
Electronic Transactions on Numerical Analysis.
Volume 28, pp. 174-189, 2008.
Copyright 2008, Kent State University.
ISSN 1068-9613.

ETNA
Kent State University
etna@mcs.kent.edu

IMPLEMENTING AN INTERIOR POINT METHOD FOR LINEAR PROGRAMS
ON A CPU-GPU SYSTEM∗

JIN HYUK JUNG† AND DIANNE P. O’LEARY‡

In memory of Gene Golub

Abstract. Graphics processing units (GPUs), present in every laptop and desktop computer, are potentially pow-
erful computational engines for solving numerical problems. We present a mixed precision CPU-GPU algorithm for
solving linear programming problems using interior point methods. This algorithm, based on the rectangular-packed
matrix storage scheme of Gunnels and Gustavson, uses the GPUfor computationally intensive tasks such as ma-
trix assembly, Cholesky factorization, and forward and back substitution. Comparisons with a CPU implementation
demonstrate that we can improve performance by using the GPUfor sufficiently large problems. Since GPU archi-
tectures and programming languages are rapidly evolving, we expect that GPUs will be an increasingly attractive
tool for matrix computation in the future.

Key words. GPGPU, Cholesky factorization, matrix decomposition, forward and back substitution, linear pro-
gramming, interior point method, rectangular packed format

AMS subject classifications.90C05, 90C51, 15A23, 68W10

1. Introduction. Hidden inside your desktop or laptop computer is a very powerful par-
allel processor, the graphics processing unit (GPU). This hardware is dedicated to rendering
images on your screen, and its design was driven by the demands of the gaming industry. This
single-instruction-multiple-data (SIMD) processor has its own memory, and the host CPU is-
sues instructions and data to it through a data bus such as PCIe (Peripheral Component Inter-
connect Express). A typical GPU is found in a graphics card ina peripheral expansion slot,
or perhaps integrated into the memory controller hub, also known as the north-bridge, which
controls high-speed devices; see [7] for more detail. ATI’s Radeon and NVIDIA’s GeForce
series, the dominant products in the market, offer inexpensive but very powerful GPUs.

Originally, GPUs were much slower than CPUs and had very limited programmability.
Now they show superior performance on some applications, and their speed is increasing at
a rate faster than Moore’s law predictions for CPUs [11]. For example, NVIDIA’s graphics
hardware GeForce 7800 GTX shows sustained performance of 165 GFLOPS (300 GFLOPS
at peak) compared to a 24.6 GFLOPS theoretical peak for a 3GHzIntel Pentium D (dual-core
processor) [10]. Originally, GPUs worked in half-precision or less, but recent support for
single precision floating point numbers and potentially double precision makes them much
more attractive for numerical computation. In addition, newer GPUs have the capacity to
store longer programs, making complicated algorithms possible. Researchers have applied
GPUs to general computations including evolutionary algorithms [27], fluid dynamics [3],
FFT [18], and others [22].

Recently GPUs have been used for linear algebra [9], including programs for matrix
multiplication [6], an iterative sparse system solver [1], a direct dense system solver [4], and
others [22]. Our work to implement a direct solver for normal equations[8] is an exten-
sion of those efforts. Parallel Cholesky factorization forsparse matrices on shared memory
multiprocessors was considered by Ng and Peyton [19]. Such methods requires full scatter

∗Received March 2, 2007. Accepted for publication January 10, 2008. Recommended by M. Overton. This work
was supported in part by the US Department of Energy under Grant DEFG0204ER25655.

†Department of Computer Science, University of Maryland, College Park, MD 20742, USA
(jjung@cs.umd.edu).

‡Department of Computer Science and Institute for Advanced Computer Studies, University of Maryland, Col-
lege Park, MD 20742, USA (oleary@cs.umd.edu).

174

ETNA
Kent State University
etna@mcs.kent.edu

IMPLEMENTING AN IPM ON A CPU-GPU SYSTEM 175

operation, saving a computational result to a desired location. In addition it requires support
for threads and synchronization among threads. These features had not been supported un-
til the GeForce 8 Series and CUDA (Compute Unified Device Architecture) were recently
released [21].

In this paper we consider how use of the GPU can improve the performance of interior
point methods (IPMs) for solving linear programming problems. We begin in section2 with
a brief overview of GPU architecture and programming. Section 3 presents the linear pro-
gramming problem and the IPM and discusses how the work can bepartitioned between the
CPU and the GPU. Timing results are presented in section4 and conclusions in section5.

2. GPU hardware and software. In this section we briefly describe the architecture and
programming of GPUs, concluding with an example of how two matrices might be added.

2.1. GPU architecture. A functional block diagram of a GPU (GeForce 6 and 7 Series)
is presented in Figure2.11. The purpose of the GPU is rendering realistic two- or three-
dimensional scenes on two-dimensional displays. A scene isassembled from streams of ver-
tices that specify polygons. Thevertex processorsmanipulate each vertex depending on its
attributes, which include positions, colors, and normal vectors. Polygons are then tessellated
into triangles. Since current displays are two-dimensional and cannot directly show vector
graphics, triangles are projected onto two-dimensional screen space and then transformed or
rasterized by therasterizerinto fragments. To make the scenes realistic,texture mappingis
performed byfragment processors, which color or shade the fragments usingtexturesspeci-
fied by a bitmap pattern. Each fundamental element of a texture is referred to as atexel.

A vertex in three-dimensions is represented as a four-dimensional vector(x, y, z, w) rep-
resenting homogeneous coordinates in a three-dimensionalprojective space. Using these
coordinates, a three-dimensional affine transformation can be represented by a linear trans-
formation. A pixel’s color is also represented as a four-dimensional vector(r, g, b, a) where
r, g, b, anda denote red, green, blue, and alpha (opacity), respectively. Both the vertex and
fragment processors are capable of processing four-dimensional vectors very efficiently.

