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SOLVING LARGE-SCALE QUADRATIC EIGENVALUE PROBLEMS WITH
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�
Abstract. We consider the numerical solution of quadratic eigenproblems with spectra that exhibit Hamiltonian

symmetry. We propose to solve such problems by applying a Krylov-Schur-type method based on the symplectic
Lanczos process to a structured linearization of the quadratic matrix polynomial. In order to compute interior eigen-
values, we discuss several shift-and-invert operators with Hamiltonian structure. Our approach is tested for several
examples from structural analysis and gyroscopic systems.
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1. Introduction. This paper is concerned with the solution of the quadratic eigenvalue
problem (QEP)

(1.1)
�����
	��������������������	���	�� � �!��"#�$�%� �&���'�(�

where
	)�*�+�,� -/.10�230

are large and sparse. The task is to compute
�/-�4

and�5-541076+8
�39
such that (1.1) holds. It can be shown [1, 22, 33] that the eigenproblem

(1.1) has a Hamiltonian eigenstructure, that is, the eigenvalues are symmetric with respect to
both axes. In other words, if

�:-;4
is an eigenvalue with Re

���<�$=�>�
, then so are

"?�@� �@�A" �
,

while if
�B-C.

or
�C-ED�.

is an eigenvalue, then so is
"?�

.
QEPs with Hamiltonian eigenstructure arise, for example, in the finite-element analysis

of elastic deformation of anisotropic materials or when computing corner singularities; see,
e.g., [1, 25] and the references therein. In these applications

	
and

"#�
are positive definite

mass and stiffness matrices, respectively. Gyroscopic systems are another source of quadratic
eigenproblems (1.1). Here,

	
and

�
are positive definite mass and stiffness matrices and

�
is the gyroscopic matrix resulting from the Coriolis force. Such systems arise when modeling
vibrations of spinning structures, such as the simulation of tire noise, helicopter rotor blades,
or spin-stabilized satellites with appended solar panels or antennas; see [10, 18, 33] and ref-
erences therein. In the simulation of vibro-acoustics in flexible piping systems, the coupling
of the linear wave equation without internal flow and the structural Lamé-Navier equations
at fluid-structure interfaces also leads to a QEP with Hamiltonian symmetry [21]. A sum-
mary of conditions under which quadratic operator eigenvalue problems have a spectrum with
Hamiltonian symmetry is given in [26]. Depending on the application, different parts of the
spectrum are of interest. Typically, one is interested in the eigenvalues with smallest real part
or the eigenvalues smallest or largest in modulus. The usual approach is to first linearize the
quadratic eigenproblem to a generalized eigenproblem, transform this into a standard eigen-
problem, and solve the latter by using a (shift-and-invert) Krylov subspace method. There are
also different approaches such as the SOAR (second-order Arnoldi) algorithm [2], a KrylovF
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subspace based method for the solution of the QEP, or the Jacobi-Davidson algorithm applied
to polynomial eigenvalue problems [28]. Both approaches can be applied to the QEP directly
without any linearization.

Here we will apply the usual approach of first linearizing the QEP (1.1) by a suitable
linearization. If a structure-preserving linearization is used, then the resulting eigenproblem
exhibits the same Hamiltonian eigenstructure as the QEP (1.1); for a general discussion, see,
e.g., [20]. In [1, 22, 33] several linearizations for (1.1) have been proposed. With G ���<	)�
the skew-Hamiltonian/Hamiltonian eigenproblem�IHKJ$"'L�JM���7NPO �� ORQ N G� Q "SN � "#�	UTWV � Q N G� Q ���
is obtained. Here

L
is a Hamiltonian matrix, that is�YX<LB� � �ZX[L:�

where

(1.2)
X;\)X 0 �]N � O" O � Q -C. � 0�2 � 0 �

and
H

is a skew-Hamiltonian matrix, that is��X�H�� � ��"^X�H�_
Since

H
is invertible, the pencil

�IH`"BL
is regular. The skew-Hamiltonian matrix

H
can be

factorized as H/��aMab�`N O V� �� OcQ N O V� �� OdQ _
Thus, �eH�"'LS�Kaf�g� O "�a TWV L�a ThV �Yab��af�g� O "�i'�Yaj�
with the Hamiltonian matrix

ik��ajThV*L�ajTWV
. Sincea ThV �]NPO " V� �� O Q �

we have

(1.3)
il�`N O " V� �� O Q N � "#�	UTWV � Q N O " V� �� O Q _

There are other linearizations which yield a standard eigenvalue problem for a Hamiltonian
matrix [22].

Here we are concerned with algorithms for solving the quadratic eigenvalue problem
which preserve and exploit its Hamiltonian eigenstructure. It is well-known that symplectic
similarity transformations preserve the Hamiltonian structure. That is, if m -�. � 0�2 � 0

is a
symplectic matrix, i.e., m � X m �ZX
and

in-o. � 0�2 � 0
is Hamiltonian, then m TWVpi m is Hamiltonian as well. Hence, algorithms

based on symplectic transformations are structure-preserving. The payoffs are, in general,
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more efficient and often more accurate algorithms. In some cases, preservation of the struc-
ture is crucial to obtain a physically meaningful solution; see [7, 11, 17].

Typical applications require a few eigenvalues that are largest or smallest in magnitude
or closest to the imaginary axis. Computing the ones of largest magnitude can be achieved ef-
ficiently by Krylov subspace methods, e.g., Arnoldi or Lanczos processes, possibly combined
with implicit restarting or a Krylov-Schur-type technique [31]. To compute other eigenval-
ues, first transformations must be applied to the matrix

i
which have the effect of shifting

the desired eigenvalues to the periphery of the spectrum. In light of the symmetry of the spec-
trum, one might think of working with

�qik"7r O �pThVe��iS�sr O �tThVu� in case
r

is real or purely
imaginary. All eigenvalues near to v r are mapped simultaneously to values of large modulus.
But this matrix is not Hamiltonian, but skew-Hamiltonian. The standard (implicitly restarted)
Arnoldi method automatically preserves this structure. This led to the development of the
SHIRA method as a structure-preserving (shift-and-invert) Arnoldi method for Hamiltonian
matrices [22].

