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HARMONIC RAYLEIGH-RITZ EXTRACTION FOR THE MULTIPARAMETER
EIGENVALUE PROBLEM*

MICHIEL E. HOCHSTENBACH' AND BOR PLESTENJAK?

Abstract. We study harmonic and refined extraction methods for the multiparameter eigenvalue problem. These
techniques are generalizations of their counterparts for the standard and generalized eigenvalue problem. The meth-
ods aim to approximate interior eigenpairs, generally more accurately than the standard extraction does. We study
their properties and give Saad-type theorems. The processes can be combined with any subspace expansion approach,
for instance a Jacobi—Davidson type technique, to form a subspace method for multiparameter eigenproblems of high
dimension.
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1. Introduction. We study harmonic and refined Rayleigh—Ritz techniques for the mul-
tiparameter eigenvalue problem (MEP). For ease of presentation we will focus on the two-
parameter eigenvalue problem

Ajx = AByx + pCiz,

(1.1)

Asy = ABay + pCay,
for given ny X my (real or complex) matrices Ay, By, C1, and ny X no matrices Ay, Bs, Cs;
we are interested in eigenpairs ((A, ), £ ®y) where = and y have unit norm. The approaches
for general multiparameter eigenproblems will be straightforward generalizations of the two-
parameter case.

Multiparameter eigenvalue problems of this kind arise in a variety of applications [1],
particularly in mathematical physics when the method of separation of variables is used to
solve boundary value problems [27]; see [10] for several other applications.

Two-parameter problems can be expressed as two coupled generalized eigenvalue prob-
lems as follows. On the tensor product space C"* ® C™ of dimension 719, one defines the
matrix determinants

Ag =B, ®Cy —C; ® By,
(1.2) A =A40C—C1® Ay,
Ay =B ® Ay — A1 @ Bs.

The MEP is called right definite if all the A;, B;,C;, i = 1,2, are Hermitian and Aq is
(positive or negative) definite; in this case the eigenvalues are real and the eigenvectors can
be chosen to be real. The MEP is called nonsingular if Ag is nonsingular (without further
conditions on the A4;, B;, C;). A nonsingular two-parameter eigenvalue problem is equivalent
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to the coupled generalized eigenvalue problems

Alz = )\Aoz,

(1.3)

Agz = plgz,
where 2 = zQy, and Ay YA; and Ay ! A, commute. Because of the product dimension 7,75,
the multiparameter eigenvalue problem is a computationally quite challenging problem.

There exist several numerical methods for the MEP. Blum and colleagues [2, 3, 4], Bohte
[5], and Browne and Sleeman [6] proposed methods for computing one eigenvalue, hopefully
the closest one to a given approximation. There are also methods which determine all eigen-
values. The first class is formed by direct methods for right definite MEPs [24, 14, 7] and
for non right definite MEPs [10]; these methods are suitable for small (dense) matrices only
since their complexity is O((n1n2)?). The second class consists of continuation methods
[23, 19, 20] that are asymptotically somewhat cheaper than direct methods, but are so far
often not very competitive for small problems in practice; for larger problems their computa-
tional cost is still enormous.

Fortunately, in applications often only a few relevant eigenpairs are of interest, for in-
stance those corresponding to the largest eigenvalues, or the eigenvalues closest to a given
target. Recently some subspace methods for the MEP have been proposed [11, 10] that are
suitable for finding some selected eigenpairs. These methods combine a subspace approach
with one of the mentioned dense methods as solver for the projected MEP. The approaches are
also suitable for multiparameter problems where the matrices are large and sparse, although
convergence to the wanted eigenpairs may sometimes remain an issue of concern. In particu-
lar, in [11] it was observed that finding interior eigenvalues was one of the challenges for the
Jacobi—-Davidson type method. It was left as an open question how to generalize the harmonic
Rayleigh—Ritz approach for the MEP. This paper addresses this issue, and also introduces a
refined Ritz method.

The rest of the paper has been organized as follows. In Section 2 we review the har-
monic Rayleigh—Ritz method for the generalized eigenproblem, after which this method is
generalized for the MEP in Section 3. In Section 4 we present two Saad-type theorems for
the standard and harmonic extraction. Section 5 proposes a refined Rayleigh—Ritz method for
the MEP. We conclude with experiments and a conclusion in Sections 6 and 7.

2. Harmonic Rayleigh—Ritz for the generalized eigenvalue problem. We first briefly
review the harmonic Rayleigh—Ritz for the generalized eigenvalue problem

Az = A\Bz.

Suppose we would like to compute an approximation (6, u) to the eigenpair (\, x), where the
approximate eigenvector u should be in a given search space Uy, of low dimension k, and 6
should be in the neighborhood of the target 7 € C.

Since u € Uy, we can write u = Ujc, where the columns of Uy form an orthonormal
basis for U, and ¢ is a vector in C* of unit norm. The standard Ritz—Galerkin condition on
the residual r is (cf. [18])

r:= Au —0Bu L Uy,

which implies that (8, ¢) should be a primitive Ritz pair (terminology from Stewart [26]), an
eigenpair of the projected generalized eigenproblem

Uy AUrc = 0 U BUyc.
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It follows that if u* Bu # 0, then 8 = ff:‘éﬁ ; the case u* Bu = 0 is an exceptional case where
the Ritz value is infinite (if u*Au # 0) or undefined (if u*Au = 0). If B is Hermitian positive
definite, then we can define the B~'-norm of the residual by ||z||%-, = 2*B~'z, and one
can show that this  minimizes ||r|| g-1.