A texture is the counterpart of an array on a CPU and can be usedto represent vectors
and matrices. The texture is frequently referred to as thestreamin the streaming model
perspective. For typical graphics applications, a bitmap is stored in a texture, but, for general
computation, numerical values are stored. The outputs or pixels generated by the fragment
processors are stored inframe-buffermemory which holds scenes to be displayed. Current
GPUs are also capable ofrender-to-texturefor rendering computational results directly to
textures, which, in turn, can be fed back into the GPUs as new input streams without being
copied back from the frame-buffer.

A computationalkernelor aGPU fragment programis a set of GPU instructions which
are initiated by a host CPU and applied to every element of a stream of fragments. Every frag-
ment processor runs the same instruction at each cycle, in parallel. In addition, instruction-
level parallelism allows up to 4 arithmetic operations to beperformed simultaneously in a
fragment processor.

Most computations involve a series of kernel calls. Asingle-passalgorithm uses a single
rasterization process, while amulti-passalgorithm is composed of multiple rasterization pro-
cesses. A kernel is initiated with a stream of vertices issued by the host CPU. Since the shape
of a matrix or a vector is rectangular, kernels for typical linear algebra operations are initiated
by drawing a rectangle with four vertices. A kernel processes the entire stream of fragments

1Beginning with the GeForce 8 Series, GPUs have unified processors and different stages of the rendering
pipeline. The new pipeline stage is very flexible and compatible with the previous version; see [21] for more details.

ETNA
Kent State University
etna@mcs.kent.edu

176 J. H. JUNG AND D. P. O’LEARY

Host CPU

Vertex Processor

Cull/Clip/Setup

Rasterizer

Fragment Processor

Z-Compare/Blend

Memory(Framebuffer/Texture)

Z-Cull

Issue Ôdraw a quadÕ command with texture
coordinates assigned to each vertex

Programmable: Manipulate
vertex properties such as
position, color and texture
coordinates

Tessellate shapes to generate
triangles. Filter invisible part.

Generates a stream of fragments
from the triangles. Interpolate
the vertex properties and pass
them to the fragment program

Programmable:Assign color
or numerical value to each
fragment.The program may fetch
input textures.

.
.
.

Results are saved to the
framebuffer or target textures.

Fig. 2.1: GPU pipeline for NVIDIA GeForce 6 and 7 Series. The vertex and fragment pro-
cessors are the highly parallel and programmable components in a GPU.

generated from the stream of vertices before a subsequent kernel is initiated. Kernel calls are
managed by the GPU driver, so the CPU can compute and issue kernel calls asynchronously.

The architecture of the GPU is not much different from that ofthe ILLIAC IV, a machine
from the mid-1970s. This machine had 4 control units (CUs) and 256 processing elements
(PEs) [13]. The PEs synchronously executed commands from the CUs. Unlike typical GPUs,
up to four PEs could communicate with each other.

A more recent GPU, the GeForce 8800 GTX, has a set of MPs (multiprocessors) each
of which has multiple SPs (single processors) [21]. Moreover, each MP supports threaded
computing. SPs in a single MP share memory and execute the same instruction at a particular
cycle. Different MPs can independently execute different instructions. GPUs are evolving to
look more and more like general-purpose parallel machines.

2.2. GPU programming. The core of GPU programming is the kernel. Kernels are
written in specialized shading languages such as C for graphics (Cg) [14], high level shader
language (HLSL) [16], and OpenGL shading language (GLSL) [24]. Shapes are drawn
through a graphics application programming interface (API). Open graphics library (OpenGL)
[28] is one of the most widely used APIs in various platforms including Windows and Linux.
DirectX [17] is widely used for developing applications for Windows. Inour work we use Cg
and OpenGL on a GeForce 7 Series GPU.

To make programming easier, Buck et al. introduced BrookGPU[2] which provides ab-
straction for kernels and simplifies implementation and invocation of kernels. With BrookGPU,
drawing a shape is replaced by invoking a kernel just as we would invoke a function written in
the C programming language [23]. In addition, BrookGPU offers a convenient invocation of
aparallel reductionoperation such as computing the minimum, maximum or arithmetic sum

ETNA
Kent State University
etna@mcs.kent.edu

IMPLEMENTING AN IPM ON A CPU-GPU SYSTEM 177

.5 2.51.5

l33

l44

l55

l43

l53 l54

l00

l22

l10

l20

l30

l40

l50

l32

l42

l52

l11

l21

l31

l41

l51

x

y

.5

1.5

2.5

3.5

4.5

5.5

6.5

3.5 4.5 5.5

(a) Storage of a lower triangular matrixL in a texture. When
we fetch an element of a texture, we point to its center. For
instance, the elementl42 is stored at(2.5, 4.5).

l33

l44

l55

l43 l53

l54l00

l22

l10

l20

l30

l40

l50

l32

l42

l52

l11

l21

l31

l41

l51

x

y

.5 1.5 2.5

.5

1.5

2.5

3.5

4.5

5.5

6.5

(b) Storage of a lower triangular matrixL in a
texture using a packed storage scheme of Gun-
nels and Gustavson. The6 × 6 matrix is stored
in a 3 × 7 texture, with the entries arranged as
indicated.

Fig. 2.2: Lower triangular matrices stored in textures, with values stored as intensities of red.
The same6×6 matrices are stored with different format. For the packed format shown in (b),
we transpose and move the lower triangular submatrix at the bottom right of (a) to the unused
upper left corner. For subsequent figures, we use various colors for better visualization.

of a stream, which abstractsO(log n) passes of a multi-pass rendering algorithm. Despite
those convenient features, we cannot use BrookGPU because it does not support triangular
rasterization, which is key to exploiting the structure of symmetric or triangular matrices.

Recently NVIDIA introduced CUDA [21], a development framework for general purpose
applications on the GeForce 8 Series2. It provides CUBLAS, the BLAS library working on
GPUs. CUDA does not support triangular rasterization, which was critical to the performance
of the algorithms we discuss below, but spawning multiple threads and having each of them
identify its target location could be used to replace triangular rasterization [12].

2.3. An example of a GPU algorithm. Given these powerful fragment processors, how
might they be used for computational linear algebra? We illustrate the ideas on a simple
algorithm, adding two matrices.

