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FILTER FACTOR ANALYSIS OF AN ITERATIVE MULTILEVEL
REGULARIZING METHOD
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�
Abstract. Recent results have shown that iterative methods of multigrid type are very precise and efficient

for regularizing purposes: the reconstruction quality is of the same level or slightly better than that related to most
effective regularizing procedures such as Landweber or conjugate gradients for normal equations, but the associated
computational cost is highly reduced. Here we analyze the filter features of one of these multigrid techniques in
order to provide a theoretical motivation of the excellent regularizing characteristics experimentally observed in the
discussed methods.
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1. Introduction. We consider the classical de-blurring problem of noisy and blurred
signals or images. It is usually modeled as a first kind integral equation which, after dis-
cretization and with the imposition of proper boundary conditions (BCs), results in a linear
system of the form

(1.1)
�������
	���

The vector
�

represents the unknown true object,
�

the noise,
�

the observed object (the
blurred noisy version of

�
) and

�
is modelling the blurring phenomena that we assume to

be spatially invariant. Moreover, for the sake of notational simplicity, we assume that every
involved object has the same size in each direction, and hence

�����������������
, while

��������������
for a � -dimensional problem. The matrix

�
has a special � -level structure depending

on the imposed BCs (see [9, 12] and references therein), e.g., for zero Dirichlet BCs it is a� -level Toeplitz matrix, see [7].
Since it is not ensured that

�
is nonsingular, instead of solving (1.1), usually we look for

the minimal norm argument of the least square problem

(1.2)  "!$#%�&('*) � + ��,.-/� +10 �
where

+�23+ 0
is the vector 4 0 Euclidean norm (i.e.

+ � + 0 	65 7 �8:9<;>= ? 8 = 0
for any @ -sized

vector
�

). Since we assume the presence of noise and since equation (1.1) arises from the
approximation of an ill-posed problem, some regularization is needed also in the formulation
(1.2) (see [3, 6]) in order to avoid the magnification of noise-dependent high frequency errors.
In several applications the global size @BA is large, especially for �DCFE , and consequently the
use of direct methods is not recommended, unless the matrix

�
belongs to a matrix algebra

related to a fast transform (see e.g. [12]). On the other hand, the matrix-vector product can
be computed rapidly via the fast Fourier transform for each kind of BCs [8, 4]. Therefore it
is attractive to employ iterative methods, enforcing regularization by early termination of the
iterations.

In a recent paper [5], we have shown that iterative methods of multigrid type are very
effective for regularizing purposes; for a different multigrid regularization of cascadic typeG
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Dipartimento di Fisica e Matematica, Università dell’Insubria - Sede di Como, Via Valleggio 11, 22100 Como,
Italy (marco.donatelli@uninsubria.it, stefano.serrac@uninsubria.it).

163



ETNA
Kent State University 
etna@mcs.kent.edu

164 M. DONATELLI AND S. SERRA-CAPIZZANO

see [10]. In [5], under a significant quantity of noise, we observed that the reconstruction
quality is of the same level or slightly better than that related to the most established regular-
izing procedures such as Landweber or the conjugate gradient for normal equations (CGNR)
and we proved that the associated cost is highly reduced, when compared with these more
classical techniques.

In this paper, we analyze the filter features, in the spirit of [7], of the simplest of the
multigrid techniques proposed in [5] in order to provide a theoretical motivation for the ex-
cellent regularizing characteristics experimentally observed in that paper. For the sake of
notational simplicity, we consider in detail the 1D case (i.e., � 	IH ) with periodic BCs so that
the matrix

�
is circulant (see, e.g., [3, 7]). Furthermore, we do not assume symmetry in the

PSF (i.e., the generating function or symbol is complex valued).
The extension to the � -dimensional case is a simple application of the same tools. On the

other hand, the zero Dirichlet BCs case is a bit more involved since we cannot diagonalize the
related matrix in general: moreover, under the assumption of Dirichlet BCs, a pure Toeplitz
structure arises and indeed a similar analysis can be carried out by using the symbol (see [16]).
Furthermore, it should be observed that the simplified periodic assumption is classical when
analyzing multigrid methods [15], especially for partial differential equations, and leads to
the celebrated local Fourier analysis [17]. In order to maintain simple notation, we consider
in detail the Two-Level (TL) method (see Section 3 for the algorithm) which is the simplest
multigrid-type technique considered in [5]. This is equivalent to considering the two-grid case
in the usual multigrid approach. We recall that any of these multigrid-type methods can be
employed with any auxiliary iterative regularizing method, used as smoother. For the sake of
clarity and owing to our image restoration context, we restrict our attention to the Landweber
method.

