
Electronic Transactions on Numerical Analysis.
Volume 3, pp. 160-176, December 1995.
Copyright 1995, Kent State University.
ISSN 1068-9613.

ETNA
Kent State University
etna@mcs.kent.edu

A PARALLEL GMRES VERSION FOR GENERAL SPARSE
MATRICES ∗

JOCELYNE ERHEL †

Abstract. This paper describes the implementation of a parallel variant of GMRES on Paragon.
This variant builds an orthonormal Krylov basis in two steps: it first computes a Newton basis then
orthogonalises it. The first step requires matrix-vector products with a general sparse unsymmetric
matrix and the second step is a QR factorisation of a rectangular matrix with few long vectors. The
algorithm has been implemented for a distributed memory parallel computer. The distributed sparse
matrix-vector product avoids global communications thanks to the initial setup of the communication
pattern. The QR factorisation is distributed by using Givens rotations which require only local
communications. Results on an Intel Paragon show the efficiency and the scalability of our algorithm.

Key words. GMRES, parallelism, sparse matrix, Newton basis.

AMS subject classifications. 65F10, 65F25, 65F50.

1. Introduction. Many scientific applications make use of sparse linear algebra.
Because they are quite time consuming, they require an efficient parallel implemen-
tation on powerful supercomputers. An important class of iterative methods are
projection methods using a projection onto a Krylov subspace. The aim of this paper
is to study the parallelization of such methods for general sparse matrices. We chose
to design and implement a parallel version of the GMRES algorithm [21]. The main
part of GMRES is the Arnoldi process which generates an orthonormal basis of the
Krylov subspace.

The target architecture here is a parallel machine with a distributed memory.
We chose a Single Program Multiple Data (SPMD) programming style where each
processor executes the same code on different data. Data are distributed according
to a static mapping and communications are expressed by means of messages.

The parallelization of GMRES has been studied by several authors. Some of
them consider the basic GMRES iteration with the Arnoldi process, for example
in [11, 22, 3, 7]. Variants of GMRES such as α − GMRES [26] have also been
designed. Hybrid algorithms combining a GMRES basis with a Chebychev basis are
also investigated in [15]. Another approach is to define a new basis of the Krylov
subspace as, for example, in [16, 8, 9, 10, 5, 2]. Our implementation is based on the
ideas develop in [2]. It first builds a Newton basis which is then orthogonalized. This
approach requires the parallelization of two steps: the basis formation which relies on
matrix-vector products and the basis QR factorization.

As far as the matrix-vector product is concerned, one of two classes of matrices are
usually considered: regular sparse matrices arising for example from the discretisation
of PDE on a regular grid and general sparse matrices with an arbitrary pattern of
nonzeros. This paper deals with the second class. The parallelization of the sparse
matrix-vector product in this case has been studied for example in [3, 4, 19]. Our
present work uses the library P-SPARSLIB described in [20].

In our implementation, the QR factorization is done either by a Gram-Schmidt
process as in [10] or by a Householder/Givens factorization as in [24].

∗ Received Oct 2, 1995. Accepted for publication November 22, 1995. Communicated by L.
Reichel.
† INRIA-IRISA , Campus de Beaulieu, 35042 Rennes, France. erhel@irisa.fr

160

ETNA
Kent State University
etna@mcs.kent.edu

Jocelyne Erhel 161

The paper is organized as follows. The second part describes the basic sequential
GMRES version. The third part is devoted to the parallelization of the Arnoldi process
with a Newton basis. This involves two main procedures, the sparse matrix-vector
product and the QR factorization. Their parallelization is studied in the next two
parts. Numerical experiments in the sixth part first show the impact on convergence
of the Newton basis. In particular, we exhibit a matrix where the ill-conditioning of
the Newton basis degrades drastically the convergence. We then give performance
results on a Intel Paragon parallel computer. Concluding remarks follow at the end.