However, the problem with this standard Rayleigh—Ritz approach is that even if there is a
Ritz value § = 7, we do not have the guarantee that the two-norm ||r|| is small, which reflects
the fact that the approximate eigenvector may be poor. As a remedy, the harmonic Rayleigh—
Ritz was proposed by Morgan [16], Paige, Parlett, and Van der Vorst [17] for the standard
eigenproblem, and by Stewart [26] for the generalized eigenproblem; see also Fokkema, Slei-
jpen, and Van der Vorst [9]. Assuming A— 7B is nonsingular, the idea is to consider a spectral
transformation

2.1 (A—7B)'Bxr=(\—71)"'x.

Thus, the interior eigenvalues A & 7 are exterior eigenvalues of (4 — 7B) ! B for which a
Galerkin condition usually works well in practice. To avoid working with (A — 7B)~1, the
inverse of a large sparse matrix, we impose a Petrov—Galerkin condition

(A=7B)'Bu— (0 —7)"'u L (A —7B)*(A — 7B) Uy,
or, equivalently,
(2.2) Au—60Bu=(A—71B)u— (0 —7)Bu L (A—7B)Us,
leading to the projected eigenproblem
(2.3) Uy;(A—=71B)*(A—71B)Ukc = (0 — 1) U (A — 7B)* BUjc.

Here we are interested in the primitive harmonic Ritz pair(s) (6, ¢) with 6 closest to 7. This
approach has two motivations:

e if an exact eigenvector is in the search space, x = Uyc, then the eigenpair (A, z) sat-
isfies (2.3) (this implies that exact eigenvectors in the search space will be detected
unless we are in the special circumstance of the presence of multiple harmonic Ritz
values);

e a harmonic Ritz pair (6, u) satisfies

[Au — 7Bul| < |6 — 7] - [|Bul| < |0 — 7| - | BU||

(see, e.g., [26]) which motivates the choice of the harmonic Ritz value closest to 7.
The harmonic Rayleigh—Ritz approach was generalized for the polynomial eigenproblem in
[13].

3. Harmonic Rayleigh—Ritz for the multiparameter eigenvalue problem. For the
MEP (1.1) it is natural to make use of two search spaces, Uy, and Vj, for the vectors z and y,
respectively. Let the columns of Uy and V}, form orthonormal bases for U}, and V. We look
for an approximate eigenpair ((6,7), u ® v) & ((\, p),z ® y), where u ® v is of the form
Uic ® Vi d, where both ¢, d € CF are of unit norm. The standard extraction,

(Al — HBl - T]Cl) UkC 1 Uk,

3.1
(Ay — 0By — nCs) Vied L Vy

was introduced in [11]. As is also the case for the standard eigenvalue problem, the standard
extraction for the MEP works well for exterior eigenvalues, but is generally less favorable for
interior ones [11].
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Now suppose we are interested in a harmonic approach to better approximate eigenpairs
near the target (o, 7). One obstacle is that MEPs do not seem to allow for a straightforward
generalization of the spectral transformation (2.1). Therefore we generalize (2.2) and impose
the two Galerkin conditions

(A1 — HBl —nCl)u 1 (Al — 0'B1 — TCl)uk,

3.2)
(Ag —032 — T)CQ)’I) 1 (A2 — UB2 — TCQ)Vk,

or, equivalently,

(Al —oB; — Tcl)UkC— (9 - (T) ByUyc — (’l] - T) ClUkC 4 (A1 —o0B; — TCl)Z,{k,
(A2 - O'Bz —7'02) de— (0 - 0’) Bszd— (77 —T) Cszd 1 (Az - O'Bz - TCQ)Vk.

We call this the harmonic Rayleigh—Ritz extraction for the MEP. Introduce the following
reduced QR-decompositions

3.3) (A —oBy —1C1) U, = Q1 Ry, (A2 — 0By —7C2) Vi, = Q2R>,

which we can compute incrementally, i.e., one column per step, during the subspace method.
This is done for computational efficiency, as well as stability: cross products of the form
(A; —oB; — 7C;)*(A; — 0 B; — 7C;) with potentially a high condition number are avoided.
Then, computationally, the extraction amounts to the projected two-parameter eigenproblem

Ric= (0 - U) QTBlUkC + (T] — 7') QTClUkC,
Ryd=(0—0)Q5B2Vid + (n — 7) Q5C2 Vi d.