Here we discuss an alternative based on the symplectic Lanczos algorithm [4], which
preserves the Hamiltonian structure. In order to stay within the Hamiltonian structure, for a
real shift

r
, we can work with the Hamiltonian matrices

(1.4)
i V �wrx�%��i TWV �qiy"�r O � TWV �qiz��r O � TWV �b�qi;{|"�r � i:� ThV �

or

(1.5)
i � �qrx�}�Ki�qil"�r O � TWV �qi5�7r O � ThV �b�qil"�r � i ThV � ThV �

for example. In case a complex shift
r

is used, we can work with the Hamiltonian matricesi { �wrx�}��i TWV �qil"�r O � TWV �qi5��r O � TWV �qiy" r O � TWV �qiz� r O � TWV�!�qi;~#"s� rx�}��r�����i { �>� r@� ��i'� TWV �
(1.6)

or i � �wrx�%��i��qiy"�r O � TWV �qiz��r O � TWV �qiy" r O � TWV �qi5� r O � TWV�b�qi;{#"s� r � �7r � �Yiz�>� r@� � i TWV � ThV _
(1.7)

The shift-and-invert operators
i V �qrx���*i � �wrx�p�,i { �wrx� have first been considered in [13, 25,

34], while
i � �wrx� is examined in [6]. We will apply a recently developed variant of the

restarted symplectic Lanczos algorithm, the Hamiltonian Krylov-Schur-type method.
The next section briefly describes how to solve the large sparse Hamiltonian eigenvalue

problem via a structure-preserving symplectic Lanczos algorithm. In Section 3 we give some
details on the application of the symplectic Lanczos process to the QEP. Numerical examples
are presented in Section 4.

2. The symplectic Lanczos method. The usual nonsymmetric Lanczos algorithm gen-
erates two sequences of vectors; see, e.g., [16]. Due to the Hamiltonian structure of

i
it is

easily seen that one of the two sequences can be eliminated here and thus work and storage
can essentially be halved. (This property is valid for a broader class of matrices; see [15].)

The structure-preserving symplectic Lanczos method [4, 13] generates a sequence of
matrices that satisfy the Lanczos recursion

(2.1)
i m � 0�� �t� � m � 0�� �*�%�i �*� � �*� �o� ��� Vp� ��� VA� ��*� _
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Here,
�i �*� � �t�

is a Hamiltonian
X

–Hessenberg matrix, that is, a Hamiltonian matrix of the
form

�i �*� � �t� �
���������������
� V �WV � �� � � � � � . . .

. . . . . . . . .
� �� � � � � �� V " � V� � " � �

. . . . . .� � " � �

����������������
�

where
��� � � � � � � �t� � -�.

for � ���I�A_A_�_p�*�W_
The space spanned by the columns of m � 0�� �*� is

symplectic since
� m � 0�� �t� � � Xh0 m � 0�� �*� �UX �

, where
X �

is a ���j�;��� matrix of the form (1.2).
Thus, the columns of m � 0�� �t� are

X
–orthogonal. The vector � ��� V$  �>� ��� V�� ��� V is the residual

vector and is
X

–orthogonal to the columns of m � 0�� �*� , the Lanczos vectors. The matrix
�i �t� � �t�

is the
X

–orthogonal projection of
i

onto the range of m � 03� �*� ,�i �t� � �t� �b��X � � � � m � 03� �*� � � X 0 i m � 0�� �t� _
Hence,

�i �t� � �t�
is a Rayleigh quotient of

i
; as a

X
–orthogonal projection it is of HamiltonianX

–Hessenberg form.
Equation (2.1) defines a length � � Lanczos factorization of

i
. If the residual vector� ��� V is the zero vector, then equation (2.1) is called a truncated Lanczos factorization when��¡Z¢

. Note that � 0 � V must vanish since
� m � 03� � 0x� � X � 0 � V �U�

and the columns of m � 0�� � 0
form a

X
–orthogonal basis for

. � 0
. In this case the symplectic Lanczos method computes a

reduction to
X

–Hessenberg form.
If the norm of the residual vector � ��� V is small, the � � eigenvalues of

�i �*� � �*�
are ap-

proximations to the eigenvalues of
i

. Numerical experiments indicate that the norm of the
residual rarely becomes small by itself. Nevertheless, some eigenvalues of

�i �t� � �t�
may be

good approximations to eigenvalues of
i

. Let
� �

be an eigenvalue of
�i �t� � �*�

with the cor-
responding eigenvector �G . Then the vector

�o� m � 0�� �t� �G is referred to as Ritz vector and
� �

as Ritz value of
i

. Note that the Ritz values exhibit Hamiltonian symmetry as the Rayleigh
quotient

�i �*� � �t�
is Hamiltonian.

A symplectic Lanczos factorization exists for almost all starting vectors m � 03� � 0 � V � � V .
Moreover, the symplectic Lanczos factorization is, up to multiplication by a trivial matrix,
specified by the starting vector � V . Hence, as this reduction is strongly dependent on the
first column of the transformation matrix that carries out the reduction, breakdown or near–
breakdown in the Lanczos process is possible. Assume that no such breakdowns occur, and
let m � 0�� � 0;�5£ �IV � � � ��_A_A_�� �¤0 �,¥ V ��¥ � �A_A_�_A�,¥ 0§¦ . For a given �§V , a Lanczos method constructs
the matrix m � 0�� � 0 columnwise from the equationsi m � 0�� � 0 � � � m � 0�� � 0 �i:� 0�� � 0 � � � � �K¢j�K�I� � ��¢+� � �*¨���_A_A_ � ¢(_
This yields Algorithm 1, where ©Yª � ª¬«� denotes the

X
–inner product© � ��¥ «  � � � XW¥®_

Eigenvalues and eigenvectors of Hamiltonian
X

–Hessenberg matrices such as
�i �*� � �*�

can
be computed efficiently by the m(¯ algorithm. This has been discussed to some extent in
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Algorithm 1 Algorithm for a symplectic Lanczos method
INPUT :

i]-B. � 0�2 � 0
and

��-E°±_
OUTPUT : m -�. � 0�2 �*�

,
� V �A_A_�_p� � � , � V �A_�_A_p� � � , � V �A_�_A_p� � � , � � �A_A_�_A�t� ��� V and � ��� V (as-

suming no break down).
Choose start vector � �§V =���²-C. � 0

.�u³ �K�+-B. � 0� V �!´ �� V ´ �� V � Vµ�¶ � � V
for · ���e� � ��_A_A_A�*� do
% Computation of matrix-vector products¸ V ��i �¤¹¸ � ��i;¥ ¹
% Computation of

� ¹� ¹ � � �¹ ¸ V
% Computation of

¥ ¹�¥ ¹ � ¸ V " � ¹ � ¹� ¹ � © � ¹ � ¸ V «�¥ ¹ � Vº�» �¥ ¹
% Computation of � ¹� ¹ �Z" © ¥ ¹ � ¸ � «�
% Computation of �e¹ � V� �¤¹ � V � ¸ � "7� ¹¼�¤¹ TWV " � ¹¼�¤¹ � � ¹ ¥ ¹� ¹ � V �!´ ��¤¹ � V ´ ��¤¹ � V � Vµ »@½ ¶ � �¤¹ � V

end for

[3, 4, 9, 36]. Assume that we have obtained (2.1). If
�i

is the current iterate, then a spectral
transformation function ¾ is chosen (such that ¾ �x�i:�®-. �*� 2 �t� ) and the m(¯ decomposition
of ¾ ���i'� is formed, if possible: ¾ �3�i:� � m ¯ �
where m -C. �t� 2 �t� is symplectic and ¯ is a

