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DERIVATION OF HIGH-ORDER SPECTRAL METHODS FOR
TIME-DEPENDENT PDE USING MODIFIED MOMENTS ∗

JAMES V. LAMBERS†

In memory of Gene Golub

Abstract. This paper presents a reformulation of Krylov Subspace Spectral (KSS) Methods, which build on
Gene Golub’s many contributions pertaining to moments and Gaussian quadrature, to produce high-order accurate
approximate solutions to variable-coefficient time-dependent PDE. This reformulation serves two useful purposes.
First, it more clearly illustrates the distinction betweenKSS methods and existing Krylov subspace methods for solv-
ing stiff systems of ODE arising from discretizions of PDE. KSS methods rely on perturbations of Krylov subspaces
in the direction of the data, and therefore rely on directional derivatives of nodes and weights of Gaussian quadra-
ture rules. Second, because these directional derivativesallow KSS methods to be described in terms of operator
splittings, they facilitate stability analysis. It will beshown that under reasonable assumptions on the coefficientsof
the problem, certain KSS methods are unconditionally stable. This paper also discusses preconditioning similarity
transformations that allow more general problems to benefitfrom this property.
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1. Introduction. Consider the following initial-boundary value problem in one space
dimension,

(1.1) ut + Lu = 0 on (0, 2π) × (0,∞),

(1.2) u(x, 0) = f(x), 0 < x < 2π,

with periodic boundary conditions

(1.3) u(0, t) = u(2π, t), t > 0.

The operatorL is a second-order differential operator of the form

(1.4) Lu = −puxx + qu,

wherep is a positive constant andq(x) is a nonnegative (but nonzero) smooth function. It
follows thatL is self-adjoint and positive definite.

In [18], [19], a class of methods, called Krylov subspace spectral (KSS)methods, was
introduced for the purpose of solving time-dependent, variable-coefficient problems such as
this one. These methods are based on the application of techniques developed by Golub and
Meurant in [9], originally for the purpose of computing elements of the inverse of a matrix,
to elements of the matrix exponential of an operator. It has been shown in these references
that KSS methods, by employing different approximations ofthe solution operator for each
Fourier component of the solution, achieve higher-order accuracy in time than other Krylov
subspace methods (see, for example, [15]) for stiff systems of ODE. However, the essential
question of the stability of KSS methods has yet to be addressed. This paper represents a first
step in this direction.
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Section2 reviews the main properties of KSS methods, including algorithmic details and
results concerning local accuracy. The main idea behind these methods is that each Fourier
component of the solution is obtained from aperturbationof a frequency-dependentKrylov
subspace in the direction of the initial data, instead of a single Krylov subspace generated
from the data. It follows that KSS methods can be reformulated in terms of directional deriva-
tives of moments. This leads to a new algorithm that represents the limit of a KSS method
as the size of the perturbation approaches zero, thus avoiding the cancellation and parameter-
tuning that is required by the original algorithm. This new algorithm is presented in section3.
Compared to the original algorithm, the new one lends itselfmore readily to stability anal-
ysis, which is carried out for the simplest KSS methods in sections 4 and5. In section6,
this analysis is repeated for the application of KSS methodsto the second-order wave equa-
tion, which was introduced in [12]. Section7 presents homogenizing transformations that
can be applied to more general variable-coefficient second-order differential operators, in-
cluding a new transformation that can be used to homogenize asecond-order operator with
smoothly varying coefficients, up to an operator of negativeorder. These transformations
allow problems featuring these more general operators to besolved using KSS methods with
the same accuracy and stability as the simpler problem presented in the preceding sections.
In section8, various generalizations are discussed.

2. Krylov subspace spectral methods.We begin with a review of the main aspects of
KSS methods. LetS(t) = exp[−Lt] represent the exact solution operator of the problem
(1.1), (1.2), (1.3), and let〈·, ·〉 denote the standard inner product of functions defined on
[0, 2π],

〈f(x), g(x)〉 =

∫ 2π

0

f(x)g(x) dx.

