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1. Introduction. This paper is devoted to the problem of computing approximations to

matrix functions f(A), where A is a large, sparse (in particular, banded) matrix of order n
and f is smooth on a region containing the eigenvalues of A. We are motivated by the current

need for fast algorithms for approximating a wide class of matrix functions that occur in im-

portant areas of computational science and engineering, like electronic structure calculations

in quantum chemistry and nanoscience. Our approach is based on the study and careful ex-

ploitation of certain decay properties exhibited by the entries of f(A). We show that in many

cases the entries of f(A) decay very quickly in magnitude outside some band or sparsity

pattern. In other words, the entries of f(A) tend to be strongly localized, an observation that

opens the door to the possibility of approximating relevant matrix functions in O(n) time.

Localization phenomena of this kind are well-known to physicists and chemists, especially

those working on electronic structure calculations. With few exceptions, numerical analysts

have so far largely neglected this property and its impact on the design of fast approximation

algorithms. There is also a need for numerical analysts to analyze existing O(n) algorithms

developed by physicists and to develop new, more efficient ones. This paper intends to be a

first step towards the realization of such a program.

The paper is organized as follows. In section 2 we provide some background on ma-

trix functions and make a few observations on related work. In section 3, after recalling

some basic notions from approximation theory, we study localization phenomena in matrix

functions. In particular, we prove very general decay bounds for the entries of matrix func-

tions. Our results generalize and unify several previous results known in the literature. This

theory can be used, in principle, to determine the bandwidth or sparsity pattern outside of

which the entries of f(A) are guaranteed to be so small that they can be neglected with-

out exceeding a prescribed error tolerance. In section 4 we discuss approximation methods

based on classical approximation theory, including Chebyshev and Newton polynomials, and

related approaches. Together with truncation strategies for neglecting small elements, these

techniques form the basis for the approximation algorithms we use. Preliminary numerical

experiments illustrating the promising behavior of the approximation schemes are presented

in section 5. Finally, in section 6 we give our conclusions.
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2. Functions of matrices. Unless otherwise specified, all matrices considered in this

paper are square and complex. Given a matrix A and a function f defined on a subset of

the complex plane containing the spectrum of A, it is possible to give several (equivalent)

definitions of the matrix function f(A); see, e.g., [31, 39, 43, 46, 68]. For instance, when f
is analytic, f(A) can be defined by a power series expansion, or by a contour integral (using

Cauchy’s Theorem). Other definitions of f(A) can be given in terms of canonical forms, like

the Jordan canonical form or the Schur triangular form. In this paper we limit ourselves to

the case where A is diagonalizable, with A = XDX−1 where D = diag(λ1, λ2, . . . , λn),
so that f(A) = Xf(D)X−1 with f(D) = diag(f(λ1), f(λ2), . . . , f(λn)). Another useful

definition is given by f(A) = r(A), where r denotes the Lagrange–Hermite interpolation

polynomial that interpolates f (and, in case of multiple eigenvalues, certain of its derivatives)

at the eigenvalues of A. This last definition shows that every matrix function of A is a polyno-

mial in A; the coefficients of the polynomial, of course depending on A (and not just on f ).

For the purpose of the theoretical part of this paper, the most useful definitions are those in

terms of spectral decompositions and of power series expansions.

We are concerned here with the fundamental problem of computing approximations to

matrix functions f(A), where A is a large, sparse (in particular, banded) n × n matrix. Al-

though the problem of computing matrix functions has received considerable attention in the

literature on numerical linear algebra and differential equations, we intend to address prob-

lems and issues that so far have been largely neglected in the numerical analysis literature and

yet are of considerable importance for applications and also in their own right. To explain

how our approach differs from the large body of existing work, we point out that much of the

literature on the approximation of matrix functions falls into two broad classes:

1. Algorithms designed for the “exact” (i.e., high-accuracy) computation of f(A),
where A is a dense matrix of moderate size; here f is often some elementary func-

tion such as the exponential, the sine (or cosine), the p-th root, or the sign function.

See, e.g., [12, 23, 39, 41, 43, 53, 62].

2. Algorithms designed for the computation of the vector f(A)v, where v is a given

vector and A is a large, sparse matrix. This problem is especially important in

the numerical integration of large systems of time-dependent differential equations,

parabolic PDEs, etc.; see, e.g., [10, 11, 13, 19, 20, 21, 25, 26, 28, 35, 44, 45, 51, 57,

69]. Most of these papers are concerned with the computation of the action of the

exponential operator exp(−tA) on a vector v, where t > 0 and the eigenvalues of A
have positive real part.

In contrast, we focus on the problem of finding approximations (to within a prescribed tol-

erance and for an appropriate choice of the error metric, usually dictated by the underlying

application) to the actual entries of f(A) when A is large and banded or sparse. The ultimate

goal is to develop reliable algorithms with guaranteed accuracy and optimal complexity, when

feasible. For a sparse or banded n×n matrix A, a lower bound for the best possible complex-

ity is O(n) arithmetic work and storage: i.e., the cost of the approximation, in terms of time

and storage, scales at least linearly in the size of the problem. Generally speaking, attainment

of this lower bound rules out the computation of f(A) by reduction to diagonal or triangular

(Schur) form. Also, the straightforward use of algorithms for computing f(A)v applied to

the case where v = ei (the ith column of the identity matrix, with i = 1 : n) is likely to result

in O(n2) complexity, although careful implementations of inexact (“sparse-sparse”) variants

of this approach may work in some cases.

Clearly, O(n) algorithms are feasible only if f(A) can be well-approximated, in some

representation, by a banded or sparse matrix, with an error that is independent of n (see sec-

tion 3). It is also worth noting that in many applications not all the entries of f(A) are needed,
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but only selected ones. For instance, it may happen that only an estimate of the trace (sum of

the diagonal elements) of f(A) is required. Another scalar function that is sometimes neces-

sary to estimate is the determinant det[f(A)], and in some cases it is possible to approximate

this quantity without computing all the entries of f(A). Also, in many applications very high

accuracy is not required or warranted.

One approach that has been used in the literature to approximate selected entries of ma-

trix functions is the method based on Gaussian quadrature rules developed by Golub and

collaborators over the years; see [38], and [4, 5, 8] for further details and some applications.

While the original method was developed for real symmetric matrices, nonsymmetric exten-

sions have been since developed; see, e.g., [15] for an approach based on the Arnoldi process.

This methodology is quite different from that used in the present paper.

The key idea of the paper is to exploit the fact that for large classes of matrices A and

functions f , the “important” entries of f(A) are highly localized; for instance, the entries

of f(A) exhibit exponentially fast off-diagonal decay. We emphasize that the vast majority

of the algorithms currently in vogue among numerical analysts for the computation of f(A)
do not exploit this property. Among the few exceptions, see [4, 6, 7, 21, 47, 67]; however,

these papers all address some very special problems, and a systematic treatment of sparsity

in matrix functions is lacking. We also mention that chemists and physicists who work in

the field of electronic structure calculations have observed the exponential decay property

in the density matrix (a function of the Hamiltonian) for non-metallic systems, see [3, 37,

42, 52, 59]. (For metallic systems, the decay is algebraic rather than exponential, see [36].)