The paper is organized as follows. In Section 2 we define the filter factor of the classical
Landweber method, while Section 3 contains a concise description of the TL method (a proto-
type of the multigrid-type regularizing methods in [5]) and the derivation of its filter factor. In
Section 4 we critically discuss the results and, by comparing the associated filter factors, we
demonstrate that the TL is a regularizing method under suitable choices of prolongation and
restriction operators. A further analysis about the regularization behavior of the TL method
is done in Section 5. Finally Section 6 is concerned with some numerical experiments and
Section 7 is devoted to a brief discussion on open problems, extensions (different boundary
conditions, multidimensional setting, spatially varying PSFs etc.), and conclusions.

2. The filter factor of the Landweber method. The Landweber method, with initial
guess

�KJL	NM
, can be applied to finding the solution of (1.2) and is defined by�PORQ ; 	F�PO���S<��TVUW�X-Y�Z�PO\[1� ]^	`_a�bH��bcb

with
_"deS�d E�f + � T � +g0 . Thanks to the PSF normalization condition

+ � T � +b0ih H
we can

choose
_jd`Sed E (for the method to be convergent) and, in order to keep simple notations,

we set
S/	IH

.
With the choice

�kJL	FM
, it is immediate to verify that

(2.1)
� O 	 Ogl ;m 8:9 J Uonp-q� T �L[ 8 � T �V

Let
�r	rsptvu T

be the singular value decomposition (SVD) of
�

with the singular valuesw ; 	 + � + 0 C w 0 C 2b2c2 C w �Dx _ ; see [7]. It follows that�PO�	 �m 8$9B; UyHz-eUyHz- w 08 [ O [|{ T8 �w 8Y} 8 �
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where { 8 and } 8 are the columns of
s

and
u

, respectively. For fixed
]
, and by varying~ 	�H��bcbg� @ , the factor

Hk-.U�Hk- w 08 [ O is called “the filter factor” (see e.g. [7]). By comparison
with the exact solution, it is clear that the filter factor defines the regularizing properties of
the method, i.e., the filtering of the noise. Indeed,� � 	F�L���q	 �m 8:9<; { T8 �w 8 }k�
is the minimal (Euclidean) norm solution of (1.2): nevertheless, the noise, which affects the
vector

�
in the high frequency subspace (in our case the vectors { 8 and } 8 related to the

small singular values), produces a great amplification of the noise itself thanks to the latter
formula for

� �
. The truncated SVD (TSVD, see [3, 7]) solves this problem by ignoring the

singular values below a certain threshold (related to the norm of the noise which generally
is an available information). However, this binary cut is too strong and some information
about the edges could be lost. The factor

HZ-eUyH�- w 08 [ O represents a smoother filtering since
it is close to zero if w 8 is close to zero (the related left and right singular vectors are of high
frequency type), while it is, as desired, close to one if w 8 is close to one (the related left and
right singular vectors are of low frequency type). Moreover, the number of the frequencies
used in the reconstruction grows as the iteration parameter

]
grows. This explains the classical

semi-convergence behavior and the role of the iteration count as regularizing parameter (see
Figure 4.2).

In the case of periodic BCs we have
��	�� � U��K[ , i.e.,

�
is a circulant matrix of size@ generated by the function

�
whose Fourier coefficients form the PSF. It is known that��	`� � U��K[�	�� ���"� U��K[��i�� , where

� � 	�� �b� OR���c� � l ;��� O 9 J f�� @ is the discrete Fourier transform
(DFT) matrix and �"� U��K[p	�� !��|� UR� ��U ? � [ � � l ;� 9 J [ with

? � 	 0R� �� . By repeating the previous
reasoning and taking into account the circulant structure, we deduce that (2.1) is equivalent
to

(2.2)
�*O�	`� � Ogl ;m 8:9 J Uonp- �"� U = � = 0 [R[ 8 ��� UP��K[y� �� ��	6  � U¢¡a[£��	6  � U�¤aO([R  l ;� U��K[y�V�

where
¡�	N¤aO f � and

¤aO�U ? [V	�H3-pUyH3- = ��U ? [ = 0 [ O
,
? �¥Uo_�� E|¦ � . In other words

¤�O3U ? [
compactly

defines the Landweber filter factor in functional terms. It should be acknowledged that the
invertibility of

�
is not necessary: in the case of a singular

�
, which implies a vanishing

symbol
�

, we have
¡*U ? [§	¨� Q UyH^-IUyH�- = � = 0 [ O [

where
� Q 	©H f � if

= � =pª	«_
and zero

otherwise. The latter represents a nice correspondence between the matrix pseudo-inverse
(see [3, 6]) operation

� �
and the functional pseudo-inverse operation

� Q
.

3. Filter factor estimation of the TL. The TL method [5] is based on the following
scheme:

1. Projection of the deblurring problem in a half-sized subspace mainly formed by
low and middle frequencies in order to filter the noise (and, by the way, in order
to achieve the (optimal) linear complexity in the arising V-cycle [15], when applied
to band-structures). The main tool for the projection is the use of a low-pass filter
obtained by a centered averaging.

2. Application of an iterative regularizing method (Landweber in our case) at the lower
level, i.e., to the problem of size @Bf|E .