We choose to store a matrix as a two-dimensional texture withthe numeric values stored
as intensities of red.3 Figures2.2aand2.2billustrate this storage scheme. General matrices
are simply arranged with columns along the x-axis and rows along the y-axis as described
in Figure2.2a. Lower triangular or symmetric matrices can be stored in a compact form as

2At the time of our development CUDA was not available.
3Storing four numerical values as red, green, blue and alpha in a single texel us-

ing a four channel texture may increase storage capacity andmay improve perfor-
mance, but we choose the single channel texture for easy implementation. See
http://www.mathematik.uni-dortmund.de/˜goeddeke/gpg pu/oldstuff/PerformanceTuning.pdf

for further discussion of the trade-offs.

http://www.mathematik.uni-dortmund.de/~goeddeke/gpgpu/oldstuff/PerformanceTuning.pdf

ETNA
Kent State University
etna@mcs.kent.edu

178 J. H. JUNG AND D. P. O’LEARY

A
B

+
fetch

fetch
write

kernel
C

V(0,0) V(3,0)

V(0,3) V(3.3)

(a) To computeC = A + B, the ker-
nel fetches and adds entries fromA andB
and stores the result in the target textureC.
Each entry ofC in the figure is color-coded
to indicate the elements ofA andB that con-
tribute to its value.

float main(uniform samplerRECT A,
 uniform samplerRECT B,
 float2 index : WPOS) : COLOR {
 return texRECT(A, index.xy)+texRECT(B, index.xy);
}

(b) A kernel for adding two matrices, written in Cg [14].

for (x = 0; x < 3; x++)
for (y = 0; y < 3; y++)

C[y][x] = A[y][x]+B[y][x];

 Drawing a square

Addition fragment program

(c) The effect of the kernel is to perform the operations in this
nested loop, where the loop indices are specified by specifying
the vertices of a square.

Fig. 2.3: Adding two matrices on a GPU.

illustrated in Figure2.2b. To access an entry in a texture, we use coordinates, just as we use
indices to specify an entry of an array in a CPU program. Unfortunately, x-coordinates in a
texture correspond to column indices, while y-coordinatesindicate row indices, so the index
ordering is exactly opposite to that for an array.

As described in Figure2.1, a kernel is initiated by drawing a shape, usually a quadrilat-
eral. The shape is then transformed to a stream of fragments (of size equal to the number
of pixels in the shape) by the rasterizer. Fragments up to thenumber of processors can be
processed simultaneously. The coordinates and position ofeach fragment are passed to frag-
ment processors as inputs. Then, each fragment processor computes a color or a numerical
value for the fragment. Letting the rasterizer divide the shape into fragments is faster than
specifying fragments explicitly. Theswizzle operationis a convenient feature of GPUs; when
fetching an entry of a texture, the coordinates of a multidimensional variable can be per-
muted at no cost. This can be used, for example, to form a matrix transpose, by specifying
b.yx instead ofb.

A kernel specifies the operation to be performed on each element that it processes, and
the elements are specified by vertices passed to the kernel. For example, as depicted in
Figure2.3a, to perform3 × 3 matrix-matrix addition, we issue four vertices to specify the
textureC designated as the target of the rendering. Figure2.3cgives a CPU-equivalent of
the GPU kernel specified in Figure2.3b. After the vertex processors process “per vertex”
operations (nothing in this example), the rasterizer initiates a stream of nine fragments and
passes each linearly interpolated vertex property set to a fragment processor. Then the frag-
ment processors run the kernel simultaneously. Each fragment processor fetches and adds
values from input textures and stores the result of the addition in the target textureC.

In Figure2.3b, the input parameterindex specifies the position of the fragment. The
attributeWPOSindicates that it is an interpolated position. For a matrix entry at the first row
and the second column, the interpolated position of the corresponding fragment is(x, y) =
(1.5, 0.5). We may use other semantics,TEXCOORD0and TEXCOORD1for instance, to
have the kernel receive other interpolated vertex properties, as explained later. The attribute
COLORdenotes that the return value of the kernelmain represents color. The keyword
texRECT is used for fetching an element of the input texture. The keyword float2 means
the declared variable consists of two single precision values. See [14] for more details of the
Cg language.

This introduction to GPUs should be enough to understand thealgorithms presented later.

ETNA
Kent State University
etna@mcs.kent.edu

IMPLEMENTING AN IPM ON A CPU-GPU SYSTEM 179

3. Interior point methods for linear programming using a GPU. Linear program-
ming is the problem of minimizing a linear objective function subject to a set of linear con-
straints, either equalities or inequalities. The standardform is

min
x

cT x(3.1)

s.t. Ax = b,(3.2)

x ≥ 0,(3.3)

wherec andx are real vectors of sizen, b is a real vector of sizem, andA is anm × n real
matrix with rankm ≤ n. The dual problem, involving the Lagrange multipliersλ for the
nonnegativity constraints, is specified by

max
λ

bT
λ(3.4)

s.t. AT
λ + s = c,(3.5)

s≥ 0,(3.6)

whereλ andsare real vectors of sizem andn, respectively.
A primal-dual interior point method (IPM) [29] is a standard approach to solving the lin-

ear programming problem (3.1)-(3.3) Solving the linear programming problem is equivalent
to finding a solution to the KKT (Karush-Kuhn-Tucker) conditions:

AT
λ + s = c,(3.7)

Ax = b,(3.8)

xisi = 0, i = 1, 2, ..., n,(3.9)

x ≥ 0, s≥ 0.(3.10)

The IPM solves this system of equations using a variant of Newton’s method. The search
direction at each iteration is obtained by solving either the perturbed KKT conditions,

0 A 0
AT 0 I
0 S X

∆λ

∆x
∆s

 =

−r b

−rc

−rxs

 ,(3.11)

or, equivalently, the normal equations,

AD2AT ∆λ = −r b + A(S−1Xr c + S−1rxs),(3.12)

∆s = −r c − AT ∆λ,(3.13)

∆x = −S−1(rxs + X∆s),(3.14)

whereD2 = S−1X; r b = Ax − b; rc = AT
λ + s− c; e = (1, ..., 1)T ; andX andS are

diagonal matrices with entriesx ands. The vectorrxs has two definitions:rxs = XSe for
the affine-scaling step used as a predictor, andrxs = XSe− σµe + ∆Xaff∆Saffe for the
combined predictor-corrector step that is actually used toupdateλ, x, ands [29]. Hereσ is
a centering parameterandµ = xT s/n is thecomplementarity measure. The affine-scaling
direction is the pure Newton direction for (3.7)-(3.9), while the corrector step attempts to
maintain distance from the nonnegativity constraints.