Physicists have exploited this property by developing “sparsified” iterative algorithms for the

approximation of density matrices. Partial results and a few algorithms tailored to specific

matrix functions can be found scattered in the literature, but no general theory or rigorous

foundations for many of the algorithms developed by physicists exist. There is, in other

words, little available theory for such approximation algorithms; moreover, error estimates

and safe stopping criteria have yet to be developed, and optimality results are also missing.

Finally, the existing O(n) algorithms are applicable to the Hermitian case only, and there

is an interest for methods that can handle non-Hermitian matrices as well. In this paper we

begin to address some of these questions.

3. Decay bounds. Many physical phenomena are characterized by strong localization,

that is, rapid decay outside of a small spatial or temporal region. Frequently, such localization

can be expressed as decay in the entries of a function f(A) of an appropriate sparse or banded

matrix A that encodes a description of the system under study. In this section we survey the

current state of knowledge on this topic and contribute some new results that extend and

unify previously known ones. We begin with a simple graph-theoretical result on the sparsity

pattern of f(A), according to which such a matrix is generally full. Then we consider banded

approximations to matrices that exhibit exponential off-diagonal decay of the entries and

discuss situations where O(n) approximations are feasible. Next, we provide some necessary

background on approximation theory and finally we prove new exponential decay bounds for

a wide class of functions f and matrices A.

3.1. A structural result. Let A = [aij ] be an n×n matrix. We associate to A a digraph

G(A) = (V, E) in the standard way (we refer to [24] for basic background on graph theory).

The vertex set V consists of the integers from 1 to n and the edge set E contains all ordered

pairs (i, j) with aij 6= 0. Recall that for i, j ∈ V the distance d(i, j) between i and j is

the length of the shortest directed path connecting node i to node j; the maximum distance

between any two nodes in G(A) is the diameter of the digraph. Proposition 3.1 states a simple
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structural result about f(A) for a large class of analytic functions f .

PROPOSITION 3.1. Let f be an analytic function of the form

f(z) =
∞
∑

k=0

ak(z − z0)
k

(

ak =
f (k)(z0)

k!

)

,

where z0 ∈ C and the power series expansion has radius of convergence r > 0. Let A have

an irreducible sparsity pattern with nonzero diagonal entries and let l (1 ≤ l ≤ n− 1) be the

diameter of G(A). Assume further that there exists k ≥ l such that f (k)(z0) 6= 0. Then it is

possible to assign values to the nonzero entries of A in such a way that f(A) is defined and

structurally full.

Proof. We first observe that it is always possible to assign numerical values to the entries

of A so that the spectrum of A lies inside the circle of convergence of the power series.

Indeed, any matrix can be shifted and scaled so that the eigenvalues λi of the resulting matrix

satisfy |λi − z0| < r, for i = 1 : n. Note that shifting and scaling does not affect the

irreducibility of the sparsity pattern. Thus, the power series

a0I + a1(A − z0I) + a2(A − z0I)2 + · · · + ak(A − z0I)k + · · ·

with ak = f (k)(z0)/k! converges to f(A). Since A is irreducible, there is a directed path

in the digraph of A from any node i to any other node j. From the assumption that the

maximum distance between any two nodes has length l we conclude that (A − z0I)k for

k ≥ l is structurally full, since there is an entry for each i, j with d(i, j) ≤ l in G(A). Finally,

the assumption that f (k)(z0) 6= 0 for at least one k ≥ l implies that f(A) is structurally

full.

The above result means that barring fortuitous cancellation, all entries of f(A) are nonzero

when A is irreducible (with a nonzero diagonal) and f is a “generic” analytic function, by

which we mean an analytic function with at least one non-vanishing derivative of sufficiently

high order. We note that this result generalizes a well-known fact about the inverse of an

irreducible matrix [27].

Thus, it would seem that the quest for O(n) algorithms for approximating f(A) is

doomed from the start. However, as we will see, it is often the case that most of the en-

tries in f(A) are very small in magnitude, thus making banded or sparse approximations

possible.

3.2. Banded approximations to highly localized matrices. Here we consider approx-

imating a dense matrix with certain decay properties by means of a banded matrix. The prob-

lem is important for several reasons. First, there are situations where the matrix A itself is

completely dense, but has rapidly decaying entries; matrices of this kind are sometimes called

pseudosparse. For example, a matrix representing a differential operator with respect to a ba-

sis made of globally supported but highly localized functions will typically be pseudosparse.

It is common practice to replace A with a banded matrix Ã obtained by “sparsifying” (or

“truncating”) the matrix outside a certain band, or by dropping entries whose magnitude falls

under a certain (small) threshold. As a preliminary condition for developing linear scaling

algorithms, it is essential to show that the sparsification error ‖A − Ã‖ may be bounded, for

an appropriate norm, by a quantity independent of the order n of the matrix; here we show

that this is indeed the case when the entries of A satisfy a certain exponential decay condition.

Also, in order to approximate a matrix function f(A), we actually compute an approximation

of f(Ã). How far this is from the actual f(A) depends on several factors, including of course

on how far Ã is from A; see [50] for a general theory of condition estimation for matrix

functions. It is therefore desirable to bound the sparsification error in terms of the rate of
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decay of the entries of A. Furthermore, the bounds are useful in estimating the error in the

approximation of the generally full matrix f(Ã) by a sparse or banded matrix.

We say that an n × n matrix A = [aij ] has the exponential off-diagonal decay property

if there is a constant c > 0 such that

|aij | ≤ cλ|i−j|, where 0 < λ < 1,(3.1)

for all i, j = 1 : n. Corresponding to the matrix A we then define for a nonnegative integer

m the matrix A(m) =
[

a
(m)
ij

]

defined as follows:

a
(m)
ij =

{

aij , if |i − j| ≤ m;

0, otherwise.

The matrix A(m) is m-banded, with m being the bandwidth of A(m); according to this defi-

nition, diagonal matrices have zero bandwidth, tridiagonal ones have bandwidth m = 1, etc.

Note that we do not require the matrix to be symmetric here, we only assume (for simplicity)

that the same pattern of nonzero off diagonals is present on either side of the main diagonal.

The following simple result provides an estimate of the rate at which the sparsification error

decreases as the bandwidth m of the approximation increases. In addition, it establishes n-

independence when the constants c and λ in (3.1) are independent of n. For convenience, we

work with the 1-norm.

PROPOSITION 3.2. Let A be a matrix with entries aij satisfying (3.1) and let A(m) be

the corresponding m-banded approximation. Then for any ε > 0 there is an m such that

‖A − A(m)‖1 ≤ ε for m ≥ m.

Proof. We have

‖A − A(m)‖1 = max
1≤j≤n

n
∑

i=1

|aij − a
(m)
ij | ≤

n
∑

k=m+1

cλk ≤

∞
∑

k=m+1

cλk =
cλm+1

1 − λ
.

Since 0 < λ < 1, for any given ε > 0 we can always make

cλm+1

1 − λ
≤ ε

by taking m sufficiently large.

The result of Proposition 3.2 also holds for matrices with other types of decay behavior,

for instance algebraic decay of the form |aij | ≤ c|i − j|−p with p > 1. Moreover, the

argument can be adapted to handle sparse matrices rather than banded ones, along the lines

to be discussed in section 3.4.

