs(a) + abs(b);

if scale == 0

c = 1; s = 0; norm = 0;

else

norm = scale*sqrt((a/scale)^2+(b/scale)^2);

c = a/norm;

s = b/norm;

end