3. Interpolation of the lower level solution in order to define a full size approximation
(i.e., of dimension @ ) and to apply an early stopping criterium such as the discrep-
ancy principle [3, 6].
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More specifically, starting from an initial approximation
� � �§�<� , one TL iteration provides

a new approximation
, � �§��� according to:

(3.1)

, �¬ 	 TL
Uo� � ��� � ��® � ��¯B[� ��° 0 ¬ 	`± � Uo� � -Y� � � � [� ��° 0 ¬ 	`² � � � ± �, ��° 0 ¬ 	 Smooth ³ M ��° 0 ��� ��° 0 ��® ��° 0 ��¯<´, � ¬ 	F� � �µ² � , ��° 0

where
® � defines the regularizing iterative procedure at the dimension ¶ , which is used as

smoother (Landweber in our setting). By Smooth ³ M ��° 0 ��� ��° 0 �·® ��° 0 �R¯B´ we denote the ap-
plication of

¯
steps of the smoother

® ��° 0 with initial guess
M ��° 0 and right-hand side

� ��° 0 .
Finally, the matrices

² � �I���¸� ) ¹ and
± � �º� ) ¹ ��� represent the operators (see [15]) of

prolongation and restriction, respectively.
In [5] we proved that applying

]
TL iterations with

¯»	�H
is equivalent to applying a

single TL iteration with
¯/	µ]

. By setting
� J 	NM

, we have

(3.2)
�POL	�² �a¼ ) ¹ ± � �V�

with ¼ ) ¹ being the smoother iteration matrix (Landweber iteration matrix in our specific case)
at the lower level. More precisely ¼ ) ¹ 	N7 Ogl ;8$9 J U�n½-Y� T ) ¹ � ) ¹ [ 8 � T ) ¹  For the definition and the
associated computational issues of the different matrix structures involved in the algebraic
multigrid with circulant pattern; see [14, 1, 2]. In the following, we will recall explicitly only
the properties that are necessary for handling our problem. We define the “cutting matrix”¾ � 	�n ��° 0Z¿ �:H��z_ � �q� ) ¹ ��� , where

¿
is the tensor product, i.e., for À �Y� ) ¹ and Á �Y��� ,À 	 ¾ � Á implies that À 8 	 Á 0 8 , ~ 	ÂH��cbbb� @Bf|E . The matrices

² � and
± � are defined as² � 	º� � UÄÃ*[ ¾ T� and

± � 	 ¾ � � � UWÅ|[ , where
Ã

and
Å

are trigonometric polynomials. Since² � and
± � are chosen to be the operators of linear interpolation and weighted averaging,

respectively, the functions
Ã

and
Å

are

(3.3)
Å�U ? [V	ÆUyHV��ÇgÈ�ÉcU ? [�[ f�E � ÃBU ? [�	 E Å�U ? [1

REMARK 3.1. It should be acknowledged that the functional interpretation is more gen-
eral than the classical interpretation provided by geometric multigrid; see also Remark 3.2.
Indeed, all convergence and filter properties of these multigrid-type methods are related to
the analytical behavior of the functions

Ã
and

Å
: in this specific setting it is important thatÃ

and
Å

are decreasing in
U�_a� ¦ � and have a unique zero at ¦ . In the case of the choices in

(3.3), we have also an interpretation in terms of interpolation and averaging, but this is no
longer true when considering more general (and often more effective) choices such as, e.g.,Å�U ? [L	IÊ ; U ? [gU�HZ��ÇgÈ�ÉcU ? [�[ÌË�Í

,
ÃBU ? [Î	IÊ 0 U ? [gU�HZ��ÇgÈ�ÉcU ? [�[ÌË ¹

,
¯ ; �R¯ 0

positive integers,
Ê ;

,
Ê 0

strictly positive trigonometric polynomials.
Now we show that ¼ ) ¹ 	»� ) ¹ UgÏ¡Ð[ for some explicitly computable trigonometric polyno-

mial
Ï¡
. We notice that

� ) ¹ 	e� ) ¹ U Ï�K[ (see [11, 14]), whereÏ�<U ? [�	 HE Ñ UÒÃ�Å|�K[�Ó ? E<Ô �`UÄÃ¸Å\�K[VÓ ¦ � ? EBÔPÕ � ? �YU�_a� E\¦ � 
Hence, from (2.2), we infer

Ï¡*U ? ["	ÂUyHi-�UyHi- = Ï��U ? [ = 0 [ O [ f Ï�<U ? [ , ? �ºUo_a� E\¦ � . Taking into
account (3.2), we finally have

�*OÎ	e� � UÄÃ*[ ¾ T� � ) ¹ UgÏ¡a[ ¾ � � � UoÅ\[y�Y	`Ö � � with

(3.4)
Ö � 	e� � UÒÃP[ ¾ T� � ) ¹ UgÏ¡Ð[ ¾ � � � UWÅ|[1
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The purpose now is to analyze how the TL iteration filters every single frequency and, there-
fore, we have to study the spectral behavior of