X
–triangular matrix,¯ �¿N ¯ V,V ¯ V �¯ � V ¯ �,� Q � ���#À ÀÁ ...ÁÂ À ���� �

i.e., ¯ V*V � ¯ V � � ¯ �*� are upper triangular matrices and ¯ � V is a strictly upper triangular matrix.
Then the symplectic factor m is used to perform a similarity transformation on

�i
to yield the

next iterate, which is called Ãi :

(2.2) Ãik� m TWV �i m _
In each step of the m(¯ iteration, due to the special Hamiltonian eigenstructure, the spectral
transformation function will be chosen either as¾ � �3�i:�%�Z�3�il"'Ä O �p�3�iz�7Ä O ��� Ä�-B.

or
Ä;��D�Å#��Å-C.±�

or ¾ � � �i:� �b� �iy"�Ä O �A� �iz��Ä O �A� �il" Ä O �A� �iz� Ä O �p� Ä�-C4}�
Re
�qÄ@�Æ=���x_
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As proposed in [9], a shift strategy similar to that used in the standard Ç®¯ algorithm should be
used. For example, for a quadruple shift, we choose the È eigenvalues of the È(�±È HamiltonianX

–Hessenberg submatrix �i � 2 � � ���� � � TWV � � TWV � �� � � � � �� � ThV " � � TWV� � " � �
� ��� _

This is exactly the generalized Rayleigh-quotient strategy for choosing the shifts proposed by
Watkins and Elsner in [35]. Hence the convergence theorems 6.2, 6.3 and 6.5 from [35] can be
applied here. In particular, the Hamiltonian m ¯ algorithm is typically cubically convergent.

If ÉtÊ¤Ë�Ì � ¾ � �i:���C� � � and
i

(and hence,
�i

) is a Hamiltonian
X

–Hessenberg matrix,
then so is Ãi in (2.2). If É*ÊeË�Ì � ¾ � �i'���^� � �Í" � �   �
Î and

�i
is an unreduced HamiltonianX

–Hessenberg matrix, then Ãi is of the form

(2.3) Ãik� ���������
À ÀÂ ÂÀ À

���������� �
����� Ãi V*V Ãi V {Ãi �*� Ãi ���Ãi { V " Ãi �V*VÃi �t� " Ãi ��*�

������ �
where Ãi V*V � Ãi V { � Ãi { V -C.ÐÏA2§Ï and Ãi �,� � Ãi ��� � Ãi �t� -E. � TxÏA2 � T�Ï , andÑkÒ Ãi V,V Ãi V {Ãi { V " Ãi �V*VBÓ is a Hamiltonian

X
–Hessenberg matrix,Ñ the eigenvalues of Ò Ãi �,� Ãi ���Ãi �*� " Ãi ��*� Ó are the � roots of ¾ �qi:� that are eigenvalues

of
�i

.
An algorithm for computing m and ¯ explicitly is presented in [9]. As with explicit Ç$¯
steps, the expense of explicit m(¯ steps comes from the fact that ¾ �x�i�� has to be computed
explicitly. A preferred alternative is the implicit m(¯ step, an analog to the Francis Ç$¯ step
[14]. The first implicit transformation m V is selected in order to introduce a bulge into theX

–Hessenberg matrix
�i

. Hence, a symplectic matrix m V is determined, such thatm ThVV ¾ ���i'� �¤V �KÔ �¤V � Ô�-B.±�
where ¾ ���i'� is an appropriately chosen spectral transformation function, e.g., ¾ � ���i:�p� where
the shift is chosen according to the generalized Rayleigh-quotient strategy as an eigenvalue
of
�i � 2 � _ Note that there is no need to compute the eigenvalues of

�i � 2 � directly. Comparing¾ � � �i:� with the characteristic polynomial of
�i � 2 � gives the first column of ¾ � � �i:� which is

needed to start the implicit m(¯ step explicitly. The same can be done for the double shift
case.

Applying the first transformation m V to the
X

–Hessenberg matrix yields a Hamiltonian
matrix m ThVV �i m V with almost

X
–Hessenberg form having a small bulge. The remaining im-

plicit transformations perform a bulge-chasing sweep down the subdiagonals to restore the
X

–
Hessenberg form. Hence, a symplectic matrix m � is determined, such that m ThV� m ThVV �i m V m � is
of
X

–Hessenberg form again. If
�i

is an unreduced
X

–Hessenberg matrix and ÉtÊ¤Ë�Ì � ¾ � �i'�,� �
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X

–Hessenberg matrix. Hence, there
will be parameters Õ� V ��_A_A_A� Õ� � � Õ�[V �A_�_A_A� Õ� � � Õ� V �A_�_A_p� Õ� � � Õ� � �A_�_A_A� Õ� � which determine Õi . An ef-
ficient implementation of the m ¯ step for Hamiltonian

X
–Hessenberg matrices involves × �q¢@�

arithmetic operations [9, 12].
The symplectic Lanczos method described above inherits all numerical difficulties of

Lanczos-like methods for nonsymmetric matrices, in particular serious breakdown is possi-
ble. One approach to deal with the numerical difficulties of Lanczos-like algorithms is to
implicitly restart the Lanczos factorization. This approach was introduced by Sorensen [29]
in the context of nonsymmetric matrices and the Arnoldi process. Usually only a small subset
of the eigenvalues is desired. As the eigenvalues of the Hamiltonian

X
–Hessenberg matrices�i �t� � �t�

are estimates for the eigenvalues of
i

, the length � � symplectic Lanczos factoriza-
tion (2.1) may suffice if the residual vector � ��� V is small. The idea of restarted Lanczos
algorithms is to fix the number of steps in the Lanczos process at a prescribed value

�
which

is dependent on the required number of approximate eigenvalues. The purpose of the implicit
restart is to determine initial vectors such that the associated residual vectors are tiny. Given
(2.1), an implicit Lanczos restart computes the Lanczos factorization

(2.4)
iÙØm � 0�� �t�$�¿Øm � 0�� �t�MØi;�t� � �t�#� Ø� ��� V � ��t� �

which corresponds to the starting vectorØÚ V �ÜÛÐ��i:� Ú V �
(where

Û
is a polynomial such that

ÛÝ�qi:�
is real) without having to explicitly restart the Lanc-

zos process with the vector ØÚ V . This process is iterated until the residual vector � ��� V is tiny.X
–orthogonality of the