Usually solving the normal equations is preferred to solving the KKT system, because
the matrix for the normal equations is much smaller. Moreover the matrix is symmetric and
positive definite, and thus we can use Cholesky factorization, which is faster than LU and
requires no pivoting.

In the following sections we discuss how the components of the IPM can be implemented
on a GPU.

ETNA
Kent State University
etna@mcs.kent.edu

180 J. H. JUNG AND D. P. O’LEARY

3.1. Matrix assembly and Cholesky decomposition on a GPU.In [8] we discuss as-
sembling and factoring the matrixAD2AT on a GPU, so we give only a brief overview in this
section.

Gunnels and Gustavson [5] proposedrectangular-packed formatfor symmetric or trian-
gular matrices, saving half the storage space by transposing and moving the lower triangu-
lar submatrix at the bottom right to the unused upper left corner, as shown in Figures2.2a
and 2.2b. Storing anm × m matrix in packed format results in aw × h texture, where
w = ⌈m/2⌉ andh = m + mod(m + 1, 2).

In order to implement GPU algorithms based on the rectangular-packed format, we need
to generate interpolated indices for fetching input textures, using the rasterizer to minimize
instruction count [4]. We useV (x, y) to represent a vertex andT#(x, y) to denote texture
coordinates. Since the access pattern of the lower trapezoid is different from that of the upper
triangle, we consider two cases.

We assemble the matrixAD2AT by taking the sum ofn outer products. Thekth of these
involves thekth column ofA, scaled byd2

kk, multiplied by the transpose of thekth column
of A. We store thekth scaled column ofA in a temporary textureb. Assigning texture
coordinates for the triangle covering the lower trapezoid is the same as for the full format.
The access pattern of a fragment in the upper triangle is illustrated in Figure3.1.

In factoring the matrix, we use the outer-product version ofthe Cholesky algorithm. At
stepk (k = 0, . . . , m − 2), we update elements in columnsj = k + 1, . . . , m − 1 and rows
i = j, . . . , m − 1 by

ℓij = ℓij − ℓikℓjk.

We draw two triangles to initiate the outer product subtraction kernel in stepsk = 0, . . . , w − 1,
as explained in [8]. Attaching texture coordinates to the triangle covering the lower trapezoid
is not much different from doing so for a matrix in the full format. To obtain texture coor-
dinates attached to the triangle covering the upper triangular submatrix, we imagine fetching
inputs at the original position of an active fragment as illustrated in Figure3.2a. In steps
k = w, . . . , m − 2, all required entries are in the same submatrix where the active fragment
is, as illustrated in Figure3.2b, so attaching texture coordinates is straightforward.

3.2. Forward and back substitution on a GPU.Once we compute the Cholesky factor
of the matrix, we then solve the system of equations through forward and back substitution.

One option is to transfer the Cholesky factor to the CPU memory and perform the com-
putation there. For reference, we list in Algorithm1 a CPU version of forward substitution to
solveLy = f whereL is a lower triangular matrix. This algorithm needs to be modified for
rectangular-packed storage. In this case we partition the system as

[

L11 0
L21 L22

] [

y1

y2

]

=

[

f1
f2

]

,

Remembering thatL11 andL21 are stored in the lower trapezoid andL22 is stored in the
upper triangle of our texture, as illustrated in Figure2.2, it is a simple exercise to rewrite
Algorithm 1 to access the proper entries. Back substitution is similar.

We can avoid the expensive transfer of theL factor from the GPU to the CPU by perform-
ing forward and back substitution on the GPU. Then we only need to transfer the resulting
vectorx of sizem × 1. However, we will see in section4.1 that this approach is slower
than transferring the Cholesky factor to the CPU memory and performing forward and back
substitutions using the CPU.

Referring to Algorithm1, we need kernels for two operations: division and sub-column
subtraction. The inner loop disappears, replaced by specifying the vertices in the calls to the

ETNA
Kent State University
etna@mcs.kent.edu

IMPLEMENTING AN IPM ON A CPU-GPU SYSTEM 181

(k+.5, j+w)

(i+w, .5)

A

b

AD2AT

(i, j)

(a)

Fig. 3.1: Forming the matrixAD2AT on a GPU using outer product updates. At thekth step,
we add the outer product of the vectorb (which storesdkk times thekth column ofA) with
thekth column ofA. Updates within both the large green and the smaller red triangles are
formed in parallel by one kernel call initiated by drawing the two triangles at the same time.
The two colors for each element inAD2AT identify the vector elements whose product forms
its update. Note that we take advantage of the relation betweenb andA so that we can use the
same kernel in both the green and red triangle. A fragment located in the upper triangle with
texture coordinates(i, j) receives a contribution of a texel ofA at (k + .5, j + w) multiplied
by a texel ofb at (i + w, .5). So for a vertex atV (x, y), we attach texture coordinates
T0(k + .5, y + w) andT1(x + w, .5).

(k+.5, j+w+1)
(k+.5, i+w+1)

(j+w, i+w+1)

(i,j)

(a) To understand the access pattern for an active
fragment(i, j) located in the upper triangle, it helps
to remember its position before packing:(j+w, i+
w + 1). This figure shows an update whenk < w.

(i, k-w+.5)(j, k-w+.5)

(i, j)

(b) Whenk ≥ w, the entries that generate the update
are in the upper triangular submatrix.

Fig. 3.2: Forming a Cholesky factor using the the outer product subtraction kernel whenm is
even. Colored fragments are processed in parallel.