Ö � with regard to the basic frequencies��× �1Ø� 	¨� �b� OR�(��� � l ;O 9 J f � @ , for ¶ 	Ù_a�bcbc� @ -»H (which are just the columns of
� � ). Since¾ � � � 	Æ�ÒH��vH � ¿ � ) ¹ f � E (see [14]), from (3.4) we findÖ � 	 HE � � � � UÒÃP[LÚ � ) ¹ UgÏ¡�[ � ) ¹ UgÏ¡�[� ) ¹ UgÏ¡�[ � ) ¹ UgÏ¡�[DÛ � � UoÅ\[�� ��	 HE � �qÜ � ×

; Ø� UÒÃP[ � ) ¹ UgÏ¡�[ � × ; Ø� UWÅ|[ � × ; Ø� UÒÃP[ � ) ¹ UgÏ¡a[ � × 0 Ø� UWÅ|[� × 0 Ø� UÒÃP[ � ) ¹ UgÏ¡�[ � × ; Ø� UWÅ|[ � × 0 Ø� UÒÃP[ � ) ¹ UgÏ¡a[ � × 0 Ø� UWÅ|[DÝ � �� �(3.5)

where � � U�ÞP[q	©� !$��� UR� � × ; Ø� U�Þ¸[g� � × 0 Ø� U�Þ¸[ � [
, with � × O Ø� U�ÞP[��r� ) ¹ � ) ¹

and
]�	ßH�� E . By

defining the permutation matrix à � 	I� ¾ T� ��á T� � with
á � 	`n ��° 0>¿ � _a�zH � �.� ) ¹ �a� , relation

(3.5) transforms into
Ö � 	I� � à T�Bâ � à � � �� . Here â � is the diagonal block matrix of sizeU @Bf�E [zãµU @Bf|E [ with blocks of dimension E ã E . For ¶ 	I_��bcbg� @Bf|E -�H , the ¶ -th diagonal

block is given byâ × �1Ø� 	 HE Ï¡*U ? 0 � [ Ú Ã<U ? � [Ã<U ? × � Q ��° 0 Ø [ Ûjä Å�U ? � [åÅÐU ? × � Q ��° 0 Ø [Dæ 
The block â × �1Ø� has structurally at most rank 1 and therefore we find the trivial null eigenvalue
and the nontrivial one ç � , which coincides with the trace:ç � 	 HE Ï¡*U ? 0 � [ ³ UÄÃ¸Å|[gU ? � [è�`UÄÃ¸Å|[gU ? × � Q ��° 0 Ø [ ´ 
We now determine the corresponding eigenvectors. By definition of

Ã
and

Å
in (3.3), â × �1Ø� is

real symmetric and consequently the corresponding two eigenvectors are orthogonal. The
two frequencies associated with â × �1Ø� are the E�¶ -th and

U E�¶ �éH�[ -th columns of
� � à T ,¶ 	©_a�cbcg� @Bf�E -ºH , i.e.,

��× �1Ø� and
�"× � Q ��° 0 Ø� . We first derive the eigenvector of â × �1Ø� ,

which corresponds to the zero eigenvalue. From trivial algebraic manipulations, we deduceê × �1ØJ 	ë�:-iH��§Å�U ? � [ f Å�U ? × � Q ��° 0 Ø [ � T . Such an eigenvector is determined by the following
linear combination of frequencies:

(3.6)
Å�U ? � [Å�U ? × � Q ��° 0 Ø [ � × � Q ��° 0 Ø� -q� × �1Ø� 

Therefore, for a choice of small ¶ ( ¶ 	I_a�cbbb� @Bf|E -�H , ¶ is small if and only if ¶¸f(@Yì H
),

the dominating frequency is
� × � Q ��° 0 Ø� (high frequency component), while when ¶ grows and

is comparable with @Bf|E , the component
�
× �1Ø� becomes dominating (again high frequency

component). The latter discussion shows that the null eigenvalue is always connected to
high frequencies (middle frequencies when ¶ is in a neighborhood of @Bf(í ) and therefore it
is a first theoretical evidence of the filtering features of the TL iteration. To complete the
analysis, the eigenvector associated to the nontrivial eigenvalue ç � has to be studied. Its
precise expression is given by ê × �1Øî � 	��ÒH��zÃBU ? × � Q ��° 0 Ø [ f Ã<U ? � [ � T and it can be expressed in
terms of the subsequent linear combination of basic frequencies:

(3.7)
� × �1Ø� ��� × � Q ��° 0 Ø� ÃBU ? × � Q ��° 0 Ø [ÃBU ? � [ 

By varying ¶ in the range ï _��bcb1� @Bf�E -jH�ð , we observe a complementary behavior. For small
values of ¶ is

�"× �1Ø� , while for large values of ¶ the dominating frequency is
��× � Q ��° 0 Ø� . This
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shows that the nontrivial eigenvalue is always associated to low and middle frequencies and,
again, this is no surprise given the orthogonality of the two eigenvectors.