Krylov subspace spectral methods, introduced in [18], [19], use Gaussian quadrature on the
spectral domain to compute the Fourier components of the solution. These methods are time-
stepping algorithms that compute the solution at timet1, t2, . . ., wheretn = n∆t for some
choice of∆t. Given the computed solutioñu(x, tn) at timetn, the solution at timetn+1 is
computed by approximating the Fourier components that would be obtained by applying the
exact solution operator tõu(x, tn),

(2.1) û(ω, tn+1) =

〈

1√
2π
eiωx, S(∆t)ũ(x, tn)

〉

.

Krylov subspace spectral methods approximate these components with higher-order temporal
accuracy than traditional spectral methods and time-stepping schemes. We briefly review how
these methods work.

We discretize functions defined on[0, 2π] on anN -point uniform grid with spacing
∆x = 2π/N . With this discretization, the operatorL and the solution operatorS(∆t) can
be approximated byN × N matrices that represent linear operators on the space of grid
functions, and the quantity (2.1) can be approximated by a bilinear form

(2.2) û(ω, tn+1) ≈ ê
H
ω SN (∆t)u(tn),

where

[êω]j =
1√
2π
eiωj∆x, [u(tn)]j = u(j∆x, tn),
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and

(2.3) SN (t) = exp[−LN t], [LN ]jk = −p[D2
N ]jk + q(j∆x) ,

whereDN is a discretization of the differentiation operator that isdefined on the space of
grid functions. Our goal is to approximate (2.2) by computing an approximation to

[ûn+1]ω = êH
ω u(tn+1) = êH

ω SN (∆t)u(tn).

In [9], Golub and Meurant describe a method for computing quantities of the form

(2.4) uT f(A)v,

whereu andv areN -vectors,A is anN × N symmetric positive definite matrix, andf is
a smooth function. Our goal is to apply this method withA = LN , whereLN was defined
in (2.3), f(λ) = exp(−λt) for somet, and the vectorsu andv are derived from̂eω andu(tn).

The basic idea is as follows: since the matrixA is symmetric positive definite, it has real
eigenvalues

b = λ1 ≥ λ2 ≥ · · · ≥ λN = a > 0,

and corresponding orthogonal eigenvectorsqj , j = 1, . . . , N . Therefore, the quantity (2.4)
can be rewritten as

uT f(A)v =

N
∑

ℓ=1

f(λℓ)u
Tqjq

T
j v.

We leta = λN be the smallest eigenvalue,b = λ1 be the largest eigenvalue, and define
the measureα(λ) by

α(λ) =











0, if λ < a,
∑N

j=i αjβj , if λi ≤ λ < λi−1,
∑N

j=1 αjβj , if b ≤ λ.

αj = uTqj , βj = qT
j v,

If this measure is positive and increasing, then the quantity (2.4) can be viewed as a Riemann-
Stieltjes integral

uT f(A)v = I[f ] =

∫ b

a

f(λ) dα(λ).

As discussed in [3], [6], [7], [9], the integralI[f ] can be bounded using either Gauss,
Gauss-Radau, or Gauss-Lobatto quadrature rules, all of which yield an approximation of the
form

(2.5) I[f ] =

K
∑

j=1

wjf(tj) +

M
∑

j=1

vjf(zj) +R[f ],

where the nodestj , j = 1, . . . ,K, and zj , j = 1, . . . ,M , as well as the weightswj ,
j = 1, . . . ,K, andvj , j = 1, . . . ,M , can be obtained using the symmetric Lanczos al-
gorithm if u = v, and the unsymmetric Lanczos algorithm ifu 6= v; see [11].
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In the caseu 6= v, there is the possibility that the weights may not be positive, which
destabilizes the quadrature rule; see [2] for details. Therefore, it is best to handle this case by
rewriting (2.4) using decompositions such as

(2.6) uT f(A)v =
1

δ
[uT f(A)(u + δv) − uT f(A)u],

whereδ is a small constant. Guidelines for choosing an appropriatevalue forδ can be found
in [19, Section 2.2].