Clearly, Proposition 3.2 is not very useful when applied to a single n× n matrix A since

it is obvious that taking m = n always results in a zero error. The result, however, shows

that if we have a sequence {An} of matrices of increasing dimension n, with entries [An]ij
satisfying a uniform exponential off-diagonal decay property of the type

|[An]ij | ≤ cλ|i−j|, where 0 < λ < 1, with c and λ independent of n,

then for any given ε > 0 it is possible to find a bandwidth m independent of n such that the

m-banded approximations A
(m)
n satisfy ‖A

(m)
n − An‖1 < ε, for all n.

We mention that although in this section we have limited our discussion to absolute errors

relative to a certain matrix norm, in practice we adopt relative error measures when assessing

the distance of a computed approximation from a desired quantity.
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3.3. Faber polynomials and series. In this section we provide some background on

approximation theory that will be needed in proving general decay bounds for the entries of

functions of sparse or banded matrices. Our treatment follows closely that in [58], but see

also [18, 75]. In the following, F denotes a continuum containing more than one point. By

a continuum we mean a nonempty, compact and connected subset of C. Let G∞ denote the

component of the complement of F containing the point at infinity. Note that G∞ is a simply

connected domain in the extended complex plane C̄ = C ∪ {∞}. By the Riemann Mapping

Theorem there exists a function w = Φ(z) which maps G∞ conformally onto a domain of

the form |w| > ρ > 0 satisfying the normalization conditions

Φ(∞) = ∞, lim
z→∞

Φ(z)

z
= 1;(3.2)

ρ is the logarithmic capacity of F . Given any integer N > 0, the function [Φ(z)]N has a

Laurent series expansion of the form

[Φ(z)]N = zN + α
(N)
N−1z

N−1 + · · · + α
(N)
0 +

α
(N)
−1

z
+ · · ·(3.3)

at infinity. The polynomials

ΦN (z) = zN + α
(N)
N−1z

N−1 + · · · + α
(N)
0

consisting of the terms with nonnegative powers of z in the expansion (3.3) are called the

Faber polynomials generated by the continuum F .

Let Ψ be the inverse of Φ. By CR we denote the image under Ψ of a circle |w| = R > ρ.

The (Jordan) region with boundary CR is denoted by I(CR). By Theorem 3.17, p. 109 of

[58], every function f(z) analytic on I(CR0
) with R0 > ρ can be expanded in a series of

Faber polynomials:

f(z) =
∞
∑

k=0

αkΦk(z),(3.4)

where the series converges uniformly inside I(CR0
). The coefficients are given by

αk =
1

2πi

∫

|w|=R

f(Ψ(w))

wk+1
dw,

where ρ < R < R0. We denote the partial sums of the series in (3.4) by

ΠN (z) :=

N
∑

k=0

αkΦk(z).(3.5)

Each ΠN (z) is a polynomial of degree at most N , since each Φk(z) is of degree k. We are

now ready to state a result that will be instrumental in our proof of the decay bounds.

THEOREM 3.3. (Bernstein’s Theorem) Let f be a function defined on F . Then given

any ε > 0 and any integer N ≥ 0, there exists a polynomial ΠN of degree at most N and a

positive constant c(ε) such that

|f(z) − ΠN (z)| < c(ε)(q + ε)N (0 < q < 1)(3.6)

for all z ∈ F if and only if f is analytic on the domain I(CR0
), where R0 = ρ/q. In this

case, the sequence {ΠN} converges uniformly to f inside I(CR0
) as N → ∞.
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In the special case where F is a disk of radius ρ centered at z0, Theorem 3.3 states that

for any function f analytic on the disk of radius ρ/q centered at z0, where 0 < q < 1, there

exists a polynomial ΠN of degree at most N and a positive constant c(ε) such that for any

ε > 0,

|f(z) − ΠN (z)| < c(ε)(q + ε)N ,

for all z ∈ F . We are primarily concerned with the sufficiency part of Theorem 3.3. Note that

the choice of q (with 0 < q < 1) depends on the region where the function f is analytic. If

f is defined on a continuum F with logarithmic capacity ρ then we can pick q bounded away

from 1 as long as the function is analytic on I(Cρ/q). Therefore, the rate of convergence is

directly related to the properties of the function f , such as the location of its poles (if there

are any). Following [58], the constant c(ε) can be estimated as follows. Let R0, q and ε be

given as in Theorem 3.3. Furthermore, let R′ and R be chosen such that ρ < R′ < R < R0

and

R′

R
= q + ε,

then we define

M(R) = max
z∈CR

|f(z)|.

An estimate for the value of c(ε) is asymptotically (i.e., for sufficiently large N ) given by

c(ε) ≈
3

2
M(R)

q + ε

1 − (q + ε)
.

It may be necessary to replace the above expression for c(ε) by a larger one to obtain validity

of the bound (3.6) for all N . However, for certain regions F it is possible to obtain an explicit

constant valid for all N ≥ 0; see [29] and section 3.7 below.

3.4. General decay bounds. Simple numerical experiments in MATLAB reveal that if

A is a band symmetric matrix (e.g., tridiagonal) and f is a smooth function on an interval con-

taining the spectrum of A, then most of the (relatively) large entries of f(A) are concentrated

on or near the nonzero diagonals of A; outside the band, the entries of f(A) tend to drop off

rather quickly, albeit perhaps non-monotonically, and far from the main diagonal their magni-

tude becomes negligible. In other words, f(A) exhibits the off-diagonal decay property. Sim-

ilar behavior is observed for matrices with more general sparsity patterns, with most of the

large entries in f(A) located near the nonzero entries of A. This phenomenon is well-known

to physicists, who have referred to it as the nearsightedness principle, see [52]. Further exper-

iments suggest that a similar phenomenon holds for other types of diagonalizable matrices,

including non-normal ones and often even for matrices whose eigenvectors are very far from

being orthogonal. In Figs. 3.1–3.2 we display “city plots” demonstrating the rapid decay in

the square root and logarithm of two sparse symmetric positive definite matrices, nos4 and

bcsstk03, available from the Matrix Market (http://math.nist.gov/MatrixMarket/). Prior to

the computations, the matrices have been divided by their largest element and reordered with

reverse Cuthill–McKee.

In the mathematical literature, the decay property has been first noticed for the inverse of

banded, symmetric positive definite matrices; the seminal paper is [22], but see also [9, 40,

49, 60, 65]. The main result is an exponentially decaying upper bound of the form

|[A−1]ij | ≤ cλ|i−j|, where c > 0 and 0 < λ < 1 (1 ≤ i, j ≤ n).
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FIG. 3.1. City plot for the square root of nos4.
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FIG. 3.2. City plot for the logarithm of bcsstk03.

Here c and λ depend on the bandwidth and extreme eigenvalues of A, with decay being

faster when the bandwidth is small and the matrix well-conditioned. The decay bound can be

generalized to some extent to nonsymmetric (diagonalizable) matrices as well. Similar decay

results have also been obtained for the resolvent (zI − A)−1, the inverse square root A−1/2,

and the exponential exp(A); see [48, 49, 66, 74]. In [8], Gene Golub and the first author have

obtained a general decay result of the form

|[f(A)]ij | ≤ cλ|i−j|, where c > 0 and 0 < λ < 1 ,
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where A is banded symmetric and f is analytic on an ellipse containing the spectrum of A.

This result is based on a classical result of Bernstein (different from Theorem 3.3) combined

with the spectral theorem. The constants c and λ depend on the bandwidth of A and on the pa-

rameters of the ellipse and can be estimated explicitly. Some generalizations and applications

of this result can be found in the quantum information processing literature; see [16, 17, 72].

