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HOMOGENEOUS JACOBI-DAVIDSON*

MICHIEL E. HOCHSTENBACHT AND YVAN NOTAY#

Abstract. We study a homogeneous variant of the Jacobi—Davidson method for the generalized and polynomial
eigenvalue problem. While a homogeneous form of these problems was previously considered for the subspace
extraction phase, in this paper this form is also exploited for the subspace expansion phase and the projection present
in the correction equation. The resulting method can deal with both finite and infinite eigenvalues in a natural
and unified way. We show relations with the multihomogeneous Newton method, Rayleigh quotient iteration, and
(standard) Jacobi—Davidson for polynomial eigenproblems.
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1. Introduction. We study a homogeneous Jacobi—Davidson variant for the polynomial
eigenproblem

(1.1 PANx=A"A4, + X" T4, 1 4+---+4))x =0,

where the matrices A; are (possibly large sparse) n X n matrices with real or complex entries.
We will focus our discussion on the quadratic eigenvalue problem (QEP)

(1.2) QN x=MNA+AB+C)x=0

since it is a nonlinear eigenproblem and it plays an important role in many practical applica-
tions (see, e.g., [20]). We will come back to the general problem (1.1) as well as an important
special case, the generalized eigenvalue problem

(1.3) Ax = ABx

in Sections 4.1 and 4.2.

Since (1.1), (1.2), and (1.3) may have infinite eigenvalues, it is natural to look at the
homogeneous form of these problems. Indeed, this form can handle both finite and infinite
eigenvalues in a consistent way. Various authors have exploited this form, for instance in the
study of for perturbation theory and pseudospectra (see Stewart and Sun [ 19, Ch. VI], Higham
and Tisseur [6], and Dedieu and Tisseur [4]) and in the Jacobi—Davidson (JD) method for the
generalized eigenvalue problem (Fokkema, Sleijpen, and Van der Vorst [5]; see also Sleijpen,
Booten, Fokkema, and Van der Vorst [16]).

We are interested in subspace methods for the polynomial eigenproblem, which aim at
approximating eigenpairs from low-dimensional search spaces. Subspace methods include
two important phases: the subspace extraction, where one would like to select approximate
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eigenpairs from a given subspace, and the subspace expansion, where the subspace is enlarged
by a new direction to get even better approximations.

While [5] used the homogeneous form for the subspace extraction phase, this paper will
exploit this form of the polynomial eigenproblem to propose an alternative Newton or Jacobi—
Davidson type subspace expansion process. We note that there are also other types of sub-
space expansion techniques, most notably the second order Arnoldi (SOAR) type method due
to Raeven [14] and Bai and Su [2]. It is also natural to exploit the homogenous form for the
subspace extraction, see [7] and Section 4.4.

In the next section we will apply Newton to the homogeneous form of (1.2) and derive
a new correction equation for Jacobi—Davidson for the quadratic eigenproblem. In Section 3
we will present several alternatives for the projection in the correction equation, and point out
relations with the multihomogeneous Newton method. Section 4 discusses some special cases
and extensions. Finally, we present numerical experiments and a conclusion in Sections 5
and 6.

2. Subspace expansion for homogeneous Jacobi—-Davidson. Let us consider the ho-
mogeneous form of (1.2):

Qan, Br)x = (3A+ anBrB + B3C) x = 0, A= ax/Ph-

Suppose we have an approximate eigenvector u = x of unit length and a corresponding
approximate eigenvalue § := /8 ~ X in homogeneous form, where a/{ is the Rayleigh
quotient of u and satisfies

r:= (a’?A+afB+ A*°C)u L u,

i.e., it is one of the two solutions of a?(u* Au) + aB(u*Bu) + $?(u*Cu) = 0. The fact
that @/ is in homogeneous form means that & and /3 can still be simultaneously scaled by a
nonzero scalar; it is their ratio that matters. An infinite value corresponds to (a, 8) = (1,0).

Our main inspiration is formed by the multihomogeneous Newton method, as studied
by Dedieu and Shub [3] and Dedieu and Tisseur [4]. We will come back to this method in
Section 3.2.

Our ansatz is to find an update for both the approximate eigenvalue (in homogeneous
form) (a, B) and the approximate eigenvector u: we look for (Aa, AB) L (o, ) ands L u
such that

2.1 [(@+Aa)?A + (a+ Aa)(B + AB)B + (B + AB)*C] (u+s) =0,

that is, the updated (homogeneous) pair should be an eigenpair, although the updated vector
does not have unit length. The appropriate orthogonality condition for (A, Af) is [3, 4]

(2.2) aAa+ BAB =0,

where 7y denotes the complex conjugate of a complex number . Discarding the second-order
terms in (2.1) we get

(2.3) Qa,8)s = —Q(a,B)u— Aa(2aA + B)u — AB(aB + 26C) u.