2. Sequential version. We first recall the basic GMRES algorithm [21].
Consider the linear system Ax = b with x, b ∈ R

n and with a nonsingular
nonsymmetric matrix A ∈ Rn×n. The Krylov subspace K(m;A; r0) is defined by
K(m;A; r0) = span(r0, Ar0, . . . , Am−1r0). The GMRES algorithm uses the Arnoldi
process to construct an orthonormal basis Vm = [v1, . . . , vm] for K(m;A; r0). The
full GMRES method allows the Krylov subspace dimension to increase up to n and
always terminates in at most n iterations. The restarted GMRES method restricts
the Krylov subspace dimension to a fixed value m and restarts the Arnoldi process
using the last iterate xm as an initial guess. It may stall. Below is the algorithm for
the restarted GMRES.
Algorithm 0: GMRES(m)

ε is the tolerance for the residual norm ;
convergence = false ;
choose x0 ;
until convergence do

r0 = b−Ax0 ;
β = ‖r0‖ ;
* Arnoldi process: construct a basis Vm of the Krylov subspace K
v1 = r0/β ;
for j = 1, · · · ,m do

p = Avj ;
for i = 1, · · · j do

hij = vTi p ;
p = p− hijvi ;

endfor ;
hj+1,j = ‖p‖2 ;
vj+1 = p/hj+1,j ;

endfor ;
* Minimize ‖b−Ax‖ for x ∈ x0 +K
* Solve a least-square problem of size m
compute ym solution of min

y∈Rm ‖βe1 −Hmy‖ ;
xm = x0 + Vmym ;
if ‖b−Axm‖ < ε convergence = true ;
x0 = xm ;

enddo
The matrix Hm = (hij) is a upper Hessenberg matrix of order (m+ 1)×m, and

we get the fundamental relation

AVm = Vm+1Hm.

The GMRES algorithm computes x = x0 + Vmym where ym solves the least-squares

ETNA
Kent State University
etna@mcs.kent.edu

162 A parallel GMRES version for general sparse matrices

problem min
y∈Rm ‖βe1 −Hmy‖. Usually a QR factorization of Hm using Givens

rotations is used to solve this least-squares problem.
The linear system can be preconditioned either at left or at right solving respec-

tively M−1Ax = M−1b or AM−1(Mx) = b where M is the preconditioning matrix.
The most time-consuming part in GMRES(m) is the Arnoldi process. Indeed,

the solution of the small least-squares problem of size m represents a neglectible time.
The Arnoldi process contains three operators: sparse matrix-vector product, orthog-
onalization and preconditioning. We now study the parallelization of the Arnoldi
step.

3. Parallel Arnoldi process. The Arnoldi process builds an orthonormal basis
of the Krylov subspace K(m;A; r0). It constructs the basis and orthogonalizes it at
the same time; as soon as a new vector is added, it is orthogonalized relative to the
previous vectors and normalized. The modified Gram-Schmidt algorithm is usually
preferred for numerical stability. This leads to heavy data dependencies as shown in
Figure 3.1.

i,j
T

j

5

1

1 5 i

T

T

0,j

j+1,j

(dot product and orthog.)

(normalisation)

(matrix-vector
product)

j

5

1

1 5 i

Arnoldi-MGS Newton-Arnoldi

Fig. 3.1. Dependency graph of Arnoldi method

Some authors such as [22] have considered a classical Gram-Schmidt version to
remove some dependencies, but in that case orthogonalization must then be done
twice to ensure numerical stability.

Another solution is to replace the Gram-Schmidt process by Householder trans-
formations as in [25]. This provides a more accurate orthogonal basis at the price of
more operations. Parallelism can be achieved using a Householder factorization by
blocks [12].

In [16], the basis is built in blocks of size s, each new block being orthogonalized
with respect to all previous s-vectors groups. But the convergence becomes slow with
this approach.

The solution which we have chosen, advocated for example in [14, 5, 1, 2], is to
divide the process into two steps: first build a basis then orthogonalize it. Indeed, it
removes the data dependencies on the left so that many tasks are now independent
(Figure 3.1). The first step is merely a succession of matrix-vector products and the
second step an orthonormalisation process.