�
Lanczos vectors is secured by re–

X
–orthogonalizing these vectors

when necessary. As the iteration progresses, some of the Ritz values may converge to eigen-
values of

i
long before the entire set of wanted eigenvalues have. These converged Ritz

values may be part of the wanted or unwanted portion of the spectrum. In either case it is
desirable to deflate the converged Ritz values and corresponding Ritz vectors from the uncon-
verged portion of the factorization. If the converged Ritz value is wanted then it is necessary
to keep it in the subsequent factorizations; if it is unwanted then it must be removed from
the current and the subsequent factorizations. Unfortunately, such a locking and purging
technique is quite difficult to accomplish for the symplectic Lanczos method. Most of the
complications in the purging and deflating algorithms come from the need to preserve the
structure of the decomposition, in particular, to preserve the

X
–Hessenberg form and the zero

structure of the vector � ��*� .
In [30], Stewart shows how to relax the definition of an Arnoldi decomposition such that

the purging and deflating problems can be solved in a natural and efficient way. Since the
method is centered about the Schur decomposition of the Hessenberg matrix, the method is
called the Krylov-Schur method. A Krylov-Schur-like method for the symplectic Lanczos
process has been developed in [6, 32]. Let us assume that we have constructed a symplectic
Lanczos factorization of order � ���$�CÛ[� � �¤· of the form (2.1),

(2.5)
i m � 03� � ¹ � m � 0�� � ¹ �i � ¹ � � ¹ �o� ¹ � V �¤¹ � V � �� ¹ _

Applying the m(¯ algorithm to
�i � ¹ � � ¹

yields a symplectic matrix
Øm , such thatØm TWV �i � ¹ � � ¹ Øm � Ò �Þ ���Ç ":�Þ � Ó �ßØi � ¹ � � ¹
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decouples into
� � � or �®�f� blocks on the diagonals of each of the four subblocks

�Þ �x��
and�Ç ;

(2.6)

���������������
�Þ V*V �� V,V�Þ �,� �� �,�

. . . . . .�Þ ¹|¹ �� ¹|¹�Ç V*V ":�Þ � V*V�Ç �*� ":�Þ ��*�

. . . . . .�Ç ¹±¹ "'�ÞÆ�¹±¹

����������������
_

Assume furthermore, that
Øm has been constructed such that the desired eigenvalues of

�i � ¹ � � ¹
have been moved to the leading parts of the four submatrices, such that

(2.7)
Øi � ¹ � � ¹ � ����� �Þ V �� V�Þ � �� ��Ç V "'�Þ � V�Ç � "'�Þ ��

������
and Õik� Ò �Þ V �� V�Ç V "��Þ � VZÓ -B. � ÏA2 � Ï
contains the desired eigenvalues. Then post-multiplying (2.5) by

Øm , the formulai m � 0�� � ¹ Øm � m � 0�� � ¹ Øm Øm TWV �i � ¹ � � ¹ Øm �o� ¹ � V�� ¹ � Vp� �� ¹ Øm
yields a Hamiltonian Krylov-Schur-type decomposition

(2.8)
iÙØm � 03� � ¹ �àØm � 0�� � ¹ Øi � ¹ � � ¹ �o� ¹ � V �¤¹ � V ØÚ �� ¹

similar to the symplectic Lanczos factorization (2.5) in the sense that the matrices
�i � ¹ � � ¹

and
Øi � ¹ � � ¹

are similar and hence (2.5) and (2.8) essentially give the same eigeninformation;
see [6] for a proper definition. Due to the special form of

Øi � ¹ � � ¹
, the Hamiltonian Krylov-

Schur-type decomposition can be partitioned in the formi£ Øm V Øm �'Øm { Øm � ¦ �b£ Øm V Øm �'Øm { Øm � ¦ ����� �Þ V �� V�Þ � �� ��Ç V "'�Þ � V�Ç � "'�Þ ��
� ���� �� ¹ � Vp� ¹ � V ØÚ �� ¹ �

where
Øm V²�k£ �IV �A_�_A_A� �
Ï�¦ � Øm � �k£ �
Ï � V �A_A_�_A� � ¹ ¦ � Øm { �k£ ¥ V �A_�_A_p�,¥ Ï*¦ � and

Øm � ��£ ¥ Ï � V �<_A_�_A�¥ ¹ ¦ if �Þ V � �� V � �Ç V -B.ÐÏA2§Ï§_ Then, with ØÚ �� ¹ �b£ ØÚ � ¹ � V ��_A_A_A� ØÚ � ¹ � � ¹ ¦ � � ÕÚ �� Ï �!£ ØÚ � ¹ � V ��_A_�_p� ØÚ � ¹ � Ï �ØÚ � ¹ � ¹ � V �§_A_�_A� ØÚ � ¹ � ¹ � Ï�¦ � , and
Øm � 03� � Ï±�!£ Øm Vu� Øm { ¦ , we have that

(2.9)
i Øm � 0�� � Ï � Øm � 0�� � Ï ÕiÙ�o� ¹ � Vp� ¹ � V ÕÚ �� Ï
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is also a Hamiltonian Krylov-Schur-type decomposition. In other words, a Hamiltonian
Krylov-Schur-type decomposition splits at any point where its Rayleigh quotient is block
diagonal. There is a similar symplectic Lanczos factorizationi Õm � 0�� � Ï � Õm � 0�� � Ï Õi � Ï*� � Ï � Õ� � Ï � Vp� �� Ï �
where Õi � Ï,� � Ï is in Hamiltonian

X
–Hessenberg form, and the columns of Õm � 03� � Ï areX

–orthogonal. Thus, the purging problem can be solved by applying the m(¯ algorithm to�i � ¹ � � ¹
, moving the unwanted Ritz values into the Hamiltonian matrix defined by

�Þ � �x�� � ���Ç � ,
truncating the decomposition, and returning to a symplectic Lanczos factorization.

The restarting algorithm then consists of expanding this symplectic Lanczos factoriza-
tion, computing the decomposition (2.6), moving the desired eigenvalues to the beginning,
throwing away the rest of the decomposition, and transforming the decomposition back to a
symplectic Lanczos factorization. As the iteration progresses, the Ritz estimates will con-
verge at different rates. When a Ritz estimate is small enough, the corresponding Ritz value
is said to have converged. The converged Ritz value may be wanted or unwanted. Unwanted
ones can be purged from the current factorization using the above procedure. Wanted ones
should be deflated to speed up convergence. For a thorough discussion of this issue; see
[6, 12, 32].

While the implicitly restarted symplectic Lanczos factorization (2.4) can restart with
an arbitrary filter polynomial, the Krylov-Schur-like method discussed here cannot do that.
When exact shifts are used for the implicit restarting, then the symplectic Lanczos factoriza-
tion achieved is equivalent to the one achieved with the above method if the same Ritz values
are discarded in both methods. When it comes to exact shifts, the Krylov-Schur-like method
is to be preferred because exchanging eigenvalues in the form (2.6) is a more reliable process
than using implicit m(¯ steps to deflate.