Employing these quadrature rules yields the following basic process (for details see [18],
[19]) for computing the Fourier coefficients ofu(tn+1) from u(tn). It is assumed that when
the Lanczos algorithm (symmetric or unsymmetric) is employed,M +K iterations are per-
formed to obtain theM +K quadrature nodes and weights.

for ω = −N/2 + 1, . . . , N/2
Choose a scaling constantδω
Computeu1 ≈ êH

ω SN (∆t)êω

using the symmetric Lanczos algorithm
Computeu2 ≈ êH

ω SN (∆t)(êω + δωun)
using the unsymmetric Lanczos algorithm

[ûn+1]ω = (u2 − u1)/δω
end

It should be noted that the constantδω plays the role ofδ in the decomposition (2.6), and
the subscriptω is used to indicate that a different value may be used for eachwave number
ω = −N/2 + 1, . . . , N/2. Also, in the presentation of this algorithm in [19], a polar de-
composition is used instead of (2.6), and is applied to sines and cosines instead of complex
exponential functions.

This algorithm has high-order temporal accuracy, as indicated by the following theorem.
LetBLN ([0, 2π]) = span{ e−iωx }N/2

ω=−N/2+1 denote a space of bandlimited functions with
at mostN nonzero Fourier components.

Theorem 2.1. LetL be a self-adjointm-th order positive definite differential operator
onCp([0, 2π]) with coefficients inBLN ([0, 2π]). Let f ∈ BLN ([0, 2π]), and letM = 0.
Then the preceding algorithm, applied to the problem (1.1), (1.2), (1.3), is consistent; i.e.

[û1]ω − û(ω,∆t) = O(∆t2K),

for ω = −N/2 + 1, . . . , N/2.
Proof. See [19, Lemma 2.1, Theorem 2.4].
Using results in [9] regarding the error termR[f ] in (2.5), it can be shown that ifM

prescribed nodes are used in addition to theK free nodes, then the local truncation error is
O(∆t2K+M ). As shown in [19], significantly greater accuracy can be achieved for some
problems by using a Gauss-Radau rule with one prescribed node that approximates the small-
est eigenvalue ofL. Also, it should be noted that in [12], a variation of Krylov subspace
spectral methods is applied to variable-coefficient second-order wave equations, achieving
O(∆t4K+2M ) accuracy.

For convenience, we denote by KSS(K) a KSS method, applied to the problem (1.1), that
uses aK-node Gaussian rule for each Fourier component. If a(K + 1)-node Gauss-Radau
rule is used instead, withK free nodes and one prescribed node approximating the smallest
eigenvalue ofL, then the resulting KSS method is denoted by KSS-R(K). Finally, KSS-
W(K) and KSS-WR(K) refer to KSS methods applied to the second-order wave equation,
using aK-node Gaussian rule and a(K + 1)-node Gauss-Radau rule, respectively.
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The preceding result can be compared to the accuracy achieved by an algorithm described
by Hochbruck and Lubich in [15] for computingeA∆tv for a given matrixA and vectorv
using the unsymmetric Lanczos algorithm. As discussed in [15], this algorithm can be used to
compute the solution of some ODEs without time-stepping, but this becomes less practical for
ODEs arising from a semi-discretization of problems such as(1.1), (1.2), (1.3), due to their
stiffness. In this situation, it is necessary to either use ahigh-dimensional Krylov subspace,
in which case reorthogonalization is required, or one can resort to time-stepping, in which
case the local temporal error is onlyO(∆tK), assuming aK-dimensional Krylov subspace.
Regardless of which remedy is used, the computational effort needed to compute the solution
at a fixed timeT increases substantially.

The difference between Krylov subspace spectral methods and the approach described
in [15] is that in the former, a differentK-dimensional Krylov subspace is used for each
Fourier component, instead of the same subspace for all components as in the latter. As
can be seen from numerical results comparing the two approaches in [19], using the same
subspace for all components causes a loss of accuracy as the number of grid points increases,
whereas Krylov subspace spectral methods do not suffer fromthis phenomenon.