ETNA
Kent State University
etna@mcs.kent.edu

Jocelyne Erhel 163

Nevertheless, the basis must be well conditioned to ensure numerical stability
(more precisely, to avoid loss of orthogonality and to ensure a well conditioned least-
squares reduced problem). Following [2], we choose here a Newton basis defined by

V̂m+1 = [σ0v, σ1(A− λ1I)v, ..., σm
m∏
l=1

(A− λlI)v].(3.1)

The values λl are here estimations of eigenvalues of A ordered with the Leja
ordering. We compute m Ritz values in a first cycle of GMRES(m) and order them
in a Leja ordering, grouping together two complex conjugate eigenvalues.

We then have a basis with normalized vectors of the Krylov subspace Ṽm+1 such
that V̂m+1 = Ṽm+1D̃m+1 . We compute an orthonormal basis with a QR factorization

Ṽm+1 = Q̃m+1R̃m+1,(3.2)

so that we can write

AV̂m = Q̃m+1R̂,(3.3)

where R̂ ∈ R(m+1)×m is an upper Hessenberg matrix which is easy to compute. We
end up with a minimization problem similar to that of GMRES with the function J
defined by

J(y) = ‖βe1 − R̂y‖.(3.4)

To reiterate, we have a new version, called NewtonGMRES(m), which offers more
parallelism and which is summarized below:
Algorithm 0: NewtonGMRES(m)

ε is the tolerance for the residual norm ;
* Initialisation
Apply algorithm 2 to find an approximation x0

and a Hessenberg matrix m×m, Hm ;
Compute eigenvalues λ(Hm) = {λj}mj=1 and order λj in a Leja ordering ;
convergence = false ;
* Iterative scheme
until convergence do

Compute Ṽm+1 ;
Compute the factorization Ṽm+1 = Q̃m+1R̃m+1 ;
Compute R̂ such that AV̂m = Q̃m+1R̂ ;
Compute the QR factorization of R̂, and find ym solution of (3.4) ;
Compute xm = x0 + ṼmD̃mym ;
if ‖b−Axm‖ < ε convergence = true ;
x0 = xm ;

enddo

NewtonGMRES(m) contains two main steps: the computation of the basis Ṽm+1

which involves matrix-vector products and its QR factorization. We now analyze the
parallelization of these two procedures.

ETNA
Kent State University
etna@mcs.kent.edu

164 A parallel GMRES version for general sparse matrices

4. Parallel sparse matrix-vector product. The computation of Ṽm+1 in-
volves operations of the type y = σ(A − λI)x. Without loss of generality, we study
here the matrix-vector product y = Ax.

For sparse matrices, a natural idea is to distribute the matrix by rows and to
distribute the vectors accordingly. Since the vector x is updated in parallel in a previ-
ous step, it induces communication to compute y. A straightforward implementation
would broadcast the vector x to each processor so that each processor gets a complete
copy. However, communication can be drastically reduced thanks to the sparse struc-
ture of the matrix A. To compute the component y(i) only a few components x(j) of
x are required, namely those corresponding to nonzero entries aij in row i. Moreover
some of these components are local to the processor.

These two remarks are the basis for the distributed algorithm designed by Saad
[19]. Let us denote by xloc and yloc the vector blocks distributed to the processor.
Local rows are the rows allocated to the processor and local columns refer to local
components of vectors. Other columns are called external and we denote by xext the
set of external components required. We also denote by Aloc the matrix block with
local row and column indices:

Aloc = {aij : yiis local and xj is local},(4.1)

and by Aext the matrix block with local rows but external columns:

Aext = {aij : yi is local and xj is external}.(4.2)

This block structure is depicted in figure 4.1.

External

A

Local

External

A
A ext

loc
ext

Fig. 4.1. Distributed matrix

The matrix-vector product is then written

yloc = Aloc ∗ xloc +Aext ∗ xext.(4.3)

ETNA
Kent State University
etna@mcs.kent.edu

Jocelyne Erhel 165

The processor must then receive xext from other processors before processing the
second term. Converserly, it must send its components to other processors requiring
them. The communication pattern is set up in an initialization phase on each processor
and stored in data structures. This step requires, on each processor, the knowledge of
the distribution of the rows and the local matrix. Each processor has a list jsend(p)
of components which will be sent to processor p and a list jrecv(q) of components
which will be received from processor q. More details can be found in [20, 17].