As already mentioned, in order to compute eigenvalues other than the ones largest in
modulus, a suitable transformation has to be applied to

i
. In order to stay within the Hamil-

tonian structure, we can work with the Hamiltonian matrix
i V �qrx�}��iÜTWV¤�qiy"Ür O ��TWVe�qi5�r O �tTWV from (1.4), or

i � �wrx�²�5i���i&"sr O �tTWVe�qik�Kr O ��TWV from (1.5), for a real or purely
imaginary shift

r
. In order to obtain the eigenvalues

�
of
i

from the eigenvalues á of these
shifted Hamiltonian matrices, a cubic polynomial equation��{â"�r � �j" �á ���
has to be solved in case

i V �qrx� is used, while a quadratic polynomial equation

(2.10)
� � " �á �Í"�r � ���

has to be solved in case
i � �qrx� is used. In case a complex shift

r
is used, we can work with

the Hamiltonian matrixi { �wrx�}��i TWV �qil"�r O � TWV �qi5��r O � TWV �qiy" r O � TWV �qiz� r O � TWV
from (1.6) or i � �wrx�%��i��qiy"�r O � TWV �qiz��r O � TWV �qiy" r O � TWV �qi5� r O � TWV
from (1.7). Similarly as before, in order to obtain the eigenvalues

�
of
i

from the eigenvalues
of the shifted matrices, polynomial equations of order five or four have to be solved: in casei { �qrx� is used, � ~ "�� r � �7r � ��� { �>� r@� � �+" �á �K�
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has to be solved, while in case
i � �qrx� is employed,�x�#"�� rx�%�r����,�x�?" �á �P�>� r@� �¼����_

Hence, working with
i � �wrx� or

i � �qrx� makes the back transformation of the eigenvalues
slightly simpler than when working with

i V �wrx� or
i { �qrx� .

3. Solving the QEP by the symplectic Lanczos method. In order to apply the sym-
plectic Lanczos algorithm to any of the matrices

i � �qrx�
, � �Ù�I�A_�_A_p� È � formed from a struc-

tured linearization of the QEP (1.1), we need to be able to multiply the matrix
i � �wrx�

by an
arbitrary vector at reasonable cost, since this operation is performed repeatedly by the algo-
rithm. Thus, we need to be able to apply operators of the form

��i&"�r O �AThV inexpensively.
The inverse of

iy"�r O is given by��iS"�r O � TWV �¿N O V� ���7rx	� O Q N � 	" Ç �wrx�tThV � Q N O V� ����rx	� O Q �
with Ç �wrx�}��r � 	/�7r����o�

. Once an ã±ä decomposition of Ç �qrx� is known,
�qil"Ür O � TWV

can be applied to a vector in an efficient way. It is easy to see that the same ã±ä decomposition
is needed for applying

�qi��or O �pTWV , ��ik" r O ��TWV , and
��iy� r O ��TWV to a vector [22]: SinceÇ �wrx� � � Ç �Y"ârx� , we have�qiz��r O � TWV � N O V� �>"�rx	� O Q N � 	" Ç �wrx��T � � Q N O V� �)"'rx	� O Q �

and since
i

is a real matrix, we have
��ià" r O �pTWVÜ� ��il"'r O � TWV and

��i]� r O ��TWVÜ��qi5��r O � TWV for a complex
r

. Hence, once the ã±ä decomposition of Ç �qrx� has been deter-
mined, all four factors can be applied to any vector in an efficient way. We would like to
note here that in case the problem is so large that a sparse ã±ä decomposition of Ç �qrx� is
not feasible, Krylov subspace methods have to be employed in this step, as in any shift-and-
invert algorithm of very large size. For brevity of exposition this is not elaborated on here any
further.

In case one would like to set up
i � �wrx� or

i � �wrx� , we have to multiply by
i

from (1.3)
as well. On first glimpse, one might think that for this the inverse of

	
is needed. In the

following we will see that multiplication by
i

essentially comes for free. For this, first
consider the skew-Hamiltonian operator

(3.1) ¯ � �wrx�%�b�qiy"�r O � TWV �qiz��r O � TWV �årB-E.±��D�.¼�
which is a suitable shift-and-invert operator for the skew-Hamiltonian Arnoldi algorithm
SHIRA [22]. It is observed in [22] that this operator can be expressed as¯ � �qrx�%� N 	 V� �� O Q N O r O� O Q N � O" Ç �wrx�tThVæ� Q N O �� O Q� N � O" Ç �wrx�tT � � Q NPO "âr O� O Q N O V� �� 	 Q _
A detailed analysis of the cost for applying ¯ � �wrx� to a vector is provided in [22]. It can be
summarized as follows, assuming that a sparse ã±ä decomposition of Ç �qrx� is available:Ñ 4 sparse triangular solves,Ñ 2 symmetric sparse matrix-vector products

	�J
,
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�$J

,Ñ 5 saxpy operations.
When using

i � �qrx� , we have to multiply ¯ � �qrx� from the left (or the right) by
i

as given in
(1.3). Carefully checking the resulting expression, we obtain thati � �qrx�%�`N " V� � "#�O � Q NPO r O� OàQ N � O" Ç �wrx��TWVæ� Q NMO �� OçQ� N � O" Ç �wrx��T � � Q N²O "âr O� O Q NPO V� �� 	 Q _
Thus, the only difference in the application of

i � �wrx� as compared to ¯ � �wrx� is that one mul-
tiplication by the mass matrix

	
is replaced by a multiplication with the stiffness matrix

�
.

As in the applications considered here, the sparsity patterns of
	

and
�

are usually the same,
the cost for applying

i � �wrx� is the same as for ¯ � �wrx� . Hence, in this respect, none of the al-
gorithms is to be preferred. In contrast, applying

i V �wrx� requires additionally the inversion of�
which makes its application less efficient (as observed in [25]). Similar observations hold

for
i � �wrx� compared to

i { �wrx� .
When eigenvalues of the largest or smallest modulus are required, the Hamiltonian Krylov-

Schur-type algorithm is applied to
i

as in (1.3) or

(3.2)
i ThV � N O V� �� O Q N � "#�7TWV	 � Q N O V� �� O Q _

As SHIRA requires a skew-Hamiltonian operator,
i �

or
i7T �

have to be used in these situa-
tions so that the Hamiltonian Krylov-Schur-type approach is more efficient in these cases.

Another advantage of the Hamiltonian Krylov-Schur-type method is that the lower half
of the computed eigenvectors of

i
and

i�ThV
yields the corresponding eigenvector of the

quadratic matrix polynomial Ç �g��� while the eigenvectors computed by SHIRA can not be
used to deduce eigenvectors of Ç ���<� ; see [1, 22, 25] for more details on this. In any case, no
matter how approximate eigenvalues

� �
are computed, eigenvectors also can be obtained by

applying the inverse iteration

(3.3) Ç � � �[�Y� � �K� � TWV �å� � � �´�� � ´ � � �è�²�!�e� � ��_A_A_A�
where

� ³ of unit norm is chosen arbitrarily; see [25, 32].
In case

i � is used to compute some eigenvalues of
i

, the quadratic polynomial (2.10)
has to be solved. As the computation of roots of polynomials is in general very sensitive
to small perturbations in the coefficients, one might want to use Rayleigh quotient iteration
in order to improve the accuracy of the computed eigenvalues. As the examples in the next
section show, this is not necessary for the examples considered in this paper.