Rather than neglecting the last two terms, we would like to project out these terms, using the
relation (2.2). At the same time, we want that the projector preserves the information present
in the residual r. These two requirements suggest the oblique projector

zu*
T urz’
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where [ is the identity matrix and
2.4) z = 2afAu+ (|8]* — |af*) Bu — 2a8Cy;

here we also need the assumption that u*z # 0. Projecting (2.3) we get the correction
equation

3 (1- 22 ) Qe - w)s = -Qa.pyu, st

Compared with previous work on the Jacobi—Davidson method for quadratic eigenproblem
[16, 18, 21, 9], the correction equation (2.5) is in homogeneous form and has a different
projection vector z; see more details in Section 3.1.
Many practical aspects of earlier work (see, e.g., [17]) carry over to the new variant:
e If (2.5) is solved exactly, it has the solution

(26) s = _u+7Q(aaIB)71za

where v € Cis such thats L u.

e Instead of an (often expensive) exact solve, we may solve the correction equation
approximately, for instance using a few steps of the GMRES method.

e If we have a preconditioner M ~ Q(a, 8), we may exploit it in solving the correc-
tion equation: we use the action of the inverse of

which is

M~'zu* 1.1 L

This means that to solve (2.5), we need one action with M ~! to precompute M ~'z,
plus in addition one action per step of the linear solver.
e An “Olsen type” method (see [13] and also [17]) for the QEP would be to take

S=-M'r+yM g,

where v € Cis such thats | u.
e Itis a sensible idea to solve (2.5) using a Krylov space of the form

N

since this space is automatically orthogonal to the current approximation u.

e We may be asked to compute eigenvalues close to a target 7 = a /3. In this case,
this target is often a better approximate eigenvalue than the Rayleigh quotient in
the early stages of the method. Therefore, it may often be favorable in practice to
replace the Rayleigh quotient @/ in the left-hand side of (2.5) by the target ., /5,
until the Rayleigh quotient is of sufficient quality (measurable by a small residual
norm).

3. Relations. The correction equation (2.5) is closely related to several other methods,
as we will now show.
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3.1. Standard Jacobi-Davidson for the quadratic eigenproblem. The standard cor-
rection equation of Jacobi—Davidson for the quadratic eigenvalue problem is [16, 18, 21]

u*zq

(1— w2 > (’A+6B+C)(I —uu*)s=—(0°A+6B+C)u, s lu,

where
z1 = Q'(A)u=(20A+ B)u.

(See [8] for a derivation; the idea is to project out a multiple of Q'(#) u, while fixing the
residual () u.) Switching to homogeneous coordinates we get

(31) Z :(2QA+ﬂB)u:DaQ(Oé,ﬂ)ll,

where D, denotes the derivative with respect to . However, other formulations of the
quadratic eigenproblem lead to other projection vectors z. Suppose for convenience that
A & {0, 00}. Then the formulation (AA + B + A~1(C) x = 0 leads to the vector

(3.2) Z=(0A—-6"'C)u, ie, Z=(a’?A—-p*C)u.

Similarly, the formulation (4 + A1 B + A~ 2C) x = 0 leads to the vector
zy = (B +2C)u

or in homogeneous coordinates

(3.3) zy = (aB +28C)u = DgQ(a, B) u.

Note that we can also derive this last vector if we consider the reverse QEP (which may in
particular be attractive if are interested in large and infinite eigenvalues)

MO Hx=(A+AB+N0O)x=0.

In fact, we can get infinitely many other possibilities for the projection vector z in a similar
way.

The projection vector z in (2.4) is different in general from the vectors z1, Z-, and Z that
we have seen in this section. In fact, we have that

z= [z —az = (BDy —aDp)Q(a, f) u.

Therefore the projection vector z may be interpreted as a mediator between the projection
vector z; for the eigenvalues around 0 and the projection vector z» for the eigenvalues around
0o. In particular, (2.4) is equal to z; in § = 0 and equal to z5 in § = co.