We now compute the smallest eigenpair(s) ((£1,&2), ¢ ® d) (in absolute value sense, that is,
with minimal |£;|? + |€2)?) of the low-dimensional MEP

Ri ¢ =& QiB1Ugc + & Q1C1Uye,

(3.4)
Ry d =& Q5B Vid + &2 Q5C5Vid,

which can be solved by existing low-dimensional techniques as mentioned in the introduction.
As in the case for the generalized eigenproblem, there are two justifications for the har-
monic approach for the MEP:
e we have the following upper bounds for the residual norms:

(Ar =By = 7C)ul| < [& | [|Brull + |&] [[Crull < |&1| [[BiUk[| + [&/[|CLUK,
(A2 — 0By — 7C2)0|| < |&i] [|B2vl| + [&2] |Covll < |61 [|BaVill + [&2] [[CaVill,

so to obtain small residual norms it is clear that it is sensible to select the smallest
(gl ) 52);
e if the search spaces contain an eigenvector, z = Ugc, y = Vpd, then the pair
(A, ), z ® y) satisfies (3.2); this means that this pair is a harmonic Ritz pair unless
the harmonic Ritz value (8,7) is not simple. We will prove a more precise statement
in the next section.
In conclusion, the harmonic approach for the MEP tries to combine two desirable properties:
it will generally find an exact eigenpair present in the search spaces, while it will also try to
detect approximate eigenpairs with small residual norm.
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4. Saad-type theorems. In this section, we derive Saad-type theorems for both the stan-
dard and harmonic extraction for the MEP. This type of theorem expresses the quality of the
approximate vectors in terms of the quality of the search spaces. The original theorem by
Saad [21, Thm. 4.6] was for the standard extraction for the standard Hermitian eigenvalue
problem. A generalization for non-Hermitian matrices and eigenspaces was given by Stewart
[25], while an extension for the harmonic extraction for the standard eigenvalue problem was
presented by Chen and Jia [8].

4.1. A Saad-type theorem for the standard extraction. Let w := u ® v be a Ritz
vector corresponding to Ritz value (6,7), and [w W W] be an orthonormal basis for C™ "2
such that

span([w W) = Uy ® V.
Define, for: = 0,1, 2,
4.1 E; =w W|*A;jw W].

We assume that Ej is invertible, which is guaranteed if Ag is definite as in the case of a right
definite MEP. From (3.1) we have that the Ritz pairs are of the form ((8,n), Urc® Vi d) where
((8,n),c ® d) are the eigenvalues of

U;:AlUkC = GUI:BlUkC-i-nU;ClUkC,
Vk*AQde =40 Vk*BQde +n Vk*CQde.

The three matrix determinants of this projected MEP (cf. (1.2)) are of the form Q* F;(), where
(@ is the orthonormal basis transformation matrix that maps Uy, ® V}, coordinates to [w W]
coordinates: Q = [w W]*(U ® V}). For instance, we have

U;:BlUk ® Vk*CQVk - U;:ClUk ® Vk*BQVk = (Uk ® Vk)*Ag(Uk ® Vk)
= Q" [w W] Aolw W]Q = Q"EpQ.

Therefore, the components 6; and 7); of the Ritz values (6;,7;) are eigenvalues of
E;'E, and E;'Es,
respectively (cf. (1.3)). In particular we know that
(E1 —0Ep)e; =0

so By 1E1 is of the form

wn-[s 4]

where the precise expression for G; is less important than the fact that its eigenvalues are the
k?—1 6-values belonging to the pairs (6, 7;) distinct from (6, n). We hereby note that some
of the first coordinates §; may still be equal to 6, even if (6, 7) is not a multiple Ritz value.
Similarly, By ' E» is of the form
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where the eigenvalues of G5 are the k*—1 7;-values belonging to the pairs (;,7;) distinct
from (#,7n). Using these quantities, we can now prove the following theorem, which extends
[21, Thm. 4.6], [25, Thm. 2], and [8, Thm. 3].

THEOREM 4.1. Let ((0,7), u ® v) be a Ritz pair and (A, u), © ® y) an eigenpair. Let
E; = [w W]*Aijlw W] fori=0,1,2 and assume Ey is invertible. Then

2
sin(u@u, z®y) <4/1+ g—z -sin(Up @ Vi,  ® y),
where

7 = 1B I+ (I1Puove (A1 = MAo)(T = Pyeom,)I?

5_g ([Gr-A
- min G2_/1/I )

and Py, gy, is the orthogonal projection onto Uy, & V..
Proof. From A1z = AAgz, where as before z = z ®y, we get with a change of variables

[w w WJ_]*(Al - )\Ao)[’w w WJ_][al a2 a3]T =0

1/2
+ 1 Puyevi(De = pBo)(T = Puyem)I?)

where
[a1 as a3]" =[w W W,]*2

Writing out the first and second (block) equation gives
a *
(E1 - )\Eo) [ a; :| = —[w W] (Al - )\Ao)WJ_a3.

Left-multiplying by E ! and using (4.2) yield

06—
0

Glf_f ] [ o ] — B [w W] (A1 = AAo) WL as.
Hence,

(4.4) (G = AD) as|| < || B [w WT* (A1 = AMo) W as]|.
Similarly, if we start from Az = uAgz and use (4.3), we get the bound

4.5) (G2 = pI) as| < || Ey Hw WI*(As — plAo) W1 ag.