We further mention the decay bounds for functions of banded skew-symmetric matrices given

in [21, 56] which, however, were obtained using different techniques from ours.

In the next sections we provide some further generalizations of these known results that

extend and unify most existing bounds, using as our basic tool Theorem 3.3 above.

3.5. Decay rates for the entries of diagonalizable matrices. The decay bounds are

obtained by translating Bernstein’s Theorem 3.3 in terms of matrices, via matrix diagonal-

ization. Our treatment follows closely the ones in [8, 22]. Let A = [aij ] be a diagonalizable

matrix and let G(A) = (V, E) be the digraph associated with A. Recall that for i, j ∈ V ,

d(i, j) denotes the length of the shortest directed path connecting node i with node j. (If

there is no directed path from i to j, we set d(i, j) = ∞.) We note that this graph-theoretic

‘distance’ d(i, j) is not necessarily a true distance, since in general d(i, j) 6= d(j, i), unless

A is structurally symmetric. Clearly, whenever d(i, j) > 1 we have that aij = 0. More

generally, it is easy to see that a
(k)
ij = 0 whenever d(i, j) > k for k = 0, 1, . . ., where a

(k)
ij

denotes the (i, j) entry in the matrix Ak. To show this, we use induction over k and note that

the situation is trivial for k = 1. Consider now the following identity:

a
(k+1)
ij =

∑

l

a
(k)
il alj .

For pairs (i, l) such that d(i, l) > k we have that a
(k)
il = 0, by the inductive hypothesis. For

pairs with d(i, l) ≤ k we have that

k + 1 < d(i, j) ≤ d(i, l) + d(l, j) ≤ k + d(l, j)

and therefore d(l, j) > 1, hence alj = 0.

We are now in a position to state our general decay result. In the following, σ(A) denotes

the spectrum of A.

THEOREM 3.4. Let A be diagonalizable and assume that σ(A) is contained in a con-

tinuum F . Let κ(X) denote the spectral condition number of the matrix X of eigenvectors

of A. Let f be a function defined on F . Furthermore, assume that f is analytic on I(CR0
)

(⊃ σ(A)), where R0 = ρ
q with 0 < q < 1 and ρ is the logarithmic capacity of F . Then there

are positive constants K and 0 < λ < 1 such that

|[f(A)]ij | < κ(X)Kλd(i,j) for all i, j = 1 : n.(3.7)

Proof. From Theorem 3.3 we know that for any ε > 0 there exists a sequence of polyno-

mials Πk of degree k which satisfies for all z ∈ F

|f(z) − Πk(z)| < c(ε)(q + ε)k, where 0 < q < 1.

We therefore have, since A = XDX−1, that

‖f(A) − Πk(A)‖2 ≤ κ(X) max
z∈σ(A)

|f(z) − Πk(z)| < κ(X)c(ε)(q + ε)k,
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where 0 < q < 1. For i 6= j we can write

d(i, j) = k + 1

and therefore, observing that [Πk(A)]ij = 0 for d(i, j) > k, we have

|[f(A)]ij | = |[f(A)]ij − [Πk(A)]ij | ≤ ‖f(A) − Πk(A)‖2 < κ(X)c(ε)(q + ε)d(i,j)−1.

Hence, choosing ε > 0 such that λ = q + ε < 1 and letting K0 = c(ε)/(q + ε) we obtain

|[f(A)]ij | < κ(X)K0λ
d(i,j).

If i = j then |[f(A)]ii| ≤ ‖f(A)‖2 and therefore, letting K = max{K0, ‖f(A)‖2}, we see

that inequality (3.7) holds for all i, j.

It is clear that when the matrix A is dense, the bound (3.7) is not very meaningful since

the digraph G(A) will be dense as well. Hence, in practice the result is of some interest

only in the (pseudo)sparse case. Also note that if A is normal, then X can be chosen to be

unitary and therefore κ(X) = 1. This covers for example the Hermitian and skew-Hermitian

cases; we have thus obtained a single proof for results that had been previously proved using

different tools. It should be clear from the proof of this result that in general one should not

expect the bound to be very sharp. In particular, when A is highly non-normal (in the sense

that κ(X) ≫ 1) the bound can be a severe overestimate of the actual size of the elements of

f(A), and in this case other tools, such as for example pseudospectra, may be better suited to

characterize the actual decay behavior; see [78, 79].

3.6. The banded case. We now specialize the result to the case of band matrices. As A
is not assumed to have symmetric structure, it is necessary to account for the fact that for a

nonsymmetric matrix, the rate of decay can be different above and below the main diagonal.

For instance, A could have different numbers of nonzero diagonals below and above the

main diagonal. An extreme case is when A is an upper (lower) Hessenberg matrix, in which

case f(A) typically exhibits fast decay below (above) the main diagonal, and generally no

decay above (below) it. In Figure 3.3 we display on the left the magnitude of the entries

of f(A) = cos(A) where A is a band matrix with one nonzero diagonal below and four

nonzero diagonals above the main diagonal. The matrix is diagonalizable, but the condition

number κ(X) of the eigenvector matrix is of the order of 1010. The plot on the right shows

the magnitude of the entries on the 50th row of cos(A).
We establish the appropriate decay results next. We give the proof of the bound for

entries in the lower part of f(A) only; the proof for the entries in the upper part of f(A) is

identical, with the obvious changes.

We say that a matrix A has lower bandwidth p > 0 if aij = 0 whenever i − j > p
and upper bandwidth s > 0 if aij = 0 whenever j − i > s. We note that if A has lower

bandwidth p then Ak has lower bandwidth kp for k = 0, 1, 2, . . ., and similarly for the upper

bandwidth s.

THEOREM 3.5. Let A be diagonalizable with upper bandwidth p and lower bandwidth

s. Assume that σ(A) is contained in a continuum F . Let f be a function defined on F .

Furthermore, assume that f is analytic on I(CR0
) (⊃ σ(A)), where R0 = ρ

q with 0 < q < 1
and ρ is the logarithmic capacity of F . Then there are positive constants K, C and 0 <
λ, η < 1 such that for i ≥ j,

|[f(A)]ij | < κ(X)Kλi−j,(3.8)

and for i < j,

|[f(A)]ij | < κ(X)Cηj−i.(3.9)
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FIG. 3.3. Cosine of a nonsymmetric band matrix.

Proof. Observe first that for k = 0, 1, . . . the matrix Πk(A) has lower bandwidth kp for

all polynomials Πk(z) of degree at most k. From Bernstein’s Theorem we know that for any

ε > 0 there exists a sequence of polynomials Πk(z) of degree k which satisfies for all z ∈ F

|f(z) − Πk(z)| < c(ε)(q + ε)k, where 0 < q < 1.

We therefore have since A = XDX−1 that

‖f(A) − Πk(A)‖2 ≤ κ(X) max
z∈σ(A)

|f(z) − Πk(z)| < κ(X)c(ε)(q + ε)k,

where 0 < q < 1. For i > j write

i − j = kp + l for l = 1, . . . , p;

then we have that

i − j

p
− 1 ≤ k

and hence observing that [Πk(A)]ij = 0 for i − j > pk,

|[f(A)]ij | = |[f(A)]ij − [Πk(A)]ij | ≤ ‖f(A) − Πk(A)‖2 < κ(X)c(ε)(q + ε)
i−j

p
−1.