3.2. Multihomogeneous Newton. We now focus on the multihomogeneous Newton as
studied by Dedieu and Shub [3] and Dedieu and Tisseur [4]. They show that the updates
(Aa, AB) and s should satisfy the system

Q(a,f) (2aA+fB)u (aB+26C)u s Qa, f)u
3.4) u* 0 0 Aa | =— 0
0* a B AB 0

We now show that this system is equivalent to the correction equation (2.5) with z as in (2.4)
(cf. [16, Thm. 3.5]).
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PROPOSITION 3.1. Let u be an approximate eigenvector and let a/3 be the Rayleigh
quotient of u (which implies Q(a, ) u L u). Then (2.5) is equivalent to (3.4) in the following
sense: if (s, Aa, AB) is a solution to (3.4), then s is a solution to (2.5), and if s is a solution
to (2.5), then there exist Aa and A such that (s, Aa, AB) is a solution to (3.4).

Proof. If (s, Aa,Af) is a solution to (3.4), then from (2.3) and (2.2) we see that s is
a solution to (2.5). On the other hand, if s is a solution to (2.5), then there exists ay € C
such that Q(a, 8)s = —Q(a, 8) u + vz, where z is as in (2.4). Now we realize that z =
Ezl — QZo, Where z; and z» are as in (3.1) and (3.3). Hence, the result now follows from
taking Aa = —yf and AS = va. a

In [3] and [4], (3.4) is derived by a Newton process on the space S n—1 « P, where S"~! =
{x € C" : ||x|| = 1} is the unit sphere, P is the one-dimensional projective space over C, and
[| - || is the two-norm. We note that we can also derive (3.4) in an alternative, slightly easier
way as follows.

Leta € C™ and (v, d) € P be fixed scaling quantities in the equations

(a®A+ aBB + B*C)x =0,
a*x—1=0,

Fya+68—-1=0.

One may check that we get (3.4) when we write down the Newton correction for this system
of equations and subsequently replace the “scaling quantities” (+y,d) and a by the current
iterates (o, ) and u, respectively.

In particular, since this approach is a Newton method, we get asymptotic quadratic con-
vergence if the Jacobian is asymptotically nonsingular (cf. also [9]).

PROPOSITION 3.2. Suppose the homogeneous Jacobi—Davidson method, where the
correction equations (2.5) are solved exactly, converges to a simple eigenvalue, with right
and left eigenvectors x and y, respectively. Let Z, be the “asymptotic z vector”, Z., =
(BDy — @D3)Q(a, B) x. Assume that X*7o, # 0 and y*zoo # 0. Then the asymptotic
convergence is quadratic.

Proof. Because the homogeneous JD method is a Newton method, we only have to show
that the “asymptotic Jacobian”

3.5) (1 - z°°x*> Q(a,B) 1 x+ — x*

X*Zoo

is nonsingular. Suppose

(I— z“x*) Q(a,f)s =0

X*Z oo
forans | x. Then there exists a £ € C such that
Qa,B)s = £ zco-

Since (a, B) is supposed to be simple, there exists a unique left eigenvector y such that
0 =y*Q(a, 8)s = £ y*z. Because of the assumption that y*z, # 0, we must have £ =0
and this implies that the operator (3.5) is injective and hence bijective. d
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3.3. Homogeneous Rayleigh quotient iteration. First recall that a step of Rayleigh
quotient iteration (RQI) for the standard eigenproblem Ax = Ax is to solve u from
(A — 6I)1 = u, where (6,u) is the current approximate eigenpair. For the general poly-
nomial eigenvalue problem a generalization of RQI is less well known. For a derivation, we
start with

0=QMNx=Q0)x+(QM) —QO)x~QUO)x+ (A-0)Q'(0)x.

Therefore, inspired by Q(0)~1Q'(8) x ~ (A — ) ~!x, a step of Rayleigh quotient iteration
for the polynomial eigenproblem is to solve u from (cf., e.g., [20])

(3.6) Q) u= Q') u.

Let us now consider a generalization of the RQI method for homogeneous polynomial eigen-
value problem, where again we will use the quadratic eigenproblem as a role model. We
have

0= Q(ax\aﬂ/\) X= Q(aaﬁ) X+ (Q(a)\aﬂz\) - Q(aaﬂ)) X
~ Q(QNB)X + ((Ot,\ - a)Da + (ﬂ/\ - a)Dﬁ) Q(aaﬁ) X.

At this point we use the orthogonality condition (2.2), so that a step of homogeneous Rayleigh
quotient for the polynomial eigenproblem is to solve 1 from

3.7) Q(a,B) 0 = (BDo —aDp) Q(a, B)u = =.