ETNA
Kent State University
etna@mcs.kent.edu

182 J. H. JUNG AND D. P. O’LEARY

Algorithm 1 A CPU version of forward substitution

// We assume array index starts from0
// Indices are in (row, column) order
for k = 0 to m-2do

// Division
f(k) = y(k)/L (k,k);
// Sub-column subtraction
for i = k+1 to m-1do

f(i) = f(i) - f(k)*L (i,k);
end for

end for
f(m-1) = f(m-1)/L (m-1,m-1);

kernels listed in Kernels1 and2. We need to keep in mind that the vectorf is stored in an
m×1 texture inwidth×height order4. Due to the packing, we need to treat steps0 to w−1
and stepsw to m − 2 differently.

Kernel 1 The GPU kernel for division

float main(uniform samplerRECT f : TEXUNIT0,
uniform samplerRECT L : TEXUNIT1,
float2 f_index : WPOS,
float2 L_index : TEXCOORD0) : COLOR {

return texRECT(f, f_index)/texRECT(L, L_index);
}

(The semantic keywordsTEXUNITi, TEXCOORDi andWPOSrepresent theith input texture, theith interpolated

texture coordinates, and the position of the active fragment.)

Kernel 2 The GPU kernel for sub-column subtraction

float main(uniform samplerRECT f : TEXUNIT0,
uniform samplerRECT L : TEXUNIT1,
float2 f_index : WPOS,
float2 f_pivot_index : TEXCOORD0,
float2 L_index : TEXCOORD1) : COLOR {

return texRECT(f, f_index).x
- texRECT(f, f_pivot_index).x * texRECT(L, L_index.yx).x ;

}

For thekth division operation, we draw a point of size1 × 1 atV (k + .5, .5) with a set
of attached texture coordinates. Suppose thatm is even. Then in the first set of steps we
fetch the diagonal entry ofL , stored in the trapezoid, from position(k + .5, k + 1.5). In the
second set of steps, the required diagonal entry ofL is stored in the upper triangle in position
(k − w + .5, k − w + .5). Obtaining the attached texture coordinates for oddm is not much
different.

For thekth sub-column subtraction, we draw a line of width1 covering the entries from
k + 1 to m − 1 of f. Texture coordinatesT0 for fetchingf are fixed for all active fragments.

4This scheme restricts the maximum size of a vector to 4096. Packing a vector in a rectangle texture can remove
this restriction [9].

ETNA
Kent State University
etna@mcs.kent.edu

IMPLEMENTING AN IPM ON A CPU-GPU SYSTEM 183

(k+.5, i+1)

(k+.5, .5)
f

L

(i, .5)

(a) In the first half of the iterations, active fragments
fetch elements from the lower trapezoid.

(i, .5)

(i-w, k-w+.5)

(k+.5, .5)
f

L

(b) In the second half of the iterations, active frag-
ments fetch elements from the upper triangle.

Fig. 3.3: These figures describe how we accessf andL and attach the texture coordinates
to each vertex for the sub-column subtraction whenm is even. Colored fragments inf are
processed in parallel. We used the same color for an active fragment and its corresponding
element inL .

So attachingT0 to vertices is straightforward. To attach the second set of texture coordinates
T1 for fetchingL , we need to understand the access pattern of active fragments.

Kernel 3 The GPU kernel for sub-row subtraction

float main(uniform samplerRECT f : TEXUNIT0,
uniform samplerRECT L : TEXUNIT1,
float2 f_index : WPOS,
float2 f_pivot_index : TEXCOORD0,
float2 L_index : TEXCOORD1) : COLOR {

return texRECT(f, f_index).x
- texRECT(b, f_pivot_index.xy).x * texRECT(L, L_index).x ;

}

In the first set of steps, as illustrated in Figure3.3a, an active fragment at(i, .5) needs
to fetch a texel ofL at (k + .5, i + 1). The texture storingf is laid out horizontally. Thus,
we cannot have the rasterizer interpolate texture coordinates vertically, but we generate inter-
polated coordinatesT1(i + 1, k + .5) by attachingT1(x + 1, k + .5) to a vertex atV (x, y).
By swizzling the interpolated texture coordinatesL index as in Kernel2 we can handle the
necessary transpose operation.

In the second set of steps, as illustrated in Figure3.3b, an active fragment at(i, .5) needs
to fetch a texel ofL at (i − w, k − w + .5). We can generate the coordinates by attaching
T1(x−w, k−w+ .5) to a vertex atV (x, y). No swizzle is necessary, so the kernel, Kernel3,
is slightly different.

By understanding the access pattern, we can in a similar way derive the algorithm for
back substitution.

3.3. A CPU-GPU interior point method for linear programming . Algorithm 2 uses
a variant of Mehrotra’s predictor-corrector (MPC) method from [29] to solve the linear pro-

ETNA
Kent State University
etna@mcs.kent.edu

184 J. H. JUNG AND D. P. O’LEARY

gramming problem (3.1)-(3.6), performing most of the computation on the GPU.
We stop the iteration when the relative residual and the duality measure are smaller than

some small toleranceǫ:

max

{

max{‖r b‖∞, ‖rc‖∞}

max{‖b‖∞, ‖c‖∞, ‖A‖∞}
,
|cT x − bT

λ|

1 + |cT x|

}

≤ ǫ.(3.15)

The coefficient matrixA is written to the GPU only once, at the beginning. At each
iteration, we transfer only a few vectors, including the right-hand side of the normal equation
(3.12) and the main diagonal ofD. Ideally, matrix assembly, factorization, and forward and
back substitution are performed on the GPU; for the remainder of the computation we use
MATLAB functions on the CPU. But since our current GPU does not support double preci-
sion, we use the CPU for matrix assembly and factorization inlater iterations in order to get
accurate results5. We monitor the quality of the combined predictor-corrector step by testing
whether the relative residual norm for (3.12) is too large:

r∆λ =
‖r − AD2AT ∆λ‖

‖r‖
≥ θr,(3.16)

wherer is the right hand side of (3.12) andθr is a threshold parameter. If (3.16) is satisfied,
we form and solve the normal equations on the CPU.