In [19], the benefit of using component-specific Krylov subspace approximations was
illustrated. A problem of the form (1.1), (1.2), (1.3) was solved using the following methods:

• A two-stage, third-order scheme described by Hochbruck andLubich in [15] for
solving systems of the formy′ = Ay + b, where, in this case,b = 0 andA is an
N ×N matrix that discretizes the operatorL3. The scheme involves multiplication
of vectors byϕ(γhA), whereγ is a parameter (chosen to be1

2 ), h is the step size,
andϕ(z) = (ez − 1)/z. The computation ofϕ(γhA)v, for a given vectorv, is
accomplished by applying the Lanczos iteration toA with initial vectorv to obtain
an approximation toϕ(γhA)v that belongs to them-dimensional Krylov subspace
K(A,v,m) = span{v, Av, A2v, . . . , Am−1v}.

• KSS-R(2), with 2 nodes determined by Gaussian quadrature and one additional pre-
scribed node. The prescribed node is obtained by estimatingthe smallest eigenvalue
of L using the symmetric Lanczos algorithm.

We chosem = 2 in the first method, so that both algorithms performed the same number of
matrix-vector multiplications during each time step. AsN increased, there was virtually no
impact on the accuracy of KSS-R(2). On the other hand, this increase, which resulted in a
stiffer system, reduced the time step at which the method from [15] began to show reasonable
accuracy.

A result like this suggests that KSS methods are relatively insensitive to the spatial and
temporal mesh sizes, in comparison to other explicit methods. It is natural to consider whether
they may be unconditionally stable, and if so, under what conditions. The following sections
provide an answer to this question.

3. Reformulation. From the algorithm given in the preceding section, we see that each
Fourier component[ûn+1]ω approximates the derivative

d

dδω

[

êH
ω (êω + δωun)eT

1 exp[−Tω(δω)∆t]e1

]

∣

∣

∣

∣

δω=0

,

whereTω(δω) is the tridiagonal matrix output by the unsymmetric Lanczosalgorithm applied
to the matrixLN with starting vectorŝeω and(êω + δωun) (which reduces to the symmetric
Lanczos algorithm forδω = 0). In this section, we will compute these derivatives analytically.
In the following sections, we will use these derivatives to examine the question of stability of
Krylov subspace spectral methods.
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3.1. Derivatives of the nodes and weights.For a givenδω, let λω,j , j = 1, . . . ,K,
be the nodes of theK-point Gaussian rule obtained by applying the unsymmetric Lanczos
algorithm toLN with starting vectorŝeω and(êω + δωun). Letwω,j , j = 1, . . . ,K, be the
corresponding weights. Then, lettingδω → 0, we obtain the following, assuming all required
derivatives exist:

[ûn+1]ω = êH
ω un+1

=
d

dδω

[

êH
ω (êω + δωun)eT

1 exp[−Tω(δω)∆t]e1

]

∣

∣

∣

∣

δω=0

=
d

dδω



êH
ω (êω + δωun)

K
∑

j=1

wje
−λj∆t





∣

∣

∣

∣

∣

∣

δω=0

= êH
ω un

K
∑

j=1

wje
−λj∆t +

K
∑

j=1

w′
je

−λj∆t − ∆t
K
∑

j=1

wjλ
′
je

−λj∆t ,(3.1)

where the′ denotes differentiation with respect toδω, and evaluation of the derivative at
δω = 0. Equivalently, these derivatives are equal to the length ofun times the directional
derivatives of the nodes and weights, as functions defined onR

N , in the direction ofun, and
evaluated at the origin.

It should be noted that in the above expression for[ûn+1], the nodes and weights depend
on the wave numberω, but for convenience, whenever a fixed Fourier component is being
discussed, the dependence of the nodes and weights onω is not explicitly indicated.

From the Lanczos algorithm,Tω(δω) has the structure

Tω(δω) =















α1 β1

β1 α2 β2

. . .
. . .