Comparing this with the exact solution (2.6) to the correction equation (2.5), we see that an
exact step of (homogeneous) RQI for the QEP is equivalent to an exact step of (homogeneous)
JD for the QEP, in the sense that 1 in (3.6) is a multiple of u + s in (2.6).

However, we will usually solve (2.5) and (3.7) inexactly in practice. If we solve (3.7) by
a Krylov subspace method, we look for an approximation to 11 in the Krylov search space

Ki(Q(a, B),2)

for an (often) low dimension [. An important observation is that u will generally not be in this
search space. If u is already an approximation of good quality, this unfortunate fact makes
Rayleigh quotient iteration for polynomial eigenproblems of large size less attractive (similar
remarks hold for “non-homogeneous RQI” (3.6)).

In contrast, the homogeneous JD method looks for an update to the approximate vector
u, rather than directly for a new approximate vector u, and therefore does not share the above
problem and may as a result be more attractive. We note that this situation is somewhat
similar to issues one faces when using preconditioning for RQI in the standard eigenvalue
problem, see [15].

4. Extensions and special cases. In this section, we will extend the multihomogeneous
Newton approach, or homogenous Jacobi—Davidson technique, to general polynomial eigen-
value problems. Then we will briefly study the special important case of the generalized
eigenproblem and summarize some results concerning homogeneous subspace extraction
from [7].

4.1. The polynomial eigenproblem. The Jacobi—Davidson method has also been ex-
ploited for polynomial eigenproblems of which the polynomial is of degree > 2, for instance
cubic [10, 11], quartic, or quintic [12]; see also [22] and the references therein. The multi-
homogeneous Newton, or homogeneous JD expansion, technique can be generalized to the
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general polynomial eigenvalue problem as follows. Consider the homogeneous version of the
polynomial eigenproblem (1.1):

Pax, B3)x = (@ A + aF 7 BaAm 1 + -+ a1 AL + B 4p) x = 0.
Let (a/B,u) an approximate eigenpair with P(a, §) u L u. With the ansarz
P((a+ Aa), (8 + AB))(u+s) =0,
where s | u and @Aa + BAB = 0, we have the first order approximation
P(a,B)s = —P(a,f)u— AaDyP(a, f)u — A DgP(a, f) u.

Using (2.2), and projecting out the resulting vector, the correction equation becomes

1-22) P(a, (I - uu’)s = —P(a, f) u,
(- %)

u*z
where
4.1) z = (8D, —aDg)P(a, ) u.

Note that earlier work on JD for the polynomial eigenproblem [16, 18, 21, 1, 9] suggested the
projection vector

7z =P @)u=md" A, +(m—-1)0""24,, 1 +---+ A))u

As for the quadratic eigenproblem, the projection vector z is a linear combination of the
vector z; in homogeneous coordinates

7z = (ma™ A, +(m—1)a™ 2BA,_1+---+ ™ tA))u=D,P(a,f)u
and the vector
7o = (@™ 1A, 1+ (m—1)af™2A; + mB™ 1 Ag)u = DgP(a, B) u.
This z is the homogeneous version of
(A1 + 201+ -+ (m = 1) A™ 24, + mA™ 1 4p) u,
which can be derived from the reverse polynomial eigenproblem
AP YD = (Am + M1+ -+ A™ 1A £ XA x = 0.

As for the QEP, we have the relation z = 3z; — @z, for the general polynomial eigenprob-
lem.

4.2. The generalized eigenproblem. Let us briefly study the homogeneous Jacobi—
Davidson method for the generalized eigenvalue problem

Ax = A\Bx, (BaA—axB)x=0

since this is an important problem in many applications. Let (a/f3,u) be an approximate
eigenpair. The homogeneous form of the correction equation is

(1 - z“*) (BA—aB)(I —uu*)s = —(BA—aB)u, slu,

u*z
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where the projection vector is
z = aAu + 3Bu.

In [16, Thm. 3.2] it was proved that with a choice for the projection vector of any linear
combination of Au and Bu we get asymptotically quadratic convergence if the correction
equations are solved exactly. Remarkably, to optimally expand the test space, with only the
target as a priori information, the combination @, Au + 3, Bu was suggested for the JDQZ
type method in [5].

4.3. Two-sided variant. We remark that a homogeneous approach is also possible in
combination with a two-sided method. Let us again consider the QEP. In a two-sided JD vari-
ant we have two search spaces, U for the (right) eigenvector x, and V for the left eigenvector
y (satisfying y*Q (o, Bx) = 07).