Since the matrix is processed by rows, a storage by rows is mandatory. We use
a classical compressed sparse row (CSR) format. Each local matrix is stored using a
local numbering with a correspondance between local and global numbers.

Finally we get the following distributed algorithm, executed on each processor:
Algorithm 0: Distributed sparse matrix-vector product

Send xloc[jsend(p)] to processors p ;
Compute yloc = Alocxloc ;
Receive x[jrecv(q)] from processors q and build xext ;
Compute yloc = yloc +Aextxext ;

This algorithm allows communication to overlap with computations and is scal-
able because the volume of communication increases much slower than the volume of
computation with the size of the problem. The amount of communication depends
on the size of each external block. Renumbering techniques help to reduce this size.
They are based on graph partitioning heuristics applied to the adjacency graph of the
matrix. The objective is to reduce the size of the interfaces and to balance the size
of each subgraph.

5. Parallel QR factorization. The other procedure of the Newton-Arnoldi
method is the factorization Ṽm+1 = Q̃m+1R̃m+1.

We have to design a parallel QR factorization of a matrix V which is rectangular
of size (m+1)∗n with m << n. A natural data distribution arises from the data distri-
bution chosen for the matrix-vector product. The column vectors in V are subdivided
into blocks defined by the matrix partition, in order to minimize communications.

The first step is to apply a modified Gram-Schmidt (MGS) method as in [9]. In-
dependent operations allow to overlap communications with computations but global
communications are still required for the scalar products.

The Householder factorization requires only local communications but more op-
erations. A parallel version using a ring topology [18] and a cyclic partition of the
matrix rows to balance the workload has been implemented for GMRES in [1]. A more
promising divide-and-conquer approach,following the algorithm designed for shared-
memory processors in [6] , is taken in [5]. The idea is to apply first a local QR
factorization on the block owned by the processor and then to group the blocks two
by two to apply a new QR factorization on the larger blocks. This is done recursively
until completion and can be easily modified if the number of processors is not a power
of two. The difficulty of this approach is that the number of active processors decrease
by half at each stage.However it is efficient for a small number of processors because
the block size is large compared to m so that the first step is the most time-consuming
one.

A different method which combines Householder transformations with Givens
rotations is developed in [23, 24] and is called RODDEC. It still requires only local
communications and keeps all the processors active. The first step is similar to the
algorithm described previoulsy. It then annihilates all the coefficients in the blocks

ETNA
Kent State University
etna@mcs.kent.edu

166 A parallel GMRES version for general sparse matrices

except the first one by Givens rotations using a ring topology.
We will now describe in more details the two methods we have implemented:

MGS and RODDEC. A complete discussion can be found in [17].

5.1. MGS method. There are several ways to parallelize the MGS algorithm.
Here we advocate the distribution of the vectors inherited from the matrix distribu-
tion. It induces distributed dot-products which require global communication. How-
ever, since several dot-products are independent, it is possible to overlap communica-
tions with computations [9]. Though this parallel algorithm is not scalable because
of global communications, it should be efficient for a reasonably large number of
processors. Compared to Arnoldi, we interchange the loops on i and j, so that we
orthogonalize remaining vectors as soon as a new vector is computed. Each processor
will execute the following algorithm:
Algorithm 0: Distributed MGS factorization

for i=1 to m do
divide vectors vi+1, . . . , vm+1 into two blocks ;
Compute local scalar products (LSP) of Block 1 ;
Send LSP of Block 1 ;
Compute LSP of Block 2 ;
Receive and Sum external scalar products of Block 1 ;
Update vi+1, compute LSP for ‖vi+1‖, put it in Block 2 ;
Send LSP of Block 2 ;
Update vectors in Block 1 ;
Receive and Sum external scalar products of Block 2 ;
Update vectors of Block 2 ;
Normalize vi+1 ;

endfor

5.2. RODDEC method. The main advantage of Householder factorization is
to avoid dot-products and to require only local communications. Data are still dis-
tributed in the same way as for the matrix-vector product. Each processor first
executes a QR factorization of its own block with Householder transformations. So,
with three processors, we get the matrix structure

. . . .
0 . . .
0 0 . .
0 0 0 .
0 0 0 0
. . . .
0 . . .
0 0 . .
0 0 0 .
0 0 0 0
. . . .
0 . . .
0 0 . .
0 0 0 .
0 0 0 0

.