The matrixAD2AT can become ill-conditioned in two ways, also making it necessary to
use the double precision CPU solver. First, the dual problemmay have fewer thanm active
constraints, which causes more thann − m entries ofD2 to approach zero. To monitor this,
we count the number of entries inD smaller than some small toleranceǫd > 0 and use the
CPU if

∣

∣

{

i : d2

ii < ǫd for i = 1, ..., n
}
∣

∣ > n − m,(3.17)

wheredii is the ith diagonal element ofD. Second, some of the primal variablesx may
be unbounded, which causes some diagonal entries ofD2 to grow too fast relative to the
others [29]. To monitor this, we measure the ratio between the largestd2

ii and the smallestd2
ii

among diverging entries. So, given parametersθa andθd, we use the CPU if

max
d2

ii
>µθd

(

d2

ii

)

/ min
d2

ii
>µθd

(

d2

ii

)

> θa.(3.18)

4. Results. To test our algorithms, we used an NVIDIA GeForce 7800 GTX (24frag-
ment processors, 580 MHz core clock cycle, 1750 MHz memory clock cycle, 512 MB
GDDR3 memory, 256 bit bus) and an Intel Xeon 3.0GHz (1 MB L2 cache, 8GB DDR2
dual channel memory, 400 MHz effective memory clock cycle and 800 MHz FSB). The op-
erating system is Linux Red Hat 3.4.5-2 64bit. We compiled our code using gcc 3.4.5. We
implemented and ran the IPM using MATLAB 7.2.0.283 (R2006a)which uses Intel’s Math
Kernel Library for BLAS and LAPACK function calls. Results in [8] showed that packing
does not degrade overall performance for matrix assembly and factorization, and GPU al-
gorithms outperform ATLAS (Automatically Tuned Linear Algebra Software) routines for
sufficiently large matrices.

5In fact, even the single precision arithmetic on the GPU is not fully compliant with the IEEE standard [20, 21],
so it is important to monitor the quality of the results.

ETNA
Kent State University
etna@mcs.kent.edu

IMPLEMENTING AN IPM ON A CPU-GPU SYSTEM 185

Algorithm 2 GPU-Powered Mehrotra’s Predictor-Corrector Algorithm

Specify the parametersǫ, ǫd, θr, θd, andθa.
Transfer the coefficient matrixA in single precision packed format to GPU memory.
SetuseGPUas true.
Generate an initial point(x0, λ0, s0) according to [15].
for k = 0,1,2,...do

Setµ = xkT sk

n
.

Terminate if the convergence criteria are met or iteration count limit is reached.
SetuseGPUas false if any of (3.16), (3.17) and (3.18) is satisfied.
if useGPUthen

Transfer the diagonal of the scaling matrixD2 to GPU memory.
Compute and factorAD2AT using the GPU.
Transferrxs for the predictor to GPU memory.

else
Compute and factorAD2AT in double precision non-packed form using the CPU.

end if
Use forward and back substitution to solve (3.12) for the predictor step, transferring the resulting
∆λ

aff to CPU memory ifuseGPUis true.
Use (3.13)-(3.14) to compute∆xaff and∆saff.
Determine the predictor step length:

αpri
aff = arg max

α∈[0,1]
{xk + α∆x

aff ≥ 0}, αdual
aff = arg max

α∈[0,1]
{sk + α∆s

aff) ≥ 0}.

Determine the centering parameter:

σ = (µaff/µ)3, whereµaff =
(xk + αpri

aff∆xaff)T (sk + αdual
aff ∆saff)

n
.

Use forward and back substitution to solve (3.12) for the combined predictor-corrector step, trans-
ferring rxs to GPU memory and transferring the resulting∆λ to CPU memory ifuseGPU is
true.
Use (3.13)-(3.14) to compute∆x and∆s.
Determine step size parameters,αpri

k andαdual
k :

αpri

k = 0.99 × arg max
α∈[0,1]

{xk + α∆x ≥ 0},

αdual
k = 0.99 × arg max

α∈[0,1]
{sk + α∆s≥ 0}.

Setxk+1 = xk + αpri
k ∆x, (λk+1, sk+1) = (λk, sk) + αdual

k (∆λ, ∆s).
end for

4.1. Forward and back substitution. Figure4.1compares our forward and back sub-
stitution algorithms withstrsv of ATLAS 3.6.0 [26]. In contrast to matrix assembly and
factorization, the GPU algorithms for forward and backwardsubstitution have no perfor-
mance advantage over the CPU algorithms. Kernel1 is inherently a non-parallel process,
since it must wait until Kernel2 and3 finish. So each iteration cannot start until the previous
iteration completes. Notice that the graphs for forward andback substitution on the GPU are
almost linear inm, while the arithmetic complexity is quadratic. The host CPUsends a fixed
number of vertices (and attached texture coordinates) for each rasterization process, orO(m)
vertices in total. Therefore it seems that the latency in initiating GPU kernels dominates the
overall time, for the problem sizes tested.

ETNA
Kent State University
etna@mcs.kent.edu

186 J. H. JUNG AND D. P. O’LEARY

Forward and back substitution

0

0.05

0.1

0.15

0.2

0.25

0.3

0 512 1024 1536 2048 2560 3072 3584 4096
m

Time (sec)

GPU (forward)
GPU (back)
strsv (forward)
GPU (download)

Fig. 4.1: Timing result for forward and back substitution.

The combined time required for moving the packed Cholesky factor to the CPU and
performingstrsv is much less than that for the GPU algorithms. Thus, transferring the
factor to the CPU memory and doing forward and back substitution using the CPU results in
better performance in the IPM, unless the CPU can be performing other useful work while
the GPU is computing.

4.2. Interior point method. We set the termination tolerance parameterǫ to 10−8.
Other parameters are set as follows:

θr = 10−2, ǫd = 10−4, θd = 103, andθa = 105.

We used the packed version for matrix assembly and factorization. We implemented the two
options for the substitution: transferring the Cholesky factor to the CPU, or using the GPU to
solve the triangular systems. We compared these two optionswith our full double precision
MATLAB implementation6 without using the GPU for solving the normal equations (3.12)
and with MATLAB’s linprog function. The results are shown in Table4.1 and in Fig-
ure4.2.