4. Numerical results. In this section, we report the results of numerical experiments
obtained with the Krylov-Schur-type method for Hamiltonian eigenproblems applied to the
QEP (1.1). All experiments are performed in MATLAB R2006a using double precision on a
Pentium M notebook with 512 MB main memory or a HP compute server with 2 Xeon 3,06
GHz processors, 533 MHz 512-KB level 2 cache, 1 MB level 3 cache, 9 GB main memory
(of which only 2 GB can be used due to limitations in addressing more than 2 GB of memory
in the available 32-Bit version of MATLAB).

The accuracy of computed eigenvalues and eigenvectors is compared using relative resid-
uals ´ Ç � � ��� ��Ý´ V´ Ç � � ����´ V ´ ��Ý´ V �
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where
� � �Ð� ��W� is a computed Ritz pair.

4.1. Computing corner singularities. The solutions of elliptic boundary value prob-
lems, such as the Laplace and linear elasticity (Lamé) equations in domains with polyhedral
corners often exhibit singularities in the neighborhood of the corners. The singularities can
be quantified if this neighborhood is intersected with the unit ball centered at the corner and
parameterized with spherical coordinates

� � �*éÐ��êI� . Then the singular part of the solution can
be expanded in a series with terms of the form �Ië ¸ �gé@�,êI� , where

Ô
is the singularity expo-

nent. It turns out that
Ô����f" V� and ¸ can be computed as eigenpairs of quadratic operator

eigenvalue problems of the form

(4.1)
� � · � ¸ � � �@�o��ì[� ¸ � � � �>�W� ¸ � � ���

where · ��_í��_ �p�*�W��_í��_ � are Hermitian positive definite sesquilinear forms and
ìW�Y_î�A_¬�

is a skew-
Hermitian sesquilinear form. Finite-element discretization of the operator eigenvalue prob-
lem (4.1) leads to a QEP as in (1.1), where

	
and

"#�
are positive definite. For the nu-

merical solution of (4.1), the software package CoCoS [25] can be used. Note that CoCoS
includes Fortran implementations of SHIRA as well as a solver based on applying the implic-
itly restarted Hamiltonian Lanczos process [4, 34] to

iÜThV
from (3.2). Here we use CoCoS

only for the assembly of the matrices
	)�*�+�,�

.
In the following example we consider brittle elastic bodies where the environment of

crack peaks is sufficiently well approximated by the linear material law (Lamé equation). A
more detailed discussion can be found in [27]. The 3D elasticity problem is considered for
the Fichera corner which results from cutting the cube

£ �x�A� ¦ � £ �x�A� ¦ � £ ���A� ¦ out of the cube�Y"$�I�A��� � ��"$�e����� � �Y"$�I�A�
�
. The problem is defined by the Lamé constants

Ä(� � derived
from Young’s modulus of elasticity, and the opening angle ï of the corner. In the following
computations for the Fichera corner, the Lamé’s constants are

Ä��Z��_¬ð
and � �b��_ ¨

and the
opening angle is ñ �§ò . We compare the Hamiltonian Krylov-Schur-type algorithm, a MATLAB
implementation of SHIRA and the MATLAB function eigs.

For the first test an example of size
¢K�Sð3��¨ ñ is chosen. All algorithms use the same

starting vector. We chose the shift
r:�Ù�

and set up an operator to apply
i � �wrx� to a vector.

In order to compare the three algorithms considered here, the Hamiltonian Krylov-Schur-
type algorithm and MATLAB’s eigs are applied to

i � �Y�
� , while SHIRA is used with the
skew-Hamiltonian operator ¯ � �Y�
� as in (3.1). Note that the cost for one step of each of the
algorithms is about the same as eigs and HKS are applied to the same operator while the
application of ¯ � �wrx� to a vector comes at the same cost as the application of

i � �wrx� ; cf.
Section 3. We allowed for a search space of size �¤È and asked for

� � eigenvalues in the sense
that HKS was asked to compute ó pairs of eigenvalues, while eigs was asked to compute� � eigenvalues. The results are shown in Tables 4.1 and 4.2. Here we only show results for
the positive eigenvalues; results for their negative counterparts are similar. In both cases the
residuals are computed using eigenvectors obtained from inverse iteration as in (3.3). The
results are comparable: SHIRA needs the least iterations to meet its stopping criterion, but
some of the eigenvalues are less accurate than for the other two methods. On the other hand,
the Hamiltonian Krylov-Schur-type method needs two iterations less than eigs at similar
accuracy.

The m(¯ algorithm employed for computing the Schur-type form (2.7) of the Rayleigh
quotient

�i �*� 2 �*�
is using nonorthogonal transformations. Therefore we give for complete-

ness the maximal condition number of all nonorthogonal transformations used. In contrast,
SHIRA is using only orthogonal transformations. As can be seen, even a condition number
of the order of

��� ~
yields an accuracy of the eigenvalues computed with HKS which is at
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TABLE 4.1
Fichera corner ( ô¼õBö�÷�ø�ù ): SHIRA with shift úâõ'÷ .

SHIRA
3 iterations

Eigenvalue Residual��_ ñ �Ið ñI�eû§üuûIûeûIó � � � ¨�_¬ð û ð ª ���3ThV ~��_ ñ � ó ¨ È§óeûeó �e¨§ð¤�¤�I� ó _ ûeó§ü?ª ���3ThV ~�e_ � ü ð ó � �e�uÈ§ñ ¨I�e�¤¨ ó �e_ ñI�Iü?ª ��� ThV ~�e_ ó �e¨I¨ �§ü ð ûeÈ�üIü¤� ¨x� ñ _ ñ ¨ �Æª ���3ThV ��e_ ó ð ü¤ûeó ð üeü � ñIñ �¤�I� ¨�_ ¨ û ¨ ª ���3ThV ��e_ óeó � � � ü ¨Ið � ð óI�uñ§� �e_ ó ð ü?ª ���3ThV �
TABLE 4.2

Fichera corner ( ô+õ�ö�÷�ø�ù ): eigs and Hamiltonian Krylov-Schur (HKS) applied to ýâþAÿq÷�� , ÷�� eigenvalues
requested.