From (4.4) and (4.5) it follows that

oo (G i< 62

[ Al )\Ao)WL a3:|
EO [w W AQ - ;I/Ao)WL as

<t [0 e

‘ las]l
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This gives us the bound ||az|| < (v/6) ||as]|-
Since ||a|| = 1, we have that

cos’(u @ v, @ y),
a1 |* + llaz||* = cos® Uy, @ Vi,  ®y),
llasll + llas|* = 1 = cos*(u® v, z ® y),
llas||* = 1 — cos®(Ur @ Vi, = @ y)-

|ay [*

Il

The result now follows from substituting the bound for [|az|| in terms of ||as|| in the expression
lazll® + llas|®. O

The significance of the theorem is the following. If sin(Uy ® Vi, z ® y) — 0, we know
that sin(u ® v, x ® y) — 0, so there is a Ritz vector u ® v converging to the eigenvector
x ®y—unless d is zero, which means that (A, ) coincides with one of the Ritz values distinct
from (6, 7).

4.2. A Saad-type theorem for the harmonic extraction. We have a similar theorem
for the harmonic extraction, mutatis mutandis, which means that the harmonic extraction is
also asymptotically accurate. Define the quantities

Avi:(Ai—O'Bi—TCi)*Ai, Zozgl ®6’2—61 ®§2,
éiZ(Ai—UBi—TCi)*Bi, 51=g1 ®52—51 ®ZQ,
62': (Ai—O'Bi—TCi)*CZ', 32 :§1 ®Av2—12[1®§2.

Let @& := % ® ¥ be a harmonic Ritz vector corresponding to the harmonic Ritz value (6, 7),
and let [ W W] be an orthonormal basis for C™ ™2 such that span([@ W]) = Uy ® Vi

Similar to (4.1), define, E; = [@ W] Alw W] fori = 0,1,2. Then the components 0
and 7; of the harmonic Ritz values (OJ ,1;) are elgenvalues of E 'E, and E 'Es, respec-
tively. Since (E1 - HEO) e1 = 0 we know that E E1 is of the form

Ey'E = o G

51?;],

where the eigenvalues of G, are the k2—1 0 -values belonging to the pairs (6?], n;) distinct
from (8, 7). Similarly, E 1E2 is of the form

ma-[1f]

where the eigenvalues of G, are the k2—1 7, 7;-values belonging to the pairs (6?], n;) distinct
from ( , 7). Analogous to Theorem 4.1 we can prove the following result.

THEOREM 4.2. Let ((0 1), U @ V) be a harmonic Ritz pair and (A, p), = ® y) be an
eigenpair. Let E; = [ W]*As[@ W] fori=0,1,2 and assume Eq is invertible. Then

~2
Sin(@ e, s ®y) <41+ }—2 sin(Uy ® Vi, 2 ® ),
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where

7 = 1B - (1Puove (Ba = ABo)(T = Pyeom)I?

T . él—)\f
= ([ 701])

This means that if sin(U, ® Vi, z ® y) — 0, then there is a harmonic Ritz vector & ® ¥
converging to the eigenvector z ® y—unless (A, p) coincides with one of the harmonic Ritz
values distinct from (8, 7).

Comparing Theorems (4.1) and (4.2), we see that both the standard and harmonic ex-
traction are asymptotically accurate: up to the occurrence of multiple (harmonic) Ritz values,
they will recognize an eigenvector present in the search space.

~ ~ 1/2
+ 1Puevi (Bo = pBo)(I = Pryam)I?)

5. Refined extraction for the multiparameter problem. The refined extraction is an
alternative approach that minimizes the residual norm over a given search space. It was
popularized for the standard eigenvalue problem by Jia [ 15]. We now generalize this approach
for the MEP.

Given o and 7, for instance a tensor Rayleigh quotient [19] of the form

_ (u®v)*Ay (u Q) _ (u* Ayu)(v*Cav) — (u*Cru)(v* Av)
5.1) (u®v)*Ao(u®v)  (u*Byu)(v*Cav) — (u*Ciu)(v*Byv)’
®. _ (wev)*Ar(u®v)  (u*Biu)(v*Av) — (u*Aju) (v Bov)
C (w®u)*Aj(u®v)  (u*Biu)(v*Cov) — (u*Cru)(v* Bov)’

or a target, the refined extraction determines an approximate eigenvector # ® v by minimizing
the residual norms over U}, and Vy, respectively:

u= argmin [|(4; —oB; —7C1)uy,

(5.2) ~ uEU, ||1f||=1
0= argmin |[(As —0oBs —71Cs)v].

VvEVy, ||v]|=1

In practice, it is often sensible to take the target in the beginning of the process, and switch
to the Rayleigh quotient when the residual norm is under a certain threshold, because this
indicates that the Rayleigh quotient is of sufficient quality.

If we always use the same target, then (5.2) is computationally best determined by two
incremental QR-decompositions (3.3), followed by singular value decompositions of R; and
R>. If we vary o and 7 during the process, then we may incrementally compute QR-like
decompositions

AUy = QiBia, BiUx = QiRig, CiUy = QiRic,
AV = Q2Rza, B2Vi = Qa2Rep, C2Vp = Q2Rac,

where él and éz have 3k orthonormal columns and R14, R1B, Ric, R2a, Rop, and Rac
are 3k x k matrices. Such decompositions can be computed efficiently with a straightforward
generalization of the approach presented in [22] for the case of two matrices. For each dif-
ferent value of ¢ and 7 we then evaluate (5.2) by QR-decompositions of the 3k x k matrices
Ria—0Rip—TR1c and Rag — 0 Rap — TRac, followed by singular value decompositions
of k x k upper triangular matrices.
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The following theorem is a generalization of [26, Thm. 4.10].