Hence, letting λ = (q + ε)
1

p and K0 = c(ε)/(q + ε) we obtain

|[f(A)]ij | < κ(X)K0λ
i−j .

If i = j then |[f(A)]ii| ≤ ‖f(A)‖2 and therefore, letting K = max{K0, ‖f(A)‖2}, we see

that inequality (3.8) holds for all i ≥ j.

An immediate corollary of Theorem 3.5 is the following.

COROLLARY 3.6. Let A be a banded diagonalizable matrix. Assume that σ(A) is

contained in a continuum F . Let f be a function defined on F . Furthermore, assume that f
is analytic on I(CR0

) (⊃ σ(A)), where R0 = ρ
q with 0 < q < 1 and ρ is the logarithmic

capacity of F . Then there are positive constants K and 0 < λ < 1 such that for all i,j=1:n,

|[f(A)]ij | < κ(X)Kλ|i−j|.

We note that for A real and symmetric, this is essentially Theorem 2.2 in [8].
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3.7. More refined bounds. The bounds obtained in the previous section can be im-

proved by using sharper estimates on the Faber polynomials, provided that some (fairly rea-

sonable) additional conditions are imposed on the continuum F . As already mentioned at the

end of section 3.3, in [29] the author presents more quantitative estimates on the N th Faber

polynomial for certain choices of F . Specifically, assume that F is a closed Jordan region.

By a Jordan region we mean a region F that is bounded and whose boundary Γ consists of

pairwise disjoint closed Jordan curves. If Γ is rectifiable, there exists at almost every point

z ∈ Γ a tangent vector that makes an angle Θ(z) with the positive real axis. We say that Γ
has bounded total rotation V if

V =

∫

Γ

|dΘ(z)| < ∞.

It is apparent that V ≥ 2π and equality holds if F is convex. In the case where F degenerates

to a Jordan arc, the following results remain valid; we refer the reader to [29] for details.

THEOREM 3.7. Let F be a Jordan region whose boundary Γ is of bounded total rota-

tion V . Then the following holds:

(a) For N ≥ 1,

‖ΦN‖∞ ≤ ρNV/π.

This bound holds with equality when F coincides with the interval [−1, 1].

(b) Let f be analytic on the closed region CR, R > ρ, then for N ≥ 0 we have

‖f − ΠN‖∞ ≤
M(R)V

π

(ρ/R)N+1

1 − ρ/R
,

where M(R) = maxz∈CR
|f(z)| and ΠN (z) are the polynomials defined by equa-

tion (3.5).

These bounds can be used to improve our earlier estimates in the case when F and f
satisfy the conditions of Theorem 3.7. If in addition A satisfies the conditions of Theorem 3.4,

we can obtain the following bound for the entries of f(A):

|[f(A)]ij | ≤ κ(X)Kλd(i,j),(3.10)

where now K = max
{

‖f(A)‖2,
M(R)V

π(1−ρ/R)

}

and λ = ρ/R.

We now compare the above bound on the entries of f(A) with the magnitude of the actual

entries [f(A)]ij , for i < j, in a special case. The matrix A is tridiagonal, with spectrum in

F = [−1, 1]. In this case ρ = 1/2 and since F is convex, we have that V = 2π. The function

f must be analytic on the ellipse

x2

(

R
2ρ + ρ

2R

)2 +
y2

(

R
2ρ − ρ

2R

)2 = 1.

This is an ellipse with foci at ±1, the sum of whose semiaxes is R/ρ. For our experiment we

take f(z) = ez , which is entire and therefore satisfies our assumptions. The constant M(R)
is then given by

M(R) = eR+ 1

4R .
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FIG. 3.4. Upper bound (3.10) vs. the entries of exp(A), first row.

It is important to note that (3.10) gives us a bound that changes with R. We can use small

values of R to estimate the elements on the first few off-diagonals, and increase R as we

move away from the diagonal. This adaptive strategy allows us to obtain sharper bounds than

those described in the previous section. In Figure 3.4 we show the upper bound compared

to the actual magnitude of the off-diagonal entries in the first row of f(A) = exp(A), in

both linear and logarithmic scales. Clearly, the bound does a good job capturing the decay

behavior, especially as one moves away from the main diagonal.

The decay bounds obtained so far can be used to predict a minimum bandwidth (more

generally, sparsity pattern) for the computed approximation to f(A) to satisfy a prescribed

error tolerance; if the rate of decay, expressed in terms of the various quantities entering the

upper bound, does not depend on n, then an O(n) approximation is feasible. A sufficient

condition is that the n × n matrix sequence {An} is such that for all n, the spectra σ(An)
are all contained in a region that is bounded and bounded away from the singularities of f
(if any); furthermore, the condition numbers of the corresponding eigenvector matrices must

be bounded independent of n. Although these conditions seem rather restrictive, they are

satisfied by large classes of matrices and functions that arise in applications, for example

when f is entire and {An} is a sequence of normal (e.g., Hermitian) matrices with bounded

spectra. If f is not entire (for example if f(z) = z−1, f(z) = z−1/2, or f(z) = log(z))
then the spectra of the {An} must remain bounded away from the singularities of f . As

an example, O(n) approximation of the inverse A−1
n is possible if there is a compact set

that contains all the spectra σ(An) and has positive distance from z = 0, provided that the

eigenvector matrices have condition numbers that remain bounded as n → ∞.

4. Approximation algorithms. In this section we give a description of the algorithms

we use to compute approximations to functions of sparse or banded matrices. As an integral

part of the approach used, we also describe a procedure that can be used to determine a

sparsity pattern or bandwidth for the approximation that captures all the relevant entries to a

prescribed tolerance. In the following, when we write f(A) we are implicitly assuming that

the function f(z) is defined on the spectrum of the matrix A and therefore the matrix function

f(A) is well defined.

To approximate f(A) we consider algorithms that are based upon polynomial approx-

imation. The problem is thus reduced to that of finding a rapidly converging polynomial

approximation to the scalar function f(z) on a domain in the complex plane. This problem

has been extensively studied in the approximation theory and numerical analysis literature;

see, e.g., [30, 33, 73]. Depending on the location of the spectrum, different approaches can
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be used. If the eigenvalues of A lie on a line segment in C, and estimates for the endpoints

of the segment are available, it is possible to scale and shift the matrix A so that the resulting

matrix has its spectrum in the interval [−1, 1]. For instance, let A have real spectrum with

a = λmin(A) and b = λmax(A). The affine linear function

ξ : C −→ C given by ξ(λ) =
2λ − (a + b)

b − a

satisfies ξ([a, b]) = [−1, 1], and therefore the spectrum of B = ξ(A) = 2
b−aA − a+b

b−aI
is contained in [−1, 1]. Hence, we can use the well known three-term recurrence relation

to generate the (optimal) Chebyshev polynomials and obtain an approximation to f(B) by

truncating the Chebyshev series. The approximation for the original matrix function f(A)
can then be easily obtained from that of f(ξ−1(B)) by inverting ξ. For simplicity of notation,

we will assume that the matrix A has already been scaled and shifted so that its spectrum is

contained in the interval [−1, 1].
For more general matrices, whose eigenvalues lie within a region F ⊂ C more compli-

cated than a line segment, it is possible to generalize the method above to some extent by

means of Faber polynomials; see, e.g., [10, 63, 64]. For certain domains F the Faber polyno-

mials satisfy a three-term recurrence relation similar to that of the Chebyshev polynomials;

for instance, this is the case when the spectrum lies in the interior of an ellipse on which f
is analytic. However, for more general regions F the kth Faber polynomial satisfies a k-term

recurrence relation. From the point of view of storage requirements, this is a serious draw-

back. Some truncation and restarting strategies have been considered in the literature; here we

consider instead an alternative approximation technique based on Newton-type interpolation,

already used in [76].