eigs HKS
6 iterations 4 iterations

max. condition number 26537
Eigenvalue Residual Eigenvalue Residual��_ ñ �Ið ñI�eû§üuûIûeûIó �A¨ ü ð3_ ¨ ª ����TWV�� �x_ ñ �Ið ñ§�¤û�üuûeûIûeó§� � û ü _ ó^ª ���3ThV����_ ñ � ó ¨ È§óeûeó �e¨ ÈIñ¤ñ � ó _ û^ª ����TWV�� �x_ ñ � ó ¨ ÈIóIûeó �I¨ È§ñ¤ñ ð ó _ �¼ª ���3ThV���e_ � ü ð ó � �e�uÈ§ñ ¨I�e� È � ð3_ û^ª ����TWV�� �I_ � ü ð ó � �I�uÈIñ ¨e�I� È � ð�_ û^ª ���3ThV���e_ ó �e¨I¨ �§ü ð ûeÈ�ü¤ó ¨ óIû È _¬ð ª ��� TWV�� �I_ ó �e¨e¨ �Iü ð û¤È3üuó ¨¤�Ið �I_ È$ª ��� ThV���e_ ó ð ü¤ûeó ð üeü � ñIû ð �I� È _ ñ^ª ����TWV�� �I_ ó ð üuûIó ð üeü � ñeûeÈI� � �I_í� ª ���3ThV���e_ óeó � � � ü ¨Ið � ð óeó �§ð ð3_¬ð ª ����TWV�� �I_ óIó � � � ü ¨Ið � ð ó ð óI� ü _ �¼ª ���3ThV��

least as good or better than the one obtained with SHIRA (when compared to the eigenvalues
computed using eigs). Other choices of the shift

r
give similar results.

Next we compare the Hamiltonian Krylov-Schur-type method and eigs for computing
some eigenvalues of smallest magnitude; hence we apply them to

i ThV
. As before, we are

interested in
� � eigenvalues and the search space has the size �¤È . Both algorithms use the

same starting vector. The results are shown in Table 4.3, here we give the results for the
negative eigenvalues to emphasize our claim that the results for the positive and negative
eigenvalues are similar. Comparing the results it is easy to see that the number of iterations
and the residuals are very similar. In general, the Hamiltonian Krylov-Schur-type method
needs fewer iterations than eigs while yielding the same accuracy. Here we also compare
residuals obtained for eigenvectors computed by the inverse iteration (3.3) and read off of
the Ritz vectors of

i TWV
computed within the symplectic Lanczos process. The latter ones

are clearly less accurate, but on the other hand they are obtained as by-products and do not
require any factorization of Ç � � �<� , which is the most expensive part in all of the computations!

Next we choose an example in which the matrices
	

,
�

and
�

are all of size
¢;�Z� �¤ûI�eû .

The same kind of test runs as above were performed. Very similar results were obtained, in
particular the iteration counts were the same; see [5] for more details.

4.2. Gyroscopic systems. Such systems arise when modeling vibrations of spinning
structures such as the simulation of tire noise, helicopter rotor blades, or spin-stabilized satel-
lites with appended solar panels or antennas; see [10, 18, 33] and references therein. Here,	

and
�

are positive definite mass and stiffness matrices and
�

is the skew-symmetric gy-
roscopic matrix resulting from the Coriolis force. It is known that under these conditions, all
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TABLE 4.3
Fichera corner ( ôBõsö�÷�ø�ù ): eigs and Hamiltonian Krylov-Schur (HKS) applied to ý��
	 , ÷�� eigenvalues

requested.

eigs HKS
8 iterations 6 iterations

max. condition number 4298
Eigenvalue Residual Eigenvalue Residual

inverse Ritz
iteration vectors"#�x_ ñ �Ið ñI�¤û�üuûIûeûeó �e� ñ �I_ ü?ª ���3ThV�� "#��_ ñ �§ð ñI�eû§ü¤ûeûeûIó ¨ ó � � _î� ª ����TWV�� ð3_ ñ¼ª ���3TWV �"#�x_ ñ � ó ¨ ÈIóIûeó �e¨ ÈIûeûIü � _í� ª ���3ThV�� "#��_ ñ � ó ¨ È§óeûIó �e¨§ð¤�¤¨ � � _î� ª ����TWV�� È _¬ð ª ���3TWV �"$�I_ � ü ð ó � �I�uÈ§ñI�¤ñeñeó¤ó �I_ ó¼ª ���3ThV�� "$�e_ � ü ð ó � �e�¤ÈIñI�eñeñIüIü �e_¬ð ª ����TWV�� ü _ ó¼ª ���3TWV ~"$�I_ ó �e¨I¨ �Iü ð ûeÈ�üuó ¨Ið û ü _ ó¼ª ���3ThV�� "$�e_ ó �I¨e¨ �§ü ð û¤È�ü¤ó ¨ ó � ü _¬ð ª ����TWV�� �e_¬ð ª ���3TWV �"$�I_ ó ð ü¤ûeó ð üeü � ñeû ¨ û ð �I_ ð ª ��� ThV�� "$�e_ ó ð üuûeó ð üIü � ñIû¤ÈI� � �e_ �Æª ��� TWV�� �e_ È^ª ��� TWV {"$�I_ óIó � � � ü ¨Ið � ð ó ð3�A� �I_í� ª ���3ThV�� "$�e_ óeó � � � ü ¨§ð � ð ó � ñ§� È _ û¼ª ����TWV�� ¨�_î� ª ���3TWV {

eigenvalues of the QEP are purely imaginary; see [19, 33].

4.2.1. Butterfly gyro. For our first set of experiments, we chose the model of a butterfly
gyro as described in [8]. The butterfly gyro is a vibrating micro-mechanical system developed
for use in inertial navigation applications.

The data matrices
	)�,�

of order
¢;��� ü ¨ ó � (which are available from the Oberwolfach

Benchmark Collection1) are obtained from a finite-element analysis performed with ANSYS
using quadratic tetrahedral elements (SOLID187). As the gyroscopic matrix

�
is missing,

we choose a randomly generated skew-symmetric matrix with the same sparsity pattern as
�

and with entries of considerably smaller magnitude as the influence of the Coriolis force is
usually much smaller than that of the stiffness of the system.

In our first test run, we apply eigs and the Hamiltonian Krylov-Schur-type method
to
iÜTWV

to obtain the smallest frequency modes of the butterfly gyro—these are usually the
modes of interest in vibration analysis of gyroscopic systems. Both the Hamiltonian Krylov-
Schur-type method and eigs need 3 iterations to compute 12 eigenvalues. The maximal
condition number encountered in the m(¯ algorithm is about

�I_ ð ª ��� { . The accuracy of the
computed eigenvalues as measured by their relative residuals is similar: for both methods,
the residuals are smaller than the machine epsilon eps. Figure 4.1 shows the computed
eigenvalues with positive imaginary parts. Obviously, the Hamiltonian Krylov-Schur-type
method locates all eigenvalues on the imaginary axis as expected from theory while for the
eigenvalues computed by eigs, it is rather difficult to decide whether or not these are purely
imaginary even though the real parts are relatively small.