THEOREM 5.1. For the residuals of the refined Ritz vector (5.2) we have
(s = 0Bs — rCaya] < W= oIBLE b = 7lICUL+ (s — 0By = 70 sin@hs,2)
1 — sin® (Uy, =)
(s — 0By — 15| < P ollBell 1 = TICol +1|(As = 0By = 7€)l sin(Viy).
1 —sin® (Wi, y)

Proof. Decompose x = yyzy +oyey, where zy := UU*z [ ||[UU*z|| is the orthogonal
projection of z onto U, ||zy|| = |lev|| = 1, yu = cos(Uy, z), and oy = sin(Uy, z). Since
zy = (¢ — oyev) /v, we have by the definition of a refined Ritz vector (5.2)

I(A1 —oB1 — 7C1) @|| < [[(A1 — 0By — 7C1) zu|
<|[[A=0)Biz+ (p —7) Crx + oy (A1 — 0B, — 7C1) ey ||/,

from which the first result follows. The derivation of the second result is similar. a

Similar to the refined extraction for the standard eigenvalue problem we see that, in contrast
to the situation for the standard and harmonic extraction methods (Theorems 4.1 and 4.2), the
conditions sin(U,z) — 0 and sin(Vy,y) — 0 are no longer sufficient for convergence of
the refined vectors to eigenvectors; we also need o — A and 7 — p.

Recall from Theorem 4.1 that if an eigenvalue is simple, then sin(U},z) — 0 and
sin(Vy, y) — 0 imply that there is a Ritz vector converging to the eigenvector corresponding
to that eigenvalue. From this follows in turn that the Ritz value converges to the eigenvalue;
see, e.g., [11]. Therefore, if we are prepared to accept additional computational costs by vary-
ing o and 7 and asymptotically take the Ritz value as shifts, the refined Ritz vector will con-
verge to the eigenvector if the eigenvalue is simple and sin(Uy, x) — 0 and sin(V,y) — 0.

6. Numerical experiments. The numerical results in this section were obtained with
Matlab 7.0.

EXAMPLE 6.1. In the first example we consider a random right definite two-parameter
eigenvalue problems with known eigenpairs, which enables us to check the obtained results.
We take

where F;, G;, and H; are diagonal matrices and S; are banded matrices generated in Matlab
by 2*speye (1000) +triu(tril (sprandn(1000,1000,d),b), -b), where d is
the density and b is the bandwidth for ¢ = 1, 2. We select the diagonal elements of Fy, F5, G4,
and H; as normally distributed random numbers with mean zero, variance one and standard
deviation one, and the diagonal elements of G and Hj as normally distributed random num-
bers with mean 5, variance one and standard deviation one. In this way, the problem is right
definite and the eigenvalues can be computed exactly from diagonal elements of F;, G;, and
H;, see [11] for details.

We are interested in approximating the innermost eigenpair (A, 1), z ® y), i.e., the pair
for which the eigenvalue (A, p1) is closest to the arithmetic mean of the eigenvalues. For the
search subspace U/ we take the span of Z, which is a perturbation of the eigenvector component
z, and nine additional random vectors. The search space V is formed similarly.



ETNA

Kent State University
etna@mcs.kent.edu

90 M. E. HOCHSTENBACH AND B. PLESTENJAK

We test with different perturbations which affect the quality of the 10-dimensional search
spaces U and V. We compare the approximations for the innermost eigenpair obtained from
the standard and the harmonic extraction. The results are in Table 6.1. Let (6,7) be a standard
or harmonic Ritz value that approximates (A, y) and let u ® v be the corresponding standard
or harmonic Ritz vector. The rows in Table 6.1 are:

e subspace: /(x ® y, U ® V), the angle between the exact eigenvector x ® y and the
search subspace U ® V; this quantity indicates the best result any extraction method
can obtain.

e vector: Z(u®u, £ ®1y), the angle between the exact eigenvector and the (harmonic)
Ritz vector.

e value: (A —0)? + |u — n|?)*/2, the difference between the (harmonic) Ritz value
(0,m) and the exact eigenvalue (A, p).

e residual: the norm of the residual of the (harmonic) Ritz pair

(1AL = 0By —nC) ull? + [|(A2 — 0B> — nCs) w[2) /.

e RQ value: the difference between the Rayleigh quotient (5.1) of the (harmonic) Ritz
vector and the exact eigenvalue (X, ). Note that for the standard extraction this is

the same as the value column and therefore omitted.
e RQ residual: the norm of the residual

(I(Ar = 8By — Cy) ull? + [|(As — 6B — nCs)v]2)/?,

where we take the Rayleigh quotient of the (harmonic) Ritz vector instead of the
(harmonic) Ritz value. Note that for the standard extraction this is the same as the
residual column.

e refined vector: Z(u ® U, ¢ ® y), the angle between the exact eigenvector and the
refined vector ¥ ® ¥, which minimizes (5.2) with the Ritz value, respectively with
the Rayleigh quotient of the harmonic Ritz vector as shift.

e refined residual: the norm of the residual

(Il(Ax = 0By =nCy) @[> + [|(42 — 6B, — 1Cs) B*) /7,

where we take the Ritz value, respectively the Rayleigh quotient of the harmonic
Ritz vector for (8, 7n), and the refined vector & ® v.