REMARK 3.2. Equations (3.6) and (3.7) implicitly define a condition for the choice ofÅ
and

Ã
, independently (and more generally) of geometric considerations. In fact, in order to

force the null eigenvalue to be associated to high and middle frequencies, the functions
Ã

andÅ
should have maximal value at the origin (or close to it) and should decrease to zero at ¦ (this

implies the classical shape of a function with Fourier coefficients defining a low-pass filter).
In addition, their shape (see also Remark 3.1) allows to reinforce or to diminish the filtering
characteristics of the TL iteration. Finally, the fact that the functions

Ã
and

Å
are chosen as

polynomials has nothing to do with the filtering design, but it is only due to computational
requirements in order to obtain the optimal cost that characterizes multigrid-type procedures.

Now we come back to a precise analysis of the iterate
� O

and in fact, by exploiting the
previous factorization, we obtain�POL	 ��° 0 l ;m� 9 J Ñ � × �1Ø� �>� × � Q ) ¹ Ø� Õ>ñ Ú _ ç � Û ñ � Ü Uo��× �gØ� [y�Uo� × � Q ) ¹ Ø� [y� Ý ���
where ñ 	 ÚFò�ó ��ôõö ò ó ��ôõ ö ¹ � ò ó �Rô÷ �ö ò ó �Rô÷ � ö ¹ Û is the E ã E matrix containing the eigenvectors of â × �1Ø� .

Therefore, we deduce�PO�	 ��° 0 l ;m� 9 J ç � Ó ñ ; � 0 � × �1Ø� � ñ 0 � 0 � × � Q ) ¹ Ø� Ô � � Ó ñ ; � 0 � × �1Ø� � ñ 0 � 0 � × � Q ) ¹ Ø� Ô	 ��° 0 l ;m� 9 J ç � ñ 0 ; � 0 ��U ? � [ Uo��× �1Ø� [ � ���U ? � [ � × �1Ø� � � l ;m� 9 ��° 0 ç � l ) ¹ ñ 00 � 0 ��U ? � [ U���× �1Ø� [ � ���U ? � [ � × �1Ø�
� ��° 0 l ;m� 9 J ç � ñ ; � 0 ñ 0 � 0 U�U�� × �1Ø� [ � �<� × � Q ��° 0 Ø� �`Uo� × � Q ��° 0 Ø� [ � �<� × �gØ� [

ø � l ;m� 9 JKù O U ? � [ Uo��× �1Ø� [������U ? � [ � × �1Ø� �
where ù O U ? � [�	ûú ç � ñ 0 ; � 0 ��U ? � [g� ¶ 	�_��bcbb� � 0�-�H��ç � l ) ¹ ñ 00 � 0 ��U ? � [1� ¶ 	 � 0 �bbcb� @ -üH�
The remainder of the approximation contained in the last step is

(3.8)

� l ;m� 9 J ç � ñ ; � 0 ñ 0 � 0 URUo� × �1Ø� [ � �<� × � Q ��° 0 Ø� [1�
where we have formally set ç � l ��° 0 ¬ 	 ç � for ¶ 	 @Bf�E �bcbg�cH . Since the latter expres-
sion is the combination of the ¶ -th and

U ¶ � @Bf�E [ -th frequencies, the quantity in (3.8) can
be neglected, because all the functions in the filter have a complementary behavior at

? �
and

? � � ¦ : when one of these functions is large, the other almost vanishes and vice-
versa. More specifically, the filter factor associated with (3.8) shows a behavior analogous toç � ñ ; � 0 ñ 0 � 0 5 ��U ? � [���U ¦ � ? � [ which is negligible for every instance of ¶ . Finally, in Fig-
ure 3.1 we report the graph of the approximated remainder ç � ñ ; � 0 ñ 0 � 0 5 ��U ? � [���U ¦ � ? � [
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FIG. 3.1. Graph of the remainder 	�
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FIG. 4.1. Gaussian PSF with 51 nodes and related generating function ������� for �$#%� ��&(' ��) .

that we decided to neglect (the function
�

is associated to a prototypal Gaussian PSF; see the
next section). It is clear that Figure 3.1 represents numerical evidence of the goodness of the
approximation previously proposed, because not only it has small magnitude but also small
support, i.e., it is obtained in correspondence of a small number of frequencies.