In the second test run for the butterfly gyro, we compute interior eigenvalues. For this
purpose, we choose a shift

rf�Z��� � D
and apply eigs and the Hamiltonian Krylov-Schur-type

method to
i � �qrx� . Here, eigs needs one iteration less than the Krylov-Schur-type method (2

as compared to 3). The maximum condition number encountered in the m(¯ algorithm is about¨�_î��ð ª ����� . The accuracy of the computed eigenvalues does not seem to be affected by this
fairly large condition number; again, all residuals are smaller than

����TWV��
as for eigs. But

moreover, the new approach yields physically meaningful results as all computed eigenvalues
are located on the imaginary axis. In contrast, the eigenvalues computed by eigs have
nonzero real parts as can be seen from Figure 4.2 except for the eigenvalue closest to the

1See http://www.imtek.de/simulation/benchmark.
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FIG. 4.1. Butterfly gyro ( ô'õ!÷��tø��÷ ): eigs and Hamiltonian Krylov-Schur (HKS) applied to ý �
	 , ÷��
eigenvalues requested.
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FIG. 4.2. Butterfly gyro ( ô$õ'÷��tø��÷ ): eigs and Hamiltonian Krylov-Schur (HKS) applied to ýâþ�ÿ�÷�������� , ÷��
eigenvalues requested.

target
rf�!������D

.

4.2.2. Rolling Tires. The quadratic eigenvalue problem considered in this example is
related to modeling the noise resulting from rolling tires. One step in the simulation of tire
noise as described in [24] consists of determining transient vibrations (which are then super-
imposed on the nonlinear tire deflections). These vibrations are computed from the eigenpairs
of a gyroscopic eigenvalue problem. The data considered here are obtained from applying the
algebraic multilevel substructuring (AMLS) approach discussed in [10] to a finite-element
model of a deformable wheel rolling on a rigid plane surface. The original finite-element
model from [23] is of size

¢K��� �uÈ � ñeñ§� and the sparse ã|ä factorization of Ç �wrx� requires
about 6 GByte. As this is beyond the reach of 32-bit MATLAB (whose address space can only
deal with arrays up to 2 GByte), the problem is first reduced to a gyroscopic eigenproblem
of size

¢b� � � óeñ�ü using AMLS in [10]. Then it is suggested in [10] to compute the re-
quired eigenpairs by applying eigs to a standard linearization of this reduced second-order
eigenproblem.

Here, we compare this approach with our approach applied to a Hamiltonian lineariza-
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TABLE 4.4
Rolling Tires ( ôfõ����ù�� ): eigs (top) and Hamiltonian Krylov-Schur (HKS) (bottom) applied to ý��
	 , ÷��

eigenvalues requested.

eigs
8 iterations

Eigenvalue ResidualÈ$ª ���3T
�%���e_ ü ¨ ü �§ð3� È��¤ó�ü ¨e�x�¤� ª ��� { D � _î� ª ����TWV �"#¨ ª ���3T
�%���e_ óeó�üuñ ð È �§ð ñ ð¤¨ È �A� ª ��� { D û _ �¼ª ����TWV ~�¼ª ���3ThV�³}���e_ óeó ðeð �IüuûIû � ó ¨ ûeÈI�}ª ��� { D � _ �¼ª ����TWV ~È$ª ���3ThV,V(���e_¬ð û§� � ñI� � ñeû �e¨ û ¨ û±ª ��� { D �e_î� ª ����TWV��"$� ª ���3ThV,V(���e_î��¨ ó ð ü ��� û ð üeüeü � ó±ª ��� { D ü _ ó^ª ����TWV��� ª ���3ThV,V(���_ û �§ð ó �e� ó§� ��� ü �I�¤¨ ª ��� { D �e_î� ª ����TWV��
HKS

6 iterations
max. condition number 331

Eigenvalue Residual�e_ ü ¨ ü �Ið�� È��¤ó§ü � ó � û±ª ��� { D È _ ü#ª ����TWV���e_ óeó�üuñ ð È �§ð ñ ð È ð ñIñ±ª ��� { D �e_ ü#ª ����TWV ~�e_ óeó ðeð �§üuûIû � óeÈ �A¨ È|ª ��� { D �e_ È¼ª ����TWV���e_¬ð û§� � ñ§� � ñeû �I¨ û �
ð ª ��� { D ð3_î� ª ����TWV���e_î��¨ ó ð ü ��� û ð üIüuó¤ñ � ª ��� { D ü _ È¼ª ����TWV����_ û �§ð ó �I� ó§� ��� óeñ¤óIñ±ª ��� { D ó _ � ª ����TWV��
tion of the reduced gyroscopic eigenproblem. That is, we apply eigs and the Hamilto-
nian Krylov-Schur-type method to

i�TWV
to obtain the smallest eigenvalues. The Hamiltonian

Krylov-Schur-type method needs ó iterations to compute ó eigenvalue pairs, while eigs
needs û iterations. The maximal condition number encountered in the m(¯ algorithm is

¨e¨x�
.

The accuracy of the computed eigenvalues, as measured by their relative residuals, differs
about an order of magnitude if both methods are compared. The residuals for the m(¯ ap-
proach are smaller than those for eigs; see Table 4.4. Obviously, the Hamiltonian Krylov-
Schur-type method locates all eigenvalues on the imaginary axis as expected from theory,
while for the eigenvalues computed by eigs, it is basically impossible to decide whether or
not these are purely imaginary even so the real parts are relatively small.

Finally, we asked for
� û � pairs of eigenvalues as required in [10] for solving the ap-

plication problem. The residuals for both methods were comparable. Figure 4.3 shows the
computed eigenvalues, as before, one can clearly see that the eigenvalues computed via eigs
do not necessarily lie on the imaginary axis.

5. Conclusions. We have discussed the application of the Hamiltonian Krylov-Schur-
type method based on the symplectic Lanczos process to quadratic eigenvalue problems with
Hamiltonian symmetry. The method is an alternative to unstructured methods, such as the
implicitly restarted Arnoldi method as implemented in the MATLAB function eigs or its
structure-preserving variant SHIRA, which can be applied to skew-Hamiltonian operators.
Compared to eigs our method has the advantage of respecting the symmetry properties
inherent in the problem and thus yields meaningful physical results. This is demonstrated for
a stable gyroscopic system, where theoretically all eigenvalues are located on the imaginary
axis. On the other hand, the Hamiltonian Krylov-Schur-type approach is about as efficient as
SHIRA for computing eigenvalues, but sometimes more accurate. Eigenvectors are directly
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FIG. 4.3. Rolling Tires ( ô7õ����ù�� ): eigs and Hamiltonian Krylov-Schur (HKS) applied to ý ��	 , ÷����
eigenpairs requested.

available in case no shifts are used while SHIRA only provides eigenvalues.
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