4.1. Chebyshev expansion. Expansion in the Chebyshev basis has long been a popular

approach for computing approximations to the density matrix in electronic structure calcu-

lations; see, e.g., [2, 37]. The method can be used to approximate a wide variety of matrix

functions, as long as the matrix can be easily transformed to one whose eigenvalues lie in

[−1, 1]; e.g., if A is Hermitian or skew-Hermitian. We start by recalling the matrix version of

the classical three-term recurrence relation for the Chebyshev polynomials:

Tk+1(A) = 2ATk(A) − Tk−1(A), k = 1, 2, . . .(4.1)

(with T0(A) = I , T1(A) = A). These matrices can be used to obtain an approximation

f(A) =
∞
∑

k=1

ckTk(A) −
c1

2
I ≈

N
∑

k=1

ckTk(A) −
c1

2
I =: PN (A)

to f(A) by truncating the Chebyshev series expansion after N terms. The coefficients ck in

the expansion only depend on f (not on A) and can be easily computed numerically at a cost

independent of n using the approximation

ck ≈
2

M

M
∑

j=1

f(cos(θj)) cos((k − 1)θj),

where θj = π(j − 1
2 )/M . Thus, most of the computational work is performed in (4.1). The

basic operation in (4.1) is the matrix–matrix multiply. If the initial matrix A is m-banded,

then after k iterations the matrix Tk+1(A) will be km-banded. In order to have a linear scaling

algorithm, it is essential to fix a maximum bandwidth for the approximation PN (A), which
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must not depend on n. Then the cost is dominated by the matrix–matrix multiplies, and this

is an O(n) operation provided that the maximum bandwidth remains bounded as n → ∞.

Similar conclusions apply for more general sparsity patterns, which can be determined by

using the structure of successive powers Ak of A. Alternatively, dropping elements by size

using a drop tolerance is often used, although rigorous justification of this procedure is more

difficult.

Let us now consider the error incurred by the series truncation:

‖eN (A)‖ = ‖f(A) − PN (A)‖,(4.2)

where ‖·‖ is, for instance, the matrix 2-norm. We limit our discussion to the banded case, but

the same arguments apply in the case of general sparsity patterns as well. Since |Tk(x)| ≤ 1
for all x ∈ [−1, 1] and k = 1, 2, . . ., we have that ‖Tk(A)‖ ≤ 1 for all k, since σ(A) ⊂
[−1, 1]. Using this well-known property to bound the error in (4.2), we obtain that

‖eN (A)‖ =

∥

∥

∥

∥

∥

∞
∑

k=N+1

ckTk(A)

∥

∥

∥

∥

∥

≤
∞
∑

k=N+1

|ck|.

The last inequality shows that the error defined by (4.2) only depends on the sum of the ab-

solute values of the coefficients ck for k = N +1, N +2, . . ., but these in turn do not depend

on n, the dimension of the matrix we are approximating. Hence if we have a sequence of

n × n matrices {An} with σ(An) ⊂ [−1, 1] for all n, we can use an estimate of the quantity
∑∞

k=N+1 |ck| and use that to prescribe a sufficiently large bandwidth (sparsity pattern) to

ensure a prescribed accuracy of the approximation. As long as the bandwidth of the approx-

imation does not exceed the maximum prescribed bandwidth, the error is guaranteed to be

n-independent. In practice, however, we found that this strategy is too conservative. Because

of the rapid decay outside of the bandwidth of the original matrix, it is usually sufficient

to prescribe a much smaller maximum bandwidth than the one predicted by the truncation

error. This means that numerical dropping is necessary (see section 4.3 below for our rec-

ommended dropping strategy), since the bandwidth of PN (A) rapidly exceeds the maximum

allowed bandwidth. Because of dropping, the simple error estimate given above is no longer

rigorously valid. Our numerical experiments, however, suggest that n-independence (and

therefore linearly scaling complexity and storage requirements) is maintained.

4.2. General polynomial approximation. We now turn to the problem of approximat-

ing f(A) when the spectrum of A is contained in an arbitrary continuum F ⊂ C; for a more

detailed description of the technique we use, see [76]. The (Newton) interpolation polynomial

we use is of the form

PN (A) = c0I + c1(A−z0I)+ c2(A−z0I)(A−z1I)+ · · ·+ cN (A−z0I) . . . (A−zN−1I),

where ck is the divided difference of order k, i.e.,

ck = f [z0, . . . , zk], k = 0, . . . , N.

For k = 0, . . . , N − 1, the interpolation points are chosen as zk = Ψ(ωk), where ωk are

the N roots of the equation ωN = ρ and Ψ(z) is the inverse of the map Φ(z) that maps

the complement of F to the outside of a disk with radius ρ and satisfies the normalization

conditions (3.2). This method does not require the computation of Faber polynomials and

their coefficients. However, it does require knowledge of the map Ψ(z). For specific domains

F this map can be determined analytically, see for example [10, 76]. In addition, Ψ(z) may
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require information on the convex hull of the eigenvalues of A. For more general domains one

may have to resort to numerical approximations to compute Ψ(z); see [77]. Once again, the

approximation algorithm requires mostly matrix–matrix multiplies with banded (or sparse)

matrices and appropriate sparsification is generally required to keep the cost within O(n) as

the problem size n grows. A rigorous error analysis that takes dropping as well as truncation

into account is currently being attempted.

4.3. Dropping. We combine the above approaches with a dropping strategy. The idea

applies to more general sparsity patterns, but we restrict our discussion to the case where A
is a banded matrix with bandwidth m. In this case we only keep elements inside a prescribed

bandwidth m̂ in every iteration. For given ρ and R we choose m̂ a priori so as to guarantee

that

(ρ/R)m̂ ≈ ε/C,

where C > 0 is the constant for the bounds on [f(A)]ij (with i 6= j) discussed in section 3.7

and ε > 0 is a prescribed tolerance. Note that C is independent of the norm of f(A) since we

do not expect the diagonal elements to be insignificant.

As already noted, if A is banded with bandwidth m, then Ak has bandwidth km. This

means that if we want the approximation to have a fixed bandwidth m̂, where m̂ is (say) an

integer multiple of m corresponding to a prescribed approximation error ε, then we ought to

truncate the expansion at the N∗th term, with N∗ = m̂/m. It may happen, however, that

this value of N is actually too small to reduce the error below the prescribed threshold. In

this case it is necessary to add extra terms to the Chebyshev expansion; but this would lead to

an increase of the bandwidth beyond the prescribed limit. A solution that has been used by

physicists is simply to continue the recurrence but ignoring all entries in positions outside the

prescribed bandwidth; see, e.g., [2, 37, 71]. The important fact is that by restricting all the

terms in the three-term recurrence (4.1) to have a fixed bandwidth (independent of n and N )

we obtain an approximation scheme whose cost scales linearly in the size n of the problem.