TABLE 6.1
A comparison of the standard and harmonic extraction from three different subspaces for a right definite two-
parameter eigenvalue problem.

b=>50,d =0.02 b=40,d =0.03 b=>50,d =0.03
subspace = 3.6e-3 subspace = 4.0e-5 subspace = 4.2e-7
standard  harmonic | standard  harmonic | standard  harmonic

vector 1.9e-2 4.4e-3 3.7e-4 4.2e-5 1.6e-6 4.3e-7
value 1.2e-5 2.0e-2 1.2e-8 4.0e-5 2.5¢e-14 1.4e-8
residual 1.4e-1 1.8e-1 2.6e-3 4.2e-4 1.2e-5 3.0e-6
RQ value 4.6e-6 8.8e-9 1.5e-14
RQ residual 3.4e-2 3.9¢-4 3.0e-6
refined vector 3.8e-3 3.8e-3 4.1e-5 4.1e-5 4.3e-7 4.3e-7

refined residual 3.1e-2 3.1e-2 3.9¢e-4 3.9e-4 3.0e-6 3.0e-6

From Table 6.1 we see that the harmonic extraction returns eigenvector approximations
that are almost optimal, i.e., they are very close to the orthogonal projections of the exact
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eigenvectors onto the search subspace. On the other hand, as is also usual for the standard
eigenvalue problem, the harmonic Ritz values are less favorable approximations to the exact
eigenvalues than the Ritz values. However, if we use the harmonic Ritz vector with its ten-
sor Rayleigh quotient as approximation to the eigenvalue, we get better approximations and
smaller residuals than in the standard extraction.

If we apply the refined extraction, where we take the Rayleigh quotient for the approxi-
mation of the eigenvalue, we can further improve the results. The improvement is substantial
for the standard extraction but small for the harmonic extraction. Results after the refined
extraction do not differ much, regardless whether we start with the standard or the harmonic
extraction.

EXAMPLE 6.2. In the second example we take a random non right definite two-parameter
eigenvalue problem of the same dimensions as in Example 6.1. Here we select the diagonal
elements of Fy, F5, G1, G2, Hy, and H, as complex numbers where both the real and the
imaginary part are uniformly distributed random numbers from the interval (—0.5,0.5). Ta-
ble 6.2 contains the results of similar numerical experiments as in Example 6.1.

TABLE 6.2
A comparison of the standard and harmonic extraction from three different subspaces for a non right definite
two-parameter eigenvalue problem.

b=50,d =0.02 b=40,d =0.03 b=>50,d=0.03
subspace = 2.6e-3 subspace = 4.8e-5 subspace = 5.0e-7
standard ~ harmonic | standard  harmonic | standard  harmonic
vector 7.4e-3 2.6e-3 1.8e-4 4.9e-5 1.0e-5 5.1e-7
value 2.7e-3 1.5¢-4 4.9e-5 4.7e-6 1.4e-6 4.1e-8
residual 1.8e-2 5.8e-3 4.5e-4 1.3e-4 2.9¢e-5 1.5e-6
RQ value 3.0e-3 3.8e-5 1.6e-6
RQ residual 7.5¢-3 1.3e-4 3.1e-6

refined vector 2.6e-3 2.6e-3 4.9e-5 4.9e-5 5.1e-7 5.1e-7
refined residual 7.2e-3 7.5e-3 1.4e-4 1.3e-4 3.2e-6 3.1e-6

As in the previous example, the harmonic extraction returns almost optimal eigenvector
approximations which are clearly better than the results of the standard extraction. Since
this problem is non right definite, the error in the tensor Rayleigh quotient is linear in the
eigenvector approximation error, compared to quadratic for the right definite problem in the
previous example; see [11]. Again, we can improve the results using the refined extraction,
in particular those of the standard extraction.

EXAMPLE 6.3. We take the right definite examples from Example 6.1 with density
d = 0.01 and bandwidth b = 80. We compare the eigenvalues obtained by the Jacobi—
Davidson method [11] where we apply the standard and harmonic extraction, respectively.
We start with the same initial vectors and we test various numbers of inner GMRES steps for
approximately solving the correction equation. We use the second order correction equation
with the oblique projections, for the details see [11]. The maximum dimension of the search
spaces is 14, after which we restart with three-dimensional spaces.

For the target (o, 7) we take the arithmetic mean of the eigenvalues. In the extraction
phase the standard or harmonic Ritz value is selected that is closest to a given target. Sub-
sequently, we take the corresponding eigenvector approximation and take its tensor Rayleigh
quotient as an approximate eigenvalue. As one can see in Examples 6.1 and 6.2, this gives
a better approximation for the eigenvalue when we use the harmonic extraction, whereas
it-naturally—does not change the eigenvalue approximation in the standard extraction.

We compute 100 eigenvalues, where we note that with a total number of 108 eigenvalues
this problem cannot be considered a toy problem. The criterion for the convergence is that
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the norm of the residual is below 5 - 10~7. In the correction equation we use preconditioning
with an incomplete LU factorization of the matrix A; — o B; — 7C; with a drop tolerance
1073 fori =1,2.