Then we implement the algorithm RODDEC (ROw partitioning Diagonal oriented

ETNA
Kent State University
etna@mcs.kent.edu

Jocelyne Erhel 167

DEComposition) designed in [24]. The remaining factorization uses Givens rotations
to annihilate the entries in the blocks below the first one. Parallelism is achieved by
mapping a logical ring structure and by sending data on this ring.

Each processor owns the partition Vloc and will execute the following algorithm
to compute the factorization V = QR. The variables nbproc, myproc, myleft and
myright hold respectively the number of processors, the current processor number,
the processor on the left and on the right. The final value of the matrix R will be
hold by the last processor in the ring.
Algorithm 0: RODDEC

* Local QR factorization
[Qloc, Rloc] = QR(Vloc) ;
* Annihilate entries of Rloc diagonal by diagonal
for d = 1 to m+ 1 do

if myproc = 1 then
Send row Rloc(d, d : m+ 1) to myright

else
Recv row (d : m+ 1) from myleft
Compute the rotation to annihilate Rloc(1, d)
if myproc = nbproc then

Send updated row (d : m+ 1) to myright
endif
Compute the rotations to annihilate the dth diagonal of Rloc

endif
endfor

6. Numerical experiments. We implemented three algorithms on a Paragon
computer with 56 nodes plus 8 nodes for I/O organized in a grid topology. Each node
has two i860 processors, one for communication and the other for computation, with
about 7 MBytes available for the application. For the RODDEC algorithm, we have
mapped a logical ring structure onto the physical grid structure.

The first algorithm is the basic GMRES(m) version (algorithm 2) which is dis-
tributed using the sparse matrix-vector product data structures (algorithm 4). Here
we use a basic partition by blocks of rows. In the future, we plan to apply partitioning
techniques to reduce communications. The second algorithm is NewtonGMRES(m)-
MGS and uses the Newton basis with a QR factorization (algorithm 3) based on the
distributed MGS version (algorithm 5.1). The third one is called NewtonGMRES(m)-
RODDEC and uses also the Newton basis but with the QR factorization done with
the distributed RODDEC scheme (algorithm 5.2).

We tested these three versions on sparse matrices coming either from the Boeing-
Harwell collection [13] or from the discretization of the Laplacian on a unit square
with a regular grid and a five-point difference scheme. The matrix WATT is a non-
symmetric matrix of order n = 1856 with nz = 11360 nonzero entries and is used
for convergence analysis. The matrices BCSSTK10 and BCSSTK24 are symmetric
but are treated here as nonsymmetric. They are respectively of order n = 1086 and
n = 3562 with nz = 22070 and nz = 159910 nonzero entries. The grid matrices are
of order 10000 and 90000.

6.1. Convergence analysis. We first compare the convergence of the two meth-
ods GMRES(m) and NewtonGMRES(m) on the matrices WATT and BCSSTK24.

ETNA
Kent State University
etna@mcs.kent.edu

168 A parallel GMRES version for general sparse matrices

Results are shown in Figures 6.1 and 6.2. Both methods are similar for the matrix
BCSSTK24 and for most matrices.

However, because the Newton basis is ill-conditioned for the matrix WATT, New-
tonGMRES(m) does not converge in this case. We therefore implemented a more
robust version, called NewtonDbl(m), as advocated in [1]. We execute two cycles of
GMRES(m) and sort m eigenvalues from the 2m Ritz values computed. The results in
Figures 6.1 and 6.2 show a same convergence curve for BCSSTK24 but a considerable
improvement for WATT.

Here the Krylov size m is taken to 30 but other values gave similar results.

GMRES(m)

NewtonDbl(m)

NewtonGMRES(m)

0 20 40 60 80 100 120
10

−6

10
−5

10
−4

10
−3

Iteration

lo
g

(|
| r

es
id

ua
l |

| /
 ||

 in
iti

al
 r

es
id

ua
l||

)

Fig. 6.1. Convergence history (matrix BCSSTK24)

6.2. Performance results. For performance measures, we will not consider the
NewtonDbl(m) version which adds only a small overhead.