4.4. Stopping criteria. In alternative to strategies that fix the number of terms in the

polynomial expansion a priori (with or without dropping), one could decide to continue to add

additional terms to the approximation to f(A) until some convergence criterion is satisfied. In

other words, a dynamic criterion rather than a static, a priori one could be used. For instance,

with the Chebyshev expansion method one can monitor the size of the coefficients ck and

stop iterating when these are sufficiently small. Also, for some matrix functions a natural

notion of residual exists. For example in the case of f(A) = A−1, stopping criteria could be

formulated on the basis of the size (in some appropriate norm) of the matrix R = I−AM (or

R = I−MA), where M is the current computed approximation. For f(A) = A1/2, where A
is Hermitian and positive definite, one can use ‖R‖ = ‖A−M2‖, and ‖R‖ = ‖I −MAM‖
for f(A) = A−1/2. Relative versions of these residuals can also be used, if an estimate of

‖f(A)‖ is available.

For many other types of matrix functions, however, no natural notion of residual seems

to be readily available. In this case one may decide to stop the approximation process if

significant progress is no longer being made. A possibility would be to stop iterating when

the norm of the difference ‖Mnew − Mold‖ between two successive approximations is be-

low a prescribed threshold δ > 0. Another possibility, which makes sense in some appli-

cations, could be to monitor the change in the trace; that is, the process is stopped when

|trace(Mnew) − trace(Mold)| < δ. Such criteria may fail in case of temporary stagnation;

see [32] for some discussion of this issue, although in a somewhat different context. A rigor-

ous justification of such criteria, however, is still lacking, and more work is needed to devise

reliable dynamic stopping criteria.
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5. Numerical experiments. In this section we present the results of a few preliminary

numerical experiments aimed at illustrating the performance of the approximation algorithms

discussed in section 4, with particular attention to linear scaling behavior. We performed sev-

eral tests involving different types of matrices and functions. We regard our approximation

schemes as iterative methods, with each new iteration consisting of the inclusion of an addi-

tional term in the polynomial expansion. In our computations we exploit the decay property

of the entries in f(A) to keep a fixed number m̂ of off–diagonals in every iteration. By N
we denote the number of terms in the expansion that were necessary to obtain the indicated

error. The errors were obtained by comparing the computed approximation to the exact com-

putation via MATLAB’s funm command. Unless otherwise specified, we measure the relative

error in the Frobenius norm.

As a first example we consider the matrix function known as Fermi–Dirac density matrix

(FDM), which is fundamental to computational quantum chemistry:

P = f(A), where f(z) =
1

1 + eβ(z−µ)
.

Here A is the Hamiltonian and µ is a shift parameter, called the chemical potential, which

can be chosen so as to have trace[f(A)] = Ne, the number of electrons (occupied states) in

the system. The parameter β is called the inverse temperature; see, e.g., [2]. The exponential

off-diagonal decay property of the density matrix, which is closely related to the localization

of the eigenvectors of the Hamiltonian, is well-established in the physics literature; see, e.g.,

[1, 37, 42, 52, 59]. Since the early 1990s, this property has been exploited in the development

of O(n) methods for electronic structure calculation [14, 34, 37, 52, 55, 61, 70, 71]. Here

we note that since P = f(A) is a smooth function of a sparse symmetric matrix A (the

Hamiltonian is usually well-localized for a suitable choice of the basis set), the decay property

also follows from Theorem 2.2 in [8]. The city plot in Figure 5.1 shows the rapid decay in the

Fermi–Dirac density matrix corresponding to a “one-dimensional Anderson model”; see [1].

That is, the matrix function is f(A) = (exp(β(A − µI)) + I)−1 where A is a 200 × 200
symmetric tridiagonal matrix with random entries on the main diagonal (drawn from the

uniform distribution on [0, 1]) and with the remaining nonzero entries equal to −1. In this

example we used β = 2 and µ = 0.5.

In Table 5.1 we show results for the approximation of the Fermi–Dirac density matrix for

different values of n, µ, and β. Under “cost/n” we report the cost per unknown, i.e., the total

number of arithmetic operations divided by n. The results clearly show the n-independent

behavior (and hence, linear scaling complexity) of the algorithm. The total cost of the ap-

proximation as a function of problem size for the two test cases is shown in Fig. 5.2.

TABLE 5.1

Results for f(z) = 1
1+exp(β(z−µ))

µ = 2, β = 2.13 µ = 0.5, β = 1.84
n error N m̂ cost / n error N m̂ cost / n

100 9e−06 18 20 6129 6e−06 18 22 6129
200 4e−06 19 20 6498 9e−06 18 22 6129
300 4e−06 19 20 6498 5e−06 20 22 6867
400 6e−06 19 20 6498 8e−06 20 22 6867
500 8e−06 19 20 6498 8e−06 20 22 6867

We now discuss how the values of N and m̂ were determined. Note that since the Fermi–

Dirac density matrix is an approximation of an orthogonal projector of known rank, special
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FIG. 5.1. City plot for a Fermi–Dirac density matrix.
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FIG. 5.2. Flop count as a function of n for Fermi–Dirac matrix functions.

stopping criteria can be used in this case. However, rather than using such criteria we adopted

a more general strategy. The choice of the number N of terms to include in the Chebyshev

series expansion is an easy matter, since the magnitude of the coefficients can be monitored.

Note that if f is analytic, the coefficients ck decay exponentially fast. Once the sum of the

absolute values of three consecutive coefficients is sufficiently small, no additional terms are

added; here we used the rather conservative tolerance of 1e−15. Although not very sophisti-

cated, this criterion gave good results in practice. We obtained the a priori bandwidth m̂ = 20
as follows. We first note that |f(z)| ≤ 1 for all z, therefore the constant M(R) in the bounds

for |[f(A)]ij | can be neglected. To perform the computation in the Chebyshev basis we scale

and shift the matrix A so that its spectrum lies in [−1, 1]. To obtain the approximation to

f(A) with the original A we shift and scale back the coefficients in the Chebyshev series.

The logarithmic capacity of [−1, 1] is given by ρ = 1/2, and V 1
π(1−ρ/R) = 4 when R = 1.

The entries (i, j) in f(A), where i and j are such that |i − j| ≥ 20, have magnitude at most

3e−06 and can therefore be neglected. For the second case (µ = 0.5, β = 1.84) we had to

slightly increase N and m̂ to achieve a comparable a priori error. As a rule, it is a good idea

to use values of m̂ that are slightly greater than those predicted by the theory, also in view

of the effects of dropping. We further note that in this example, the maximum bandwidth m̂
was actually never reached, so no dropping was performed. This shows, incidentally, that for
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this example the a priori estimate for m̂ was quite accurate, since the actual final bandwidth

is very close to m̂.

We performed many more experiments with the Chebyshev method and obtained ex-

cellent results whenever f is an entire function. If f has singularities, however, we found

that the method can converge quite slowly, especially when the singularities are close to the

spectrum of A. In these cases, the approach described in section 4.2 was found to be much

better. Therefore, in the remaining tables we use the interpolation approach. The results in

Table 5.2 were obtained by interpolating the “entropy” function f(z) = z log(z) to obtain an

approximation to f(A) = A log(A). As before, the values of N and m̂ that are guaranteed

to result in a given error can be estimated a priori from knowledge of the parameters ρ and

R. Note that in this case, the estimated bandwidth is about twice the final one, suggesting

that the decay bounds used to estimate m̂ can sometimes be conservative. The matrix A is a

tridiagonal matrix with random diagonal entries, shifted so as to be diagonally dominant (and

therefore positive definite, so that the logarithm is well-defined). We also report the absolute

error in the trace of the matrix function. Once again, the linear scaling behavior is clear.