The NETLIB problems are not large enough to gain a performance advantage using the
GPU. As illustrated in Table4.1, the full double precision CPU version usually needs fewer
iterations to terminate than the GPU versions. We generatedrandom problems with each
constraint in the dual tangent to the unit sphere as described in [25]. Results are summarized
in Figure4.2. Our algorithms using the GPU are slower for small problems but faster than
the full double precision CPU version form > 640. In solving small problems, data transfer
cost and communication latency prevent the solver from achieving good performance.

6It is also possible to implement a CPU version of a hybrid single and double precision IPM,
but MATLAB 7.2 running on 64bit Linux has a bug in interfacingwith single precision BLAS rou-
tines. This bug prevented us from forming the normal equation matrix in single precision; see
http://www.mathworks.com/support/bugreports/details .html?rp=268001 . This bug is fixed in MAT-
LAB 7.4.

http://www.mathworks.com/support/bugreports/details.html?rp=268001

ETNA
Kent State University
etna@mcs.kent.edu

IMPLEMENTING AN IPM ON A CPU-GPU SYSTEM 187

0 200 400 600 800 1000 1200
0

20

40

60

80

m (n = 4m)

T
im

e
(s

ec
)

Time

GPU (CPU subst.)
GPU (GPU subst.)
CPU
linprog

0 200 400 600 800 1000 1200
5

10

15

20
Iterations

Ite
ra

tio
ns

m (n = 4m)

(a) Our algorithms are compared with MATLAB’slinprog .

0 200 400 600 800 1000 1200
0

10

20

30

40

m (n = 4m)

T
im

e
(s

ec
)

Time

GPU (CPU subst.)
GPU (GPU subst.)
CPU

0 200 400 600 800 1000 1200
0

0.5

1

1.5

m (n = 4m)

R
at

io

Timing Ratio

GPU (CPU subst.)
GPU (GPU subst.)
1.0

(b) Timing result forlinprog is eliminated to magnify gap between the combined CPU-
GPU solvers and the CPU only solver. In the bottom figure, we plot the ratio of the time
for the CPU solver to that for the GPU-powered solvers. Values greater than 1 indicate a
performance advantage for the GPU solver.

Fig. 4.2: We measured running time and iteration count of Algorithm2 on random problems.
For sufficiently large problems, using the combined CPU-GPUsolver yields better perfor-
mance. The horizontal axis representsm, where we setn = 4m. GPU in the label means that
the GPU is used for assembling and factoring matrices in Algorithm 2, whereas CPU means
that the GPU is not used at all.

ETNA
Kent State University
etna@mcs.kent.edu

188 J. H. JUNG AND D. P. O’LEARY

Table 4.1: We measured the running time and iteration count of Algorithm 2 on NETLIB
problems. The iteration count in parentheses represents the number of iterations at which
the GPU is used for assembling and factoring the matrix for the normal equations. We used
two versions of the GPU algorithm. The one labeled (GPU subst.) uses the GPU to solve
the triangular systems, and the other one, labeled (CPU subst.) uses the CPU. None of these
problems is sufficiently large to get performance gain through using a GPU.

GPU (GPU subst.) GPU (CPU subst.) CPU
Problem Size

Iterations Time (s) Iterations Time (s) Iterations Time (s)
afiro 27 × 51 9 (7) 0.19 9 (7) 0.21 9 0.01
adlittle 56 × 138 11 (9) 0.47 11 (9) 0.34 11 0.01
agg2 516 × 758 20 (15) 6.16 20 (15) 4.07 20 2.68
agg3 516 × 758 20 (16) 6.35 28 (17) 5.25 20 2.68
bandm 305 × 472 17 (8) 2.06 17 (8) 1.39 17 0.61
beaconfd 173 × 295 9 (4) 0.59 9 (4) 0.39 9 0.09
blend 74 × 114 11 (6) 0.34 11 (6) 0.22 11 0.01
e226 223 × 472 22 (11) 2.24 21 (11) 1.53 22 0.44
sc50b 50 × 78 8 (5) 0.21 8 (5) 0.13 8 0.01
sctap1 300 × 660 15 (12) 3.17 15 (12) 2.16 15 0.65

MATLAB’s linprog is slower than our algorithms even when it terminates with fewer
iterations. It fails to converge to an optimal solution for problems withm ≥ 512. It uses LIP-
SOL [30] which always uses a Cholesky-infinity factorization supporting only sparse matri-
ces. This causes overhead in factorization of dense normal equations matrices. Modifying the
Cholesky-infinity factorization to support dense matriceswould improve the performance.

5. Conclusions.We have presented a CPU-GPU algorithm for solving linear program-
ming problems using interior point methods. This algorithmuses rectangular-packed matrix
storage [5] and uses the GPU for tasks such as matrix assembly, Choleskyfactorization,
and forward and back substitution. By comparing our implementations with a CPU imple-
mentation, we demonstrated that we can improve performanceby using the GPU and mixed
precision for sufficiently large dense problems. For some sparse problems, techniques such
as supernodal multifrontal approaches can be used to createdense submatrices for which a
GPU might be used. Since GPU architectures and programming languages are rapidly evolv-
ing, we expect that GPUs will be an increasingly attractive tool for matrix computation in the
future.

Acknowledgments.We are grateful to the referees for their helpful comments.

REFERENCES

[1] J. BOLZ, I. FARMER, E. GRINSPUN, AND P. SCHRÖODER, Sparse matrix solvers on the GPU: conjugate
gradients and multigrid, in ACM SIGGRAPH 2003 Papers, ACM, New York, NY, 2003, pp. 917–924.

[2] I. BUCK, T. FOLEY, D. HORN, J. SUGERMAN, K. FATAHALIAN , M. HOUSTON, AND P. HANRAHAN ,
Brook for GPUs: stream computing on graphics hardware, in ACM SIGGRAPH 2004 Papers, ACM,
New York, NY, 2004, pp. 777–786.

[3] Z. FAN , F. QIU , A. KAUFMAN , AND S. YOAKUM -STOVER, GPU cluster for high performance computing,
in Proceedings of the 2004 ACM/IEEE Conference on Supercomputing, IEEE, Washington, DC, 2004,
p. 47.