Except otherwise noted, the Krylov size is taken to m = 30 for the matrices
BCSSTK10 and BCSSTK24 and to m = 10 for grid matrices. Since the convergence
does not depend too much on the algorithm, we fixed the number of iterations to 50.

Figures 7.1 and 7.2 give the CPU time for a varying number of processors for
matrices BCSSTK10 and BCSSTK24 for the three schemes. Clearly, NewtonGM-
RES(m) is more parallel than the basic version. The RODDEC algorithm is more
scalable than MGS because it avoids dot-products and hence global communications.
The differences are not so evident for large matrices, as shown in figures 7.3 and 7.4
for grid matrices of size 10000 and 90000. However, the curves would behave similarly
if we should increase the number of processors.

We also studied the effect of the Krylov size m on the performances. Results are
given in Figures 7.5 and 7.6 for the matrix BCSSTK24 with respectively NewtonGM-
RES(m) - MGS and NewtonGMRES(m) - RODDEC implementations. It appears
that MGS is more sensitive to m than RODDEC which shows almost no variation.
The speed-up increases with m for MGS because the blocks become larger and allow
more overlap between communication and computation.

ETNA
Kent State University
etna@mcs.kent.edu

Jocelyne Erhel 169

GMRES(m)

NewtonDbl(m)

NewtonGMRES(m)

0 10 20 30 40 50 60
10

−15

10
−14

10
−13

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

Iteration

lo
g

(|
| r

es
id

ua
l |

| /
 ||

 in
iti

al
 r

es
id

ua
l |

|)

Fig. 6.2. Convergence history (matrix WATT)

We analyse the scalability of NewtonGMRES(m) using grid matrices with a vary-
ing size. We allocate a fixed number of rows per processor, taken to 100 and 1000,
increasing the problem size with the number of processors. Results are given in Fig-
ures 7.9 and 7.10 and show the better scalability of RODDEC, though the differences
become smaller with larger problems.

Finally, we analyze the various parts of the algorithm. Figures 7.7 and 7.8 show
the percentage of each step in Newton-GMRES for a varying problem size, using a
grid matrix with 1000 rows per processor. Newton-GMRES is decomposed into the
basis formation involving sparse matrix-vector products, the basis factorization done
with either MGS or RODDEC, the initialisation including the computation of the
Leja points and the least-squares resolution. As expected, the basis factorization
takes more time with MGS than with RODDEC. For RODDEC, the least-squares
resolution is more expensive, because it is done on only one processor which has to
broadcast the results and this global communication slightly slows down the execution
time. The performance of the basis formation can still be improved by using a better
graph partitioning and by overlapping communications with computations between
consecutive matrix-vector products.

7. Concluding remarks. GMRES is based on the projection onto a Krylov
subspace. We obtained a very efficient algorithm to compute a Krylov basis. Results
on our parallel version of GMRES show good performances, even on small matrices.
We plan to tested it with large unsymmetric unstructured matrices to confirm our
results. We want also to include a partitioning technique to reduce the communication
overhead.

ETNA
Kent State University
etna@mcs.kent.edu

170 A parallel GMRES version for general sparse matrices

GMRES(m)

NewtonGMRES(m) − MGS

NewtonGMRES(m) − RODDEC

0 5 10 15 20 25 30 35
4

6

8

10

12

14

16

18

20

22

Nb. Proc.

T
im

e

Fig. 7.1. CPU time (matrix BCSSTK10)

GMRES(m)

NewtonGMRES(m) − MGS

NewtonGMRES(m) − RODDEC

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

100

Nb. Proc.

T
im

e

Fig. 7.2. CPU time (matrix BCSSTK24)

ETNA
Kent State University
etna@mcs.kent.edu

Jocelyne Erhel 171

NewtonGMRES(m) − MGS
NewtonGMRES(m) − RODDEC

0 10 20 30 40 50 60
2

4

6

8

10

12

14

16

Nb. Proc.