If we use the standard extraction, then in each outer iteration the projected problem is
right definite and we solve it using the algorithm in [24]. If we use the harmonic extraction,
then the projected problem (3.4) is not definite. We could solve it with the method described
in [10] using the QZ algorithm on (1.3), but experiments showed that we obtain very sim-
ilar results by applying a cheaper but possibly unstable approach where we first solve one
of the projected generalized eigenvalue problems (1.3) by solving the eigenvalue problem
Ay YA1z = Az, where A and A, are the projected Ag and Ay, and then insert the vector
2 in the second equation in order to obtain u. All of the above methods require O(k%) flops
to solve the projected two-parameter eigenvalue problem, where k is the size of the search
spaces.

The values in Table 6.3 are:

e jter: the number of outer iterations,

e time: time in seconds,

e in 50, in 100: the number of the computed eigenvalues that are among the 50 and
100 closest eigenvalues to the target, respectively.

TABLE 6.3
Comparison of the standard and harmonic extraction for the JD type method for a right definite two-parameter
eigenvalue problem.

Standard Harmonic
GMRES iter time in50 in100 | iter time in50 in 100
4 2002 290 50 94 799 192 50 91

8 876 144 49 96 346 98 50 97
16 347 80 50 95 127 50 49 85
32 2717 89 50 93 149 86 50 91
64 276 105 50 91 137 77 47 75

The results in Table 6.3 show that the harmonic extraction is faster and only slightly
less accurate than the standard extraction. Solving the projected problems is more expensive
for the harmonic extraction because they are not right definite, as opposed to the projected
problems in the standard extraction. However, as the harmonic extraction requires far fewer
outer iterations, it computes the eigenvalues faster than the standard extraction. On the other
hand, the standard extraction returns a bit more accurate results, for instance, in all cases we
get all 50 closest eigenvalues to the target. Both methods are suitable for this right definite
two-parameter eigenvalue problem and based on the results we give the harmonic extraction
a slight preference over the standard extraction.

We also applied the refined extraction, but in spite of the results in Tables 6.1 and 6.2,
the experiments did not show advantages of the refined extraction. We do not report the
results but we note that the refined method is more expensive and usually requires more outer
iterations. As these remarks also apply to the remaining numerical examples in this section,
we excluded the refined approach in the following.

As one can see in the next example, the difference between the standard and the harmonic
extraction may be much more in favor of the harmonic extraction when we consider a non
definite two-parameter eigenvalue problem.

EXAMPLE 6.4. In this example we take a random non right definite two-parameter
eigenvalue problem with matrices of size 1000 x 1000 from Example 6.2 with density
d = 0.01 and bandwidth b = 80. We perform similar experiments as in Example 6.3, the
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only difference is that now we use the two-sided Ritz extraction as well. As discussed in [10],
this is a natural approach when we have a non definite two-parameter eigenvalue problem.
We limit the computation to 2500 outer iterations or to 50 extracted eigenvalues. Neither
the one-sided standard nor the two-sided standard extraction is able to compute the required
number of eigenvalues in the prescribed number of outer iterations (therefore, we omit the
number of iterations and the cpu time for these methods). This is not an issue for the harmonic
extraction which is a clear winner in this example. The results are presented in Table 6.4.

TABLE 6.4
Comparison of one-sided standard, two-sided standard, and harmonic extraction methods for the JD type
method for a non right definite two-parameter eigenvalue problem.

One-sided standard Two-sided standard Harmonic
GMRES | eigs in10 in30 | eigs inl0 in30 | iter time inl1l0 in30 in50
4 9 9 9 8 8 8 594 272 10 30 47
8 17 10 17 12 9 12 226 119 10 30 46
16 19 10 19 19 10 19 106 73 10 30 44
32 20 10 20 22 10 22 89 87 10 29 40
64 22 10 22 30 10 29 93 118 10 28 40

Figure 6.1 shows the convergence graphs for the two-sided extraction (a) and the har-
monic extraction (b) for the first 40 outer iterations, in both cases we take § GMRES steps in
the inner iteration. One can see that the convergence is more erratic when we use the standard
extraction and smoother (almost monotonous) if we use the harmonic extraction.

o
o

|
\S)

|
\S)

log 10 of residual norm
IS

log 10 of residual norm
|
N

-6} -6
-8 -8
10 20 30 40 10 20 30 40
number of outer iterations number of outer iterations
(a) (b)

FIG. 6.1. Comparison of convergence using the two-sided Ritz extraction (a) and the harmonic extraction (b).

EXAMPLE 6.5. Using the same non right definite problem as in Example 6.3 we test how
many eigenvalues can we extract with a limited number of matrix-vector multiplications, i.e.,
we fix the product of inner and outer iterations. The limit is 3200.

TABLE 6.5
Eigenvalues obtained using the harmonic extraction and 3200 inner iterations.

GMRES | all | in25 | in50 | time (sec)

4 59 25 50 358
8 68 25 50 213
16 75 25 49 141
32 52 24 40 97
64 24 18 21 58

The results in Table 6.5 show that for a low number of inner iterations we get fewer
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eigenvalues and spend more time, but the possibility to compute an unwanted eigenvalue
is smaller. If we use more inner iterations we get many unwanted eigenvalues, but spend
less time. The optimal combination is to take a moderate number of inner iterations, in this
example this would be between 16 and 32 inner steps.