. . .
βK−2 αK−1 βK−1

βK−1 αK















,

where all entries are functions ofδω. Because the nodes and weights are obtained from the
eigenvalues and eigenvectors of this matrix, it is desirable to use these relationships to develop
efficient algorithms for computing the derivatives of the nodes and weights in terms of those
of the recursion coefficients. We will first describe such algorithms, and then we will explain
how the derivatives of the recursion coefficients can be computed.

The nodes are the eigenvalues ofTω(δω). BecauseTω(0) is Hermitian, it follows that
there exists a unitary matrixQ0

ω such that

Tω(0) = Q0
ωΛω(0)[Q0

ω]H .

The eigenvalues ofTω(0) are distinct; see [11]. Because the eigenvalues are continuous
functions of the entries of the matrix, they continue to be distinct for δω sufficiently small,
and thereforeTω(δ) remains diagonalizable. It follows that we can write

(3.2) Tω(δω) = Qω(δω)Λω(δω)Qω(δω)−1,

whereQω(0) = Q0
ω. Differentiating (3.2) with respect toδω and evaluating atδω = 0 yields

diag(Λ′
ω(0)) = diag

(

Qω(0)HT ′
ω(0)Qω(0)

)

,
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since all other terms that arise from application of the product rule vanish on the diagonal.
Therefore, for eachω, the derivatives of the nodesλ1, . . . , λK are easily obtained by applying
a similarity transformation to the matrix of the derivatives of the recursion coefficients,T ′

ω(0),
where the transformation involves a matrix,Qω(0), that must be computed anyway to obtain
the weights.

To compute the derivatives of the weights, we consider the equation

(Tω(δω) − λjI)wj(δω) = 0, j = 1, . . . ,K,

wherewj(δω) is an eigenvector ofTω(δω) with eigenvalueλj , normalized to have unit 2-
norm. First, we differentiate this equation with respect toδω and evaluate atδω = 0. Then,
we delete the last equation and eliminate the last componentof wj(0) andw′

j(0) using the
fact thatwj(0) must have unit 2-norm. The result is a(K − 1) × (K − 1) system where the
matrix is the sum of a tridiagonal matrix and a rank-one update. This matrix is independent
of the solutionun, while the right-hand side is not. After solving this simplesystem, as well
as a similar one for the left eigenvector corresponding toλj , we can obtain the derivative
of the weightwj from the first components of the two solutions. It should be noted that
althoughTω(0) is Hermitian,Tω(δω) is, in general, complex symmetric, which is why the
system corresponding to the left eigenvector is necessary.

3.2. Derivatives of the recursion coefficients.Let A be a symmetric positive definite
n×nmatrix and letr0 be ann-vector. Suppose that we have already carried out the symmetric
Lanczos iteration to obtain orthogonal vectorsr0, . . . , rK and the Jacobi matrix

(3.3) TK =















α1 β1

β1 α2 β2

. . .
. . .

. . .
βK−2 αK−1 βK−1

βK−1 αK















.

Now, we wish to compute the entries of the modified matrix

(3.4) T̂K =

















α̂1 β̂1

β̂1 α̂2 β̂2

. . .
. . .

. . .

β̂K−2 α̂K−1 β̂K−1

β̂K−1 α̂K

















that results from applying the unsymmetric Lanczos iteration with the same matrixA and
the initial vectorsr0 andr0 + f , wheref is a given perturbation. The following iteration,
introduced in [20] and based on algorithms from [5], [8], and [22], produces these values.

Algorithm 3.1. Given the Jacobi matrix (3.3), the firstK + 1 unnormalized Lanczos
vectorsr0, . . . , rK , and a vectorf , the following algorithm generates the modified tridiagonal
matrix (3.4) that is produced by the unsymmetric Lanczos iteration withleft initial vectorr0

and right initial vectorr0 + f .