T
im

e

Fig. 7.3. CPU time (grid matrix, n = 10000)

NewtonGMRES(m) − MGS
NewtonGMRES(m) − RODDEC

0 10 20 30 40 50 60
0

20

40

60

80

100

120

140

160

180

Nb. Proc.

T
im

e

Fig. 7.4. CPU time (grid matrix, n = 90000)

ETNA
Kent State University
etna@mcs.kent.edu

172 A parallel GMRES version for general sparse matrices

m=10

m=30

m=50

0 2 4 6 8 10 12 14 16
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Nb. Proc.

S
pe

ed
up

 T
(1

)/
T

(p
)

Fig. 7.5. Speedup NewtonGMRES(m)-MGS (matrix BCSSTK24)

m=10

m=30

m=50

0 2 4 6 8 10 12 14 16
1

2

3

4

5

6

7

8

Nb. Proc.

S
pe

ed
up

 T
(1

)/
T

(p
)

Fig. 7.6. Speedup NewtonGMRES(m)-RODDEC (matrix BCSSTK24)

ETNA
Kent State University
etna@mcs.kent.edu

Jocelyne Erhel 173

Basis Formation

Basis Factorisation

Initialisation

Least−Squares Resolution

0 10 20 30 40 50 60
0

10

20

30

40

50

60

Nb. Proc.

P
er

ce
nt

ag
e

Fig. 7.7. Breakdown of CPU time - Newton-MGS (1000 rows/processor)

Basis Formation

Basis Factorisation

Initialisation

Least−Squares Resolution

0 10 20 30 40 50 60
0

10

20

30

40

50

60

Nb. Proc.

P
er

ce
nt

ag
e

Fig. 7.8. Breakdown of CPU time - Newton-RODDEC (1000 rows/processor)

ETNA
Kent State University
etna@mcs.kent.edu

174 A parallel GMRES version for general sparse matrices

NewtonGMRES(m) − MGS
NewtonGMRES(m) − RODDEC

0 10 20 30 40 50 60
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Nb. Proc

T
im

e

Fig. 7.9. CPU time (grid matrix, 100 rows/processor)

NewtonGMRES(m) − MGS
NewtonGMRES(m) − RODDEC

0 10 20 30 40 50 60
3

4

5

6

7

8

9

T
im

e

Fig. 7.10. CPU time (grid matrix, 1000 rows/processor)

ETNA
Kent State University
etna@mcs.kent.edu

Jocelyne Erhel 175

REFERENCES

[1] Z. Bai, D. Hu, and L. Reichel, Implementation of GMRES method using QR factorisation, in
Proc. Fifth SIAM Conference on Parallel Processing for Scientific Computing, eds. J. Don-
garra, K. Kennedy, P. Messina, D. C. Sorensen and R. G. Voigt, SIAM, Philadelphia, 1992,
pp. 84–91.

[2] , A Newton basis GMRES implementation, IMA J. Numer. Anal., 14 (1994), pp. 563–581.
[3] R. H. Bisseling, Parallel iterative solution of sparse linear systems on a transputer network, in

Parallel Computation, eds. A. E. Fincham and B. Ford, Oxford University Press, Oxford,
1993, pp. 253–271.

[4] F. Bodin, J. Erhel, and T. Priol, Parallel sparse matrix vector multiplication using a shared
virtual memory environment, in Proc. Sixth SIAM Conference on Parallel Processing for
Scientific Computing, eds. R. F. Sincovec, D. E. Keyes, M. R. Leuze, L. R. Petzold, D. A.
Reed, SIAM, Philadelphia, 1993, pp. 421–428.

[5] D. Calvetti, J. Petersen, and L. Reichel, A parallel implementation of the GMRES method,
in Numerical Linear Algebra, eds. L. Reichel, A. Ruttan and R. S. Varga, de Gruyter,
Berlin, 1993, pp. 31–45.

[6] E. Chu and A. George, QR factorization of a dense matrix on a shared memory multipro-
cessor, Parallel Computing, 11 (1989), pp. 55–71.

[7] R. D. da Cunha and T. Hopkins, A parallel implementation of the restarted gmres iterative
algorithm for nonsymmetric systems of linear equations, Adv. Comp. Math., 2 (1994),
pp. 261–277.