TABLE 5.2

Results for f(z) = z log (z)

A log (A) trace[A log (A)]
n error error m̂ N

100 5e−07 3e−04 20 9
200 6e−07 8e−04 20 9
300 1e−07 3e−04 20 10
500 2e−07 5e−04 20 10

For Table 5.3 we use a pseudosparse matrix A with entries given by aij = e−α|i−j|,

where α > 0. This is a convenient way to generate matrices with a given rate of decay. Note

that in the limiting case α = 0, the matrix is “flat” (there is no decay). As α is increased,

the rate of decay also increases. It is known that A−1 is a tridiagonal M -matrix, hence A
is positive definite. To compute f(A) = log(A), we first sparsify A by keeping enough

diagonals to make the sparsification error ‖A − Ã‖ smaller than a prescribed accuracy and

then we approximate log(Ã). The reported errors are relative to the matrix function log(A)
computed on the full A. For the first test we use α = 2 and we keep m = 15 off-diagonals

above and below the main diagonal. Again, the linear scaling behavior is apparent.

TABLE 5.3

Results for f(z) = log (z)

log (A) trace[log (A)]
n error error m̂ N

100 4e−07 7e−06 10 9
200 4e−07 1e−05 10 9
300 4e−07 2e−05 10 9
500 4e−07 3e−05 10 9

Next we consider some non-Hermitian examples. In Table 5.4 we show results for the

exponential, the sine and the cosine. The matrix A has entries aij = e−α(i−j) for i ≥ j and

aij = e−β(j−i) for i < j with α, β > 0. To obtain a non-symmetric matrix we choose α = 1
and β = 1.5. We sparsify the matrix by keeping 25 off–diagonals on either side of the main

diagonal. The reported errors are relative to the “exact” computation using the full A.
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TABLE 5.4

Results for f(z) = exp (z), cos (z), sin (z)

exp (A) cos (A) sin (A)
n error m̂ N error m̂ N error m̂ N

100 6e−08 30 12 4e−07 30 11 9e−07 30 11
300 6e−08 30 12 4e−07 30 11 3e−08 30 12
500 4e−08 30 11 2e−08 30 11 2e−07 30 10

In Table 5.5 we show results for the exponential function for a non-symmetric matrix

with A generated as above, with α = 1 and β = 2. Now we keep only 15 off–diagonals on

either side of the main diagonal. Again, we observe n-independence of the results.

TABLE 5.5

Results for f(z) = exp (z)

exp (A)
n error m̂ N

100 3e−07 25 10
300 4e−07 25 9
500 4e−07 25 9
1000 4e−07 25 9

For the results in Table 5.6 we use two examples of banded non-symmetric matrices from

the Matrix Market. Again, we show results for the exponential, the sine and the cosine. The

matrices where scaled by dividing through by the largest eigenvalue.

TABLE 5.6

Results for f(z) = exp (z), cos (z), sin (z)

f(A) A n error m̂ N
exp(A) Bai/olm100 100 3e−06 12 8
exp(A) Bai/olm500 500 2e−06 12 9
sin(A) Bai/olm100 100 3e−06 12 8
sin(A) Bai/olm500 500 1e−06 12 9
cos(A) Bai/olm100 100 4e−06 12 8
cos(A) Bai/olm500 500 2e−06 12 9

Additional possible applications of the theory and methods discussed in the present paper

include fast algorithms for approximating the determinant of a large, sparse symmetric posi-

tive definite matrix; see [6, 47, 54, 67] for motivation and background. One possible approach

is the reduction of the computation of the determinant to that of the trace of a matrix function;

for instance, one could exploit the straightforward identity det(A) = exp(trace[log (A)]). If

the smallest eigenvalue of A is not too close to zero, approximating the trace of log (A) is

not difficult and good results can be expected. In Table 5.7 we give results for the approx-

imation of the determinant of two symmetric positive definite matrices obtained using the

identity det(A) = exp(trace[log(A)]). For the first example we use the matrix A with en-

tries aij = e−2|i−j| as above. Prior to computing the approximation of the logarithm we

truncate A symmetrically to fifteen off-diagonals. For the second example we use a banded

diagonally dominant matrix with sixteen nonzero diagonals. The (relative) errors reported in

the table compare the computed approximation with the actual value of the determinant of A.
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TABLE 5.7

Approximation of the determinant

Toeplitz matrix Banded matrix

n error N m̂ error N m̂
100 7e−06 10 9 2e−06 14 45
200 1e−05 10 9 5e−06 14 45
300 2e−05 10 9 7e−06 14 45
500 4e−05 10 9 1e−05 14 45

Finally, we consider banded approximations to f(A) = A−1 as preconditioners for the

conjugate gradient method applied to linear systems Ax = b where A = T+D is a symmetric

positive definite “Toeplitz-plus-diagonal” matrix. We note that no fast solvers are available

for this problem unless D is nearly a multiple of the identity, but see the recent paper [66]

for an approach that yields reasonable results. Here T has entries tij = e−0.1|i−j| and D is a

random diagonal matrix with entries in the interval (5, 6). The right-hand side b is a random

vector and x0 = 0 is used as the initial guess. We stop the preconditioned conjugate gradient

(PCG) iteration when the residual norm is reduced to at least 1e−07. The preconditioners

are constructed as follows. We first truncate A to obtain a matrix with bandwidth m = 20,

then we run a fixed number N = 10 of iterations of the polynomial approximation method

for f(z) = z−1 to construct a banded approximate inverse to the truncated matrix. We fix

the bandwidth of the approximate inverse to m̂ = 40, i.e., we allow the approximate inverse

to have twice the bandwidth of the truncated matrix. Of course, the original matrix A is used

for the matrix–vector multiplies in the PCG iteration. The results in Table 5.8 show that this

simple preconditioner works quite well. Note that with an FFT-based implementation the

cost of each matrix–vector multiply with A in the conjugate gradient method is O(n log n),
whereas the cost of forming and applying the preconditioner in each iteration is just O(n). In

contrast, application of a circulant-plus-diagonal preconditioner costs O(n log n) in general.

TABLE 5.8

Number of PCG iterations

n
Precond. 100 200 600 800 1000 2000 3000

None 37 56 73 82 85 86 95
M ≈ A−1 8 12 13 13 14 14 16

6. Conclusions. In this paper we have proved some general theoretical results on decay

phenomena in functions of sparse matrices, and we have investigated some algorithms, based

on polynomial approximation, for approximating matrix functions. Our decay bounds extend

and unify several results that were known from the literature, and help understand various

localization phenomena observed by physicists. Moreover, our results show that O(n) ap-

proximation is possible in many cases of practical interest. Of course, much work remains

to be done. In this paper we have illustrated the theory by some simple MATLAB experi-

ments involving mostly band matrices of fairly small size. Although this was enough for

our purpose, which was to illustrate the decay behavior of f(A) and the O(n) scaling of the

approximation algorithms, we plan to investigate more realistic problems in the near future.

This includes larger matrices with general sparsity structure, and more complicated matrix

functions.
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