If we have an approximation (a/8,u,v) & (ax/Bx,X,y), where v*Q(a,f)u = 0,
then the correction equation for u takes the form

(I - 33;) Qe f)s = —Q(a, f) u.

Here z is as in (4.1); one option is to look for a bi-orthogonal update, s L v for u. Similarly,
the equation for a correction t for v is of the form

u*w

(I - Wu*) Qe 8)"t = —(Q(, B))" v.

where w = ((BDQ - aDﬁ)Q(QWB))* V.

4.4. Homogeneous subspace extraction methods. In [7] it is shown that the homoge-
neous form for the polynomial eigenvalue problem can also be used in the subspace extraction
phase. We now summarize a few results.

Let U = Uy, be a (low) k-dimensional search space. We are looking for an approximate
eigenpair (6, u) =~ (A, x) where u € U, so we can write u = Ujc, where the columns of
Uy, form an orthonormal basis for I, and ¢ € C* has unit norm. The standard extraction
to determine approximate pairs from the Galerkin condition Q(#) u L U straightforwardly
translates to its homogeneous form

UpQ(a, B)Ugc = 0.

For eigenpairs close to a target (a., 8;), the standard extraction is often not optimal and a
harmonic or refined approach is recommended [9]. The counterpart of the harmonic extrac-
tion Q(A) u L Q(7)U (see [9]) is to determine candidate approximate eigenpairs (a/S,u)
from

Q(aaﬂ)Uk cl Q(a‘raﬂ‘r)u'

Finally, the refined extraction determines an approximate eigenvector as a minimizing argu-
ment of the expression

min [|Q(ar, B;) ull = Uy -

min
uel, ||lul=1 ceCt, |c|l=1

1Q(ar, B)Uy |-

For more details we refer to [7].
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Algorithm 1 Homogeneous Jacobi—Davidson for the polynomial eigenvalue problem
Input: A device to compute A;x for arbitrary x, a starting vector uy, a target 7,
a tolerance €, and a parameter threshold

Output: An approximate eigenpair (a/f,u) witha/f ~ 7

1. s=u;

2: fork=1,2,...do

33 rgs(Ug_1,s) = Uy

4:  Perform a homogenous extraction process (see Section 4.4)

to get (a/B,c), where a/f = T

5. u=Ugc

6 r=Pla,f)u

7. Stopif||r|| <e

8:  Solve (approximately) an s L u from one of the following equations:

o (I-2L)P(a,f)s=-r,  2=(BDa—aDs)P(a.f)u,
(if ||r|] < threshold)

10: (I - %) P(a;,B;)s = -1, z= (BTDa - a'rl)ﬂ)lj(oﬁ'aﬂT) u
(if ||r|]] > threshold)

11: end for

5. Numerical experiments. For completeness and convenience, we first give pseu-
docode for the homogeneous JD method; see [9] for its non-homogeneous counterpart.

The “rgs” in Line 3 stands for repeated Gram—Schmidt or any other numerical stable
way to form an orthonormal basis for the search space. For simplicity, we have omitted a
restart procedure.

EXPERIMENT 5.1. In our first example, A is a diagonal matrix with entries O, ..., 999,
B =4-I,and C = I. We run the homogeneous JD method to find the absolute largest
eigenvalue, with a set of 10 different random starting vectors. The method correctly finds
A = oo (or A = 1/ for a very small |3|) in all cases in an average 22 iterations. For
comparison: it finds the eigenvalue closest to target 7 = 0, A = 0.037 in 51 iterations on
average, although it must be noted that this eigenvalue is somewhat more “interior” than the
infinite eigenvalue.

Also from several other unreported experiments with quadratic eigenvalue problems with
singular A matrix having infinite eigenvalues, we conclude that the homogeneous JD indeed
finds infinite eigenvalues with no more effort than finite ones (cf. also similar similar remarks
in [4] about the homogeneous Newton method).

The standard JD variant is unsuited to compute both finite and infinite eigenvalues in one
consistent procedure. Therefore, we perform some experiments comparing the methods with
different projection vectors for finding finite eigenvalues.