4. Comparison of the filter factors. We report the graphs of the filter factors for both
Landweber and TL methods. In such a way, it is immediate to compare the filtering properties
of the two procedures. As an example, let us consider the PSF reported in Figure 4.1 together
with its generating function

�
. In Figure 4.2, for certain values of

]
, we display the value

of
¤ O U ? [

, i.e., the filter factor of Landweber, and the value of ù O U ? [ , i.e., the approximation
(according to the previous section) of the filter factor of the TL method, for

? �YUo_a� E\¦ � . When
varying the index

]
, we observe that the behavior of the TL filter factor follows the same trend

of the method used as smoother: in our case the Landweber method is considered, but the
same observation can be repeated verbatim for other regularizing smoothers. Furthermore,
as it is evident from Figure 4.3, for increasing values of

]
and with regard to the TL method,

the high frequencies contribution is lower than the analogous contribution for Landweber.
Such observations perfectly agree with the numerical tests in Section 6. Indeed, for the initial
iterations, the reconstruction error decreases in the same manner for both methods. After this
phase, the error with Landweber starts to increase while, for the TL method, it keeps going
down for some more iterations: this better behavior is essentially due to the higher filtering
properties of the TL method when

]
is large.
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FIG. 4.2. Filter factor for the Landweber ( *�+,����� ) and TL ( -.+,����� ) methods for �/#0� ��&.' ��) and several

instances of
ý

(the two graph are near to be superposed).

5. A note when the noise level goes to zero. The filter factor analysis in Section 3
shows that in presence of noise, the TL is able to reconstruct the signal filtering the noise, i.e.,
the TL is a regularizing method. In the literature a regularizing procedure can also studied
using the discrepancy principle when the noise level goes to zero [6]. More specifically, let 1
be a constant greater than zero such that

+ � +b0�h 1 and let us assume that the level 1 is known.
The discrepancy principle is used to stop an iterative method when the current approximation�PO

satisfies the discrepancy principle + � -Y�Z� O + 0 h S 1
for a fixed

S x H
independent of 1 . Let

� O ×�2 Ø be the first approximation that satisfies this
criterium. An iterative method equipped with this stopping rule is said to be a regularization
method if the computed approximation

� O ×�2 Ø satisfies

(5.1) 3$!: 2�4 J65 É�7�89;: 2
+ �-/� O ×�2 Ø + 0 	�_a

This means that in the limit, when there is no noise and under the assumption that the matrix�
is invertible, the regularization method reconstructs exactly the true object

�
; we notice

that this more classical approach [6] is the one followed by Reichel and Shyshkov [10] for
analyzing a basic multilevel method of multigrid type.

Unfortunately, according to this formal definition, our TL is not a regularization method.
Indeed in the noise free case it is not able to reconstruct the true object

�
. This follows from
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FIG. 4.3. Filter factor for Landweber ( *�+;����� ) and TL ( -(+;����� ) method, �%#<� ��&.' ��) and
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(note that
scale on the y axis equal to
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Section 3, where we show that also if
�

is nonsingular, then the TL operator
Ö � has a (large)

null space of dimension @Bf�E . The latter fact means that if the solution
�

intersects such a
subspace, which is related to high frequencies, then the vector

�
cannot be reconstructed

exactly. However this limit case ( 1A@ _ Q
) has mainly a purely theoretical impact and it is not

usually of interest in the real applications, where we generally encounter nontrivial examples
with non-negligible noise levels. We recall that in such case our method is a regularizing
method thanks to the analysis in Section 3. Not only this, but the quoted method in (3.1)
can be easily modified for low levels of noise in such a way that the resulting algorithm is of
regularizing type, according to the framework in [6] as well. For instance, a possibility is to
apply the smoother also at the finer level, but with a damping factor depending on the level
of noise: in this way we do not lose the good filtering features obtained performing at first a
projection in the signal subspace (low frequencies).

In more detail, given an initial approximation
� � , our modified regularizing TL iteration

provides a new approximation
, � according to the following scheme:

(5.2)

, �¬ 	 TL
Uo� � ��� � ��® � �R¯B[� ��° 0 ¬ 	F± � UW� � -q� � � � [� ��° 0 ¬ 	F² � � � ± �, ��° 0 ¬ 	 Smooth ³ M ��° 0 �R� ��° 0 ��® ��° 0 ��¯ ´B � ¬ 	�� � ��² � , ��° 0

if 1 x0CED 4 23+ � � +g0 then, � ¬ 	 B �
else F � ¬ 	 Smooth ³ � � ��� � ��® � �cH�´G ¬ 	 1�f + � � +10, � ¬ 	 F � � G U B � - F � [
end if

Here the notation is the same as in Algorithm (3.1), CED 4 is a tolerance on the noise level (e.g.,CED 4 	éH�_ lIH ) and 1�f + � � +10 �e� _��bH � is the percentage of noise. We notice that the smoothing
step at the higher dimension @ is applied only when the level of the noise is low. In that case,
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the whole method behaves as a standard iterative solver used as smoother and this is true
especially when 1J@ _ Q

. The interest of the method relies on the case where the condition1 xKCED 4 2*+ � � +10 is satisfied with CED 4 	ÂH�_ lIH
: in that case, the method filters the noise as

we have previously seen since, under this assumption, Algorithm (5.2) reduces to Algorithm
(3.1). We notice that the latter case is the only one of interest in real applications. On the
other side, the algorithm (5.2) satisfies the condition (5.1) since, when 1L@ _ Q

, the computed
solution tends to the vector computed by the smoother, i.e., to the exact noise-free solution.
We recall that, by our assumptions, the smoother is in fact a regularizing method.