Besides the matrix-vector multiplications, the most time consuming operation is to solve
the projected low-dimensional two-parameter eigenvalue problem in each outer step. If the
search spaces are of size k, then we need O(k®) flops to solve these projected problems.
Since this is relatively expensive compared to the work for the matrix-vector multiplications,
it is a good idea to use several GMRES steps (but not too many to avoid convergence to an
unwanted eigenvalue) to try to reduce the number of outer iterations.

EXAMPLE 6.6. In this example we take a non right definite two-parameter eigenvalue
problem where A;, B;, and C; are random complex banded matrices of size 500 x 500 gen-
erated by the Matlab command

M=sparse (triu(tril (randn(500)+i*randn(500),5),-5));
where M is respectively equal to Ay, By, Cy, Ao, Bs, and Cs.

TABLE 6.6
Comparison of standard and harmonic extraction for a non right definite two-parameter eigenvalue problem.

One-sided standard Two-sided standard Harmonic
GMRES | eigs time in5 | eigs time in5 | iter time in5 inl10
4 0 347 0 3 463 3 683 253 5 10
8 0 417 0 3 559 3 730 308 5 8
16 0 544 0 4 791 3 244 134 5 7
32 1 626 1 3 1204 4 343 280 5 8
64 1 668 1 3 1286 3 515 255 5 8

We look for the eigenvalues closest to the origin and for a preconditioner we take
M; = A; fori = 1,2. We limit the computation to 1000 outer iteration or 15 extracted
eigenvalues.

From the results in Table 6.6 one can see clearly that the harmonic extraction extracts
more eigenvalues than the standard extraction. Both the one-sided and the two-sided standard
Ritz extraction fail to compute 15 eigenvalues in 1000 outer iterations; therefore, the number
of iterations is displayed only for the harmonic extraction, the number of iterations for both
the one-sided and two-sided Ritz extraction is 1000. The one-sided standard extraction is
particularly poor in view of the fact that it manages to compute at most one eigenvalue.
The two-sided Ritz extraction computes more eigenvalues, but falls considerably short of the
required 15. For this example the harmonic extraction is clearly the suggested method.

EXAMPLE 6.7. We take the two-parameter eigenvalue problem from Example 8.4 in
[10]. The problem is non right definite and the matrices are of size 1000 x 1000. We used
this problem in [10] to demonstrate that the two-sided Ritz extraction may give better results
than the one-sided standard extraction. We limit the computation to 500 outer iterations or 30
extracted eigenvalues. For the target we take the arithmetic mean of the eigenvalues.

The results in Table 6.7 show that the harmonic extraction is a substantial improvement
to the standard extraction. As in the previous example, both the one-sided and two-sided
Ritz extraction fail to compute the required number of eigenvalues in the available number
of outer iterations. The number of iterations is displayed in Table 6.7 only for the harmonic
extraction, the number of iterations for one-sided and two-sided Ritz extraction is 500.

7. Conclusions. It was observed in [11] that the multiparameter eigenvalue problem is
a challenge, especially with respect to the task of finding interior eigenvalues. The concept of
a harmonic extraction technique for the MEP was left as an open question, and dealt with in
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TABLE 6.7
Comparison of standard and harmonic extraction for a non right definite two-parameter eigenvalue problem.

One-sided standard Two-sided standard Harmonic

GMRES | eigs time inl0 | eigs time in10 | iter time in10 in20

10 11 671 4 15 1041 6 116 282 10 17
20 11 948 4 21 1542 9 95 308 10 18
30 10 1146 3 20 2062 8 110 400 10 19

this paper. We have seen that, although there seems to be no straightforward generalization of
a spectral transformation (2.1) for the MEP, the harmonic approach can be generalized to the
MEP, with a corresponding elegant and intuitive generalization of Saad’s theorem. We also
gave a generalization of the refined extraction, which seems to be less suited for this problem.

Based on the theory and the numerical results, our recommendations for the numerical
computation of interior eigenvalues of a MEP are the following. For right definite MEPs we
use the one-sided Jacobi—Davidson method [11] for the subspace expansion. The harmonic
extraction presented in this paper is at least very competitive with the standard extraction
described in [11]. For non right definite problems, the one-sided approach [11] combined
with the harmonic extraction, described in this paper, is both faster and more accurate than
the two-sided approach proposed in [ 10], which on its turn is more accurate than the one-sided
approach with standard extraction [11].

For exterior eigenvalues we opt for the standard extraction, combined with a one-sided
approach for right definite MEPs [11], or a two-sided approach for non right definite MEPs
[10].

It is important to realize that for the MEP solving the projected problems is itself already
a computationally non-negligible task in view of the O(k®) costs. Therefore it is advisable
to invest in solving the correction equations relatively accurately to minimize these costs.
Hence, although just a few steps of GMRES may give more accurate results because we
compute fewer unwanted eigenpairs, this may be much more time demanding.

Finally, we remark that a two-sided harmonic approach is possible, but much less effec-
tive since the correspondence between right and left approximate eigenvectors is lost; we will
not go into further details. The methods in this paper can be generalized to MEPs with more
than two parameters in a straightforward way; see, e.g., [12] for some more details on these
MEPs. MATLAB code of the methods is available on request.
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