We compare the homogeneous Jacobi—Davidson method described in Algorithm 1 with
the standard version in [9] (see also [16, 18, 21]) and some other alternative variants. The
choices for the methods are the following: we use the standard extraction process; the mini-
mum and maximum dimensions of the search space are 10 and 30, respectively; the tolerance
is 107¢ times the matrix one-norm; the correction equations are solved by 10 steps of the
GMRES method; and the maximum number of outer iterations is 200.
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EXPERIMENT 5.2. For the second example we take utrecht-1331, a 1331 x 1331
QEP, where A and C are symmetric positive definite, and B is complex, singular, and non-
Hermitian; see also [2, Ex. 4]. We try to compute the eigenpair closest to target 7 = —5.
The two closest eigenvalues are Ay & —0.0003 4 0.0026¢ and Ao ~ —5.2 — 49.54, which are
relatively clustered compared to the largest eigenvalue &~ —195 — 43144; see Figure 5.1 for
the spectrum.

Spectrum
5000 ‘
2 \«-.
g 0 L3
E
090 150 -100 -50 0

Real(A)

FI1G. 5.1. Spectrum of the ut recht—1331 problem.

For Table 5.1 we take 5 different projection vectors z in the left projection I — fl';‘;
in the correction equation (2.5): the standard choice z; = Q'(f)u = (204 + B)u (see
(3.1)); the two alternative presented in Section 3.1: Z = (#A — 0~1C)u (see (3.2)) and
7y = (0B + 2C) u (see (3.3)); the homogeneous vector z = (3D, — @Dp) Q(a, B) u (see

(2.4)) in standard coordinates:
z = 20Au + (1 — |0|*) Bu — 20Cu

and the vector u yielding an orthogonal projection. We would like to stress that the last
choice has no mathematical justification in the sense that with this projection one cannot

expect asymptotically quadratic convergence in general (if the correction equations would be
solved exactly).

TABLE 5.1

Average number of outer iterations (out of 10 cases) for the JD method for different projection vectors and the
utrecht-1331 test problem.

Projection vector Iterations
Standard z; = Q' (0) u=(20A+ B)u (see (3.1)) 18.4
Z=(0A—071C)u (see (3.2) 16.9
z3 = (6B + 2C) u (see (3.3)) 16.6
Homogeneous  z = (BDo — @Dg) Q(a, B) u 16.6
Orthogonal u 16.5

Again, we take a set of 10 random starting vectors and we average the necessary number
of outer iterations. From the results in Table 5.1 we see that although the iteration numbers
are relatively similar, the standard JD approach is the slowest. Surprisingly, the orthogonal
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projection vector u is the (slight) winner; this suggest that taking orthogonal updates through-
out the process (which can be thought of as an “optimal expansion”), makes up for the lack
of an asymptotically optimal convergence.

We would like to mention that we repeated Experiment 5.2 for many other test matri-
ces using the standard extraction and different projection vectors; the results were roughly
comparable in every case.

In the correction equation, we have to (approximately) solve linear systems with the
operator that ultimately (upon convergence to an eigenpair (A, X)) becomes

(I— zoox*) Q(a, B)(I —xx*) : xt — xt.

X*Z oo

For this reason, it is interesting to compare the asymptotic effective condition number of this
operator for the different options for zo,: (2AA4 + B)x, (A4 — A71C)x, (AB + 20) x,
(2AA + (1 — |A|2)B — 2)C) x, and x, respectively. (By the effective condition number we
mean the condition of the operator seen as a map from x* to x*.) However, a conclusion
from unreported experiments is that, apart from the orthogonal choice z = x, every other
choice for z gives rise to both the best condition number in some cases, but the worst in other
cases; no general pattern could be discovered.

6. Conclusions. We presented a homogeneous version of Jacobi—Davidson for the gen-
eralized, quadratic, and general polynomial eigenproblem. This approach is inspired by the
multihomogeneous Newton approach as described by Dedieu and Shub [3] and Dedieu and
Tisseur [4].

The main advantage of the homogeneous approach is that it allows us to treat finite and
infinite eigenvalues of a polynomial eigenvalue problem in a natural and equal way, without
having to switch from one representation of a polynomial eigenproblem to another. The
new variant can be easily implemented (existing non-homogeneous codes only require minor
changes) with exactly the same computational costs and storage requirements.

We compared the new method with “standard” JD as well as (homogeneous) RQI for the
polynomial problem. We have argued that, when for large problems the inner equations are
solved inexactly, one has good reasons to prefer JD over RQI. In several experiments for finite
eigenvalues, the homogeneous JD method performed equal or somewhat better than its non-
homogeneous counterpart. The main surprise here, however, is the surprisingly good results
obtained by the variant with the orthogonal projection, which, although without “asymptotic
justification”, seems to have enough practical advantages such as orthogonal updates and a
well-conditioned correction equation.
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