Finally, a more precise study, for combining our multigrid technique with methods able
to recover the true solution (when the noise goes to zero), will be subject of future researches.

6. Numerical experiments. We present a numerical comparison between the Landwe-
ber and the TL methods, where Landweber is used as a smoother. Since we consider real
problems with a non-negligible level of noise, we use the TL algorithm (3.1) or, equivalently,
algorithm (5.2), where CED 4 21+ � � +10 is lower than the noise percentage used in the experiments.
We give two tests, the first one with high noise level and the second with moderate noise, for
emphasizing the good regularizing properties of the TL method, independently of the level of
the noise corruption.

For the sake of completeness, we report the results also for the multilevel method in the
case of one recursive call (

u
-cycle) or two recursive calls ( â -cycle) at every level. For a

more complete description of these multilevel methods we refer to [5]. However, it should be
stressed that these more sophisticate multilevel procedures derive in a natural way from the
TL, by applying recursively the same procedure. In terms of regularization, the above idea
means that at the coarser level we apply a smoothing iteration and then we project again into
the low frequencies subspace. This can be repeated until we reach a small grid (e.g., M ã M ),
where the associated linear system can be solved directly, since the problem is computation-
ally negligible and the noise explosion is easily controllable and avoidable.

In order to compare the computational time of the several methods, in [5] we computed
the following asymptotic ratios in the 2D case (image deblurring), i.e. for large @ , between
the cost of one iteration of a multigrid procedure and that of one Landweber iteration: aboutH f\í for the TL iteration, about

H f,N for the
u

-cycle, and about
H

for the â -cycle. These
ratios can be easily understood by combining the usual computational estimates for multigrid
methods and the following remark: at the finest level, the multilevel algorithms perform only
a projection (the Landweber method is applied only at the coarser levels) and the problem
size after the first projection is

H f|E3A of the size of the original � -dimensional problem.
In the following experimentation we consider 1D problems (signal deblurring). For a

wide experimentation in the 2D case, see [5]. The numerical results are obtained using Mat-
lab 7.0.

6.1. Example 1. We consider the signal test in Fig. 6.1. The observed signal, solid line
in Fig. 6.1 (a), is the blurred version of the true signal, dotted line in Fig. 6.1 (a), obtained
adding Gaussian blur and

H�_�O
of white noise. Since we know the true solution, the methods

are stopped at the minimum of the relative restoration errors (RREs) defined as the 4 0 norm
of the error over the 4 0 norm of the true solution. In real applications any classical stopping
criterium, like e.g. the discrepancy principle, can be applied both to Landweber and multilevel
strategies.

The quality of the restored signals in Fig. 6.1 (b-d) is comparable. In this example the
gain in the use of the multilevel methods is mainly in the reduction of the computational
cost. Indeed the TL method requires about the same number of iterations of Landweber, but
each iteration requires half time. Concerning the

u
-cycle each iteration costs E�f;N of one

Landweber iteration and moreover it converges faster (within about half iterations).
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FIG. 6.1. Test problem: (a) PQPQP true signal — observed signal with
ÿ��SR

of noise, (b) restored signal with
Landweber in 39 iterations (RRE = 0.077), (c) restored signal with TL in 42 iterations (RRE = 0.076), (d) restored
signal with T -cycle in 20 iterations (RRE = 0.078).
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FIG. 6.2. Relative restorations errors for each iteration (logarithmic scale) for test in Fig. 6.1: — Landweber,P�PVP TL, W�WSWXT -cycle.

In Fig. 6.2 the graphs of the RREs are displayed for each iteration of the considered
methods. We test also the same signal with a E _�O of noise. Similarly to the previous case, we
have a considerable gain in time for every multilevel strategy with respect to the Landweber
method alone (about half time). Moreover, the graphs in Fig. 6.2 confirm the analysis in
Section 4. It is shown that the filter factors of the TL method and the iterative regularizing
method used as smoother (Landweber in our case) are essentially the same, even if the TL
iteration filters slightly more the high frequencies and indeed it keeps in reducing the noise
for more iterations with respect to the smoother. This behavior is evident in the two graphs
of Fig. 6.2.
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FIG. 6.3. Test problem: (a) PYPYP true signal — observed signal with Z R of noise, (b) restored signal with
Landweber in 4090 iterations (RRE = 0.113), (c) restored signal with TL in 4587 iterations (RRE = 0.110), (d)
restored signal with T -cycle in 1481 iterations (RRE = 0.115).
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FIG. 6.4. Relative restorations errors for each iteration (logarithmic scale) for test in Fig.6.3: (a) — Landwe-
ber, PVP�P TL, W�W�WXT -cycle. (b) — Van Cittert, P�P�P TL, W�W�W6T -cycle, P�W�P\[ -cycle.