β−1 = 0, q−1 = 0, q0 = f , β̂2
0 = β2

0 + rH
0 q0,

s0 = β0

β̂2

0

, t0 =
β2

0

β̂2

0

, d0 = 0
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for j = 1, . . . ,K

α̂j = αj + sj−1r
H
j qj−1 + dj−1βj−2t

−1/2
j−1

if j < K then

dj = (dj−1βj−2 + (αj − α̂j)t
1/2
j−1)/β̂j−1

qj = (A− α̂jI)qj−1 − β̂2
j−1qj−2

β̂2
j = tj−1β

2
j + sj−1r

H
j qj

sj =
βj

β̂2

j

sj−1

tj =
β2

j

β̂2

j

tj−1

end
end

The correctness of this algorithm is proved in [20], where it was used to efficiently obtain
the recursion coefficients needed to approximateêH

ω SN (∆t)(êω + δωun) from those used to
approximatêeH

ω SN (∆t)êω. In [20], it was shown that with an efficient implementation of
this algorithm in MATLAB, KSS methods are a viable option forsolving parabolic problems
when compared to MATLAB’s built-in ODE solvers, even thoughthe former are explicit and
the latter are implicit.

Here, we use this algorithm for a different purpose. From theexpressions for the en-
tries of T̂K , the derivatives of the recursion coefficientsαj , j = 1, . . . ,K, andβj , j =
1, . . . ,K − 1, can be obtained by settingr0 = êω and f = δωun. By differentiating the
recurrence relations in Algorithm3.1with respect toδω and evaluating atδω = 0, we obtain
the following new algorithm.

Algorithm 3.2. LetTK(δ) be the tridiagonal matrix produced by the unsymmetric Lanc-
zos iteration with left initial vectorr0 and right initial vectorr0 + δf . Let r0, . . . , rK be the
K + 1 unnormalized Lanczos vectors associated withTK(0). GivenTK , as defined in (3.3),
whose entries are those ofTK(δ) evaluated atδ = 0, the following algorithm generates the
tridiagonal matrixT ′

K whose entries are the derivatives of the entries ofTK(δ) with respect
to δ, and evaluated atδ = 0.

β−1 = 0, q−1 = 0, q0 = f , [β2
0 ]′ = rH

0 q0

s0 = 1
β0

, s′0 = − [β2

0
]′

β3

0

, t′0 = − [β2

0
]′

β2

0

, d′0 = 0

for j = 1, . . . ,K

α′
j = sj−1r

H
j qj−1 + d′j−1βj−2

if j < K then
d′j = (d′j−1βj−2 − α′

j)/βj−1

qj = (A− αjI)qj−1 − β2
j−1qj−2

[β2
j ]′ = t′j−1β

2
j + sj−1r

H
j qj

sj = sj−1/βj

s′j = s′j−1/βj −
[β2

j ]′

β3

j
sj−1

t′j = t′j−1 −
[β2

j ]′

β2

j

end
end

Note that this iteration requires about the same computational effort as Algorithm3.1.
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3.3. Summary. The new formulation of KSS methods consists of the followingprocess
for computing each Fourier component[ûn+1]ω from un.

1. Compute the recursion coefficients, nodes and weights that were used to compute
u1 ≈ êH

ω SN (∆t)êω in the original formulation.
2. Compute the derivatives of the recursion coefficients used to obtainu1, using Algo-

rithm 3.2with r0 = êω andf = un. Note that because the vectorsrj , j = 0, . . . ,K,
are only involved through inner products, they do not need tobe stored explicitly.
Instead, the required inner products can be computed simultaneously for allω using
appropriate FFTs.

3. Compute the derivatives of the nodes and weights from those of the recursion coef-
ficients, as described in section3.1.

4. Compute[ûn+1]ω as in (3.1).
Because this algorithm only requires computing the eigenvalues and eigenvectors of one
K ×K matrix, instead of two as in the original algorithm, both algorithms require a com-
parable amount of computational effort. However, unlike the original algorithm, the new
one does not include a subtraction of nearly equal values foreach Fourier component, and
therefore exhibits greater numerical stability for small values ofδω.

4. The one-node case.WhenK = 1, we simply haveTω(δω) = α1(δω), where

α1(δω) = êH