[4] N. GALOPPO, N. K. GOVINDARAJU, M. HENSON, AND D. MANOCHA, LU-GPU: Efficient algorithms for
solving dense linear systems on graphics hardware, in Proceedings of the 2005 ACM/IEEE Conference
on Supercomputing, IEEE, Washington, DC, 2005, p. 3.

ETNA
Kent State University
etna@mcs.kent.edu

IMPLEMENTING AN IPM ON A CPU-GPU SYSTEM 189

[5] J. A. GUNNELS AND F. G. GUSTAVSON, A new array format for symmetric and triangular matrices, in
PARA’04 Workshop on State-of-the-Art in Scientific Computing, 2004, pp. 247–255.

[6] J. HALL , N. CARR, AND J. HART, Cache and bandwidth aware matrix multiplication on the
GPU, Tech. Report UIUCDCS-R-2003-2328, University of Illinois at Urbana-Champaign, 2003.
http://graphics.cs.uiuc.edu/˜jch/papers/UIUCDCS-R-2 003-2328.pdf .

[7] I NTEL CORP., Intel 945G express chipset product brief, 2005.
http://www.intel.com/products/chipsets/945g/index.h tm.

[8] J. H. JUNG AND D. P. O’LEARY, Exploiting structure of symmetric or triangular matrices on a GPU,
in Workshop for General Purpose Processing on Graphics Processing Units, Boston, MA, Oct. 2007,
Computer Science Department Report CS-TR-4914, Institutefor Advanced Computer Studies Report
UMIACS-TR-2008-12, Jan. 2008.http://hdl.handle.net/1903/7984 .

[9] J. KRÜGER AND R. WESTERMANN, Linear algebra operators for GPU implementation of numerical algo-
rithms, in ACM SIGGRAPH 2005 Courses, ACM, New York, NY, 2005, p. 234.

[10] D. LUEBKE, General-purpose computation on graphics hardware. SIGGRAPH 2005 GPGPU Course, Aug.
2005.http://www.gpgpu.org/s2005/ .

[11] D. LUEBKE, M. HARRIS, J. KRÜGER, T. PURCELL, N. GOVINDARAJU, I. BUCK, C. WOOLLEY, AND

A. L EFOHN, GPGPU: general purpose computation on graphics hardware, in ACM SIGGRAPH 2004
Course Notes, ACM, New York, NY, 2004, p. 33.

[12] D. LUEBKE, NVIDIA C ORP., Personal communication, Oct. 2007.
[13] F. T. LUK, Computing the singular-value decomposition on the ILLIAC IV, ACM Trans. Math. Software, 6

(1980), pp. 524–539.
[14] W. R. MARK , R. S. GLANVILLE , K. AKELEY, AND M. J. KILGARD, Cg: a system for programming

graphics hardware in a C-like language, in ACM SIGGRAPH 2003 Papers, ACM, New York, NY, 2003,
pp. 896–907.

[15] S. MEHROTRA, On the implementation of a primal-dual interior point method, SIAM J. Optim., 2 (1992),
pp. 575–601.

[16] M ICROSOFTCORP., High-level shader language, in DirectX 9.0 Graphics, 2003.
http://msdn.microsoft.com/directx .

[17] M ICROSOFTCORP., DirectX 9.0 graphics, in DirectX 9.0 Graphics, 2005.
http://msdn.microsoft.com/directx .

[18] K. M ORELAND AND E. ANGEL, The FFT on a GPU, in Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS Conference on Graphics Hardware, Aire-la-Ville, Switzerland, Eurograph-
ics Association, 2003, pp. 112–119.

[19] E. NG AND B. W. PEYTON, A supernodal Cholesky factorization algorithm for shared-memory multiproces-
sors, SIAM J. Sci. Comput., 14 (1993), pp. 761–769.

[20] NVIDIA C ORP., Fast texture downloads and readbacks using pixel buffer objects in OpenGL, Technical
Brief, Santa Clara, CA, Aug. 2005.

[21] NVIDIA C ORP., CUDA Programming Guide, Santa Clara, CA, Feb. 2007.
[22] J. D. OWENS, D. LUEBKE, N. GOVINDARAJU, M. HARRIS, J. KRÜGER, A. E. LEFOHN, AND T. J.

PURCELL, A survey of general-purpose computation on graphics hardware, Computer Graphics Forum,
26 (2007), pp. 80–113.

[23] D. M. RITCHIE, The development of the C language, SIGPLAN Notices, 28 (1993), pp. 201–208.
[24] R. J. ROST, OpenGL(R) Shading Language, Addison-Wesley Longman Publishing Co., Redwood City, CA,

2004.
[25] A. L. T ITS, P.-A. ABSIL, AND W. P. WOESSNER, Constraint reduction for linear programs with many

inequality constraints, SIAM J. Optim., 17 (2006), pp. 119–146.
[26] R. C. WHALEY AND A. PETITET, Minimizing development and maintenance costs in supporting persistently

optimized BLAS, Software: Practice and Experience, 35 (2005), pp. 101–121.
[27] M.-L. WONG, T.-T. WONG, AND K.-L. FOK, Parallel evolutionary algorithms on graphics processing unit,

in 2005 IEEE Congress on Evolutionary Computation, 2005, pp. 2286–2293.
[28] M. WOO, J. NEIDER, T. DAVIS , AND D. SHREINER, OpenGL Programming Guide: The Official Guide to

Learning OpenGL, Version 1.2, Addison-Wesley Longman Publishing Co., Boston, MA, 2005.
[29] S. J. WRIGHT, Primal-Dual Interior-Point Methods, SIAM, Philadelphia, PA, 1997.
[30] Y. ZHANG, Solving large–scale linear programs by interior–point methods under the MATLAB environ-

ment, Tech. Report 96–01, Department of Mathematics and Statistics, University of Maryland Baltimore
County, Baltimore, MD, 1996.

http://graphics.cs.uiuc.edu/~jch/papers/UIUCDCS-R-2003-2328.pdf
http://www.intel.com/products/chipsets/945g/index.htm
http://hdl.handle.net/1903/7984
http://www.gpgpu.org/s2005/
http://msdn.microsoft.com/directx
http://msdn.microsoft.com/directx