6.2. Example 2. The last test problem has a larger PSF and a low level of noise, onlyN O . This choice is taken into account in order to show the robustness and the good regular-
ization properties of the multilevel strategies, also for problems with moderate noise level.
The true and the observed signals are shown in Fig. 6.3 (a). The numerical results, restored
signals in Fig. 6.3 (b-d) and RREs in Fig. 6.4 (a), confirm the previous analysis: the qual-
ity of the restored signals are comparable and the TL method improves the regularization of
Landweber, while the

u
-cycle has a faster convergence.

In Fig. 6.3 we can see that Landweber is slowly convergent. Moreover, since the PSF



ETNA
Kent State University 
etna@mcs.kent.edu

FILTER FACTOR ANALYSIS OF AN ITERATIVE MULTILEVEL REGULARIZING METHOD 175

0 100 200 300 400 500 600
−8

−6

−4

−2

0

2

4

6

8

10

12
x 104

(a)

0 100 200 300 400 500 600
−8

−6

−4

−2

0

2

4

6

8

10

12
x 104

(b)

0 100 200 300 400 500 600
−1

−0.5

0

0.5

1

1.5
x 105

(c)

0 100 200 300 400 500 600
−1

−0.5

0

0.5

1

1.5
x 105

(d)

FIG. 6.5. Restored signals for test in Fig. 6.3: (a) Van Cittert in 17 iterations (RRE = 0.321), (b) TL in 26
iterations (RRE = 0.235), (c) T -cycle in 14 iterations (RRE = 0.182), (d) [ -cycle in 4 iterations (RRE = 0.157).

is a Gaussian blur, the matrix
�

is positive definite. In such case, instead of Landweber the
Van Cittert method [3] can be used. The Van Cittert iteration is defined at the

]
th step as�PORQ ; 	��PO��^]kUW��-ü���PO([

, with
_¥dK]Fd E�f + � +·0 . Notice that no matrix-vector product

with
� T

is required and, moreover, the convergence is faster than Landweber, but usually the
restored quality is lower. In this case, using Van Cittert as smoother, the multilevel strategies
can be mainly used for improving the quality of the restoration, as well as the convergence
speed. In other words we improve the computational cost of the Van Cittert method and, at
the same time, we obtain a substantially more precise reconstruction, comparable with that of
the Landweber method.

In Fig. 6.4 (b) and Fig. 6.5 we note the high improvement in the restoration using mul-
tilevel strategies. Indeed, the

u
-cycle in Fig. 6.5 (c) and the â -cycle in Fig. 6.5 (d) are able

to recover the rightmost up-peak (around 300) that is not visible in the Van Cittert restoration
in Fig. 6.5 (a). Moreover, â -cycle requires only 4 iteration for computing a good enough
restoration. This means that the â -cycle with Van Cittert as smoother could be a good
method for systems requiring a real-time preview.

Concluding, the proposed tests show that if the smoother is a slowly convergent regu-
larizing method that computes a high quality approximation, then multilevel strategies can
be useful for accelerating the convergence, and preserving the quality of the restoration (see
Fig. 6.1 and Fig. 6.3). On the other hand, if the smoother is a fast regularizing method that
computes a solution of low quality, then the multilevel strategies are able to improve the
quality of the restoration, as well as to speed up the convergence (see Fig. 6.5).

7. Discussion, extensions, and conclusions. In this section we briefly discuss the po-
tential of the approach presented so far. In particular we would like to emphasize possible
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generalizations of the theoretical analysis._ The extension to the � -dimensional setting with � x H does not pose any problem,
because of the known block diagonalization of the TL iteration (see e.g. [11, 14, 1, 2]
and references there reported): instead of having E ã E blocks, we obtain blocks of
size E�A ã E�A ._ The extension to other BCs is more critical, because we lose the structure of alge-
bra. In other words, the transform that diagonalizes the matrix

�
is known only

in special cases, such as in the case of strongly symmetric PSFs and reflective and
anti-reflective BCs (see [9, 12] and references therein)._ The extension to the space varying case poses the same problem as the change of
BCs, since the diagonalization of

�
and therefore the block diagonalization of the

corresponding TL iteration cannot be performed in general.
However, recent results in asymptotic linear algebra show that there exists a wide class of
matrix sequences (Generalized Locally Toeplitz, [13]) for which the asymptotic spectral be-
havior can be identified explicitly in terms of generating functions in the sense of spectral
distributions (for the notion of spectral distribution see e.g. [16]). For multigrid methods,
the symbol is a E�A ã E�A matrix valued function as shown in Section 3.7 of [13]. Therefore,
we believe that the generalizations mentioned in the last two items can be studied properly
through these tools, which, as stressed in [13], can be viewed as a generalization of the clas-
sical Fourier Analysis to nonconstant coefficient operators.
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