[8] E. de Sturler, A parallel variant of GMRES(m), in Proc. of the 13th IMACS World Congress
on Computation and Applied Mathematics, ed. J. J. H. Miller and R. Vichnevetsky,
IMACS, Criterion Press Dublin, 1991, pp. 682–683.

[9] E. de Sturler and H. van der Vorst, Communication cost reduction for Krylov methods
on parallel computers, in Numerical Methods for Large Eigenvalue Problems, ed. Y. Saad,
Manchester University Press, 1992, pp. 190–196.

[10] , Reducing the effect of global communication in GMRES(m) and CG on parallel dis-
tributed memory computers, Tech. Rep. 832, Utrecht University, Department of Mathe-
matics, Oct. 1993.

[11] G. R. di Brozolo and Y. Robert, Parallel conjugate gradient-like algorithms for solving
sparse nonsymmetric linear systems on a vector multiprocessor, Parallel Comput., 11
(1989), pp. 223–239.

[12] J. J. Dongarra, I. S. Duff, D. C. Sorensen, and H. A. van der Vorst, Solving Linear
Systems on Vector and Shared Memory Computers, SIAM, Philadelphia, 1991.

[13] I. S. Duff, R. G. Grimes, and J. G. Lewis, Sparse matrix test problems, ACM Trans. Math.
Software, 15 (1989), pp. 1–14.

[14] A. C. Hindmarsh and H. F. Walker, Note on a Householder implementation of the GMRES
method, Tech. Rep. UCID-20899, Laurence Livermore Laboratory, 1986.

[15] W. D. Joubert and G. F. Carey, Parallelizable restarted iterative methods for nonsymmetric
linear systems i- theory, ii- parallel implementation, Int. J. Comput. Math., 44 (1992),
pp. 243–290.

[16] S. K. Kim and A. Chronopoulos, An efficient Arnoldi method implemented on parallel com-
puters, in 1991 International Conference on Parallel Processing, vol. III, 1991, pp. 167–196.

[17] J.-M. Legrand, Parallélisation de GMRES(m), DEA Report (in French), INRIA, 1995.
[18] D. P. O’Leary and P. Whitman, Parallel QR factorization by Householder and modified

Gram-Schmidt algorithms, Parallel Comput., 16 (1990), pp. 99–112.
[19] Y. Saad, Krylov subspace methods in distributed computing environments, Tech. Rep. 92-126,

Army High Performance Computing Center, Minneapolis, 1992.
[20] Y. Saad and A. Malvesky, P-Sparslib: a portable library of distributed memory sparse iter-

ative solvers, Tech. Rep. UMSI 95/180, University of Minnesota, Sept. 1995.
[21] Y. Saad and M. H. Schultz, GMRES: a generalized minimal residual algorithm for solving

nonsymmetric linear systems, SIAM, J. Sci. Statist. Comput., 7 (1986), pp. 856–869.
[22] J. N. Shadid and R. S. Tuminaro, Sparse iterative algorithm software for large-scale MIMD

machine: an initial discussion and implementation, Tech. Rep., DOE’s Massively Parallel
Computing Research Laboratory, Sandia National Laboratories, Albuquerque, 1991.

[23] R. Sidje, Algorithmes parallèles pour le calcul des exponentielles de matrices de grande taille :
Application au calcul du régime transitoire des processus de Markov, PhD thesis, Université
de Rennes I, 1994.

[24] R. B. Sidje and B. Philippe, Parallel Krylov subspace basis computation, in CARI’94, 1994,
pp. 421–440. 2ème Colloque Africain sur la Recherche en Informatique.

ETNA
Kent State University
etna@mcs.kent.edu

176 A parallel GMRES version for general sparse matrices

[25] H. F. Walker, Implementation of the GMRES method using Householder transformations,
SIAM J. Sci. Stat. Comput., 9 (1988), pp. 152–163.

[26] X. Xu, N. Qin, and B. Richards, Alpha-gmres-a new parallelizable iterative solver for large
sparse nonsymmetrical linear systems arising from CFD, Int. J. Numer. Meth. Fluids, 15
(1992), pp. 613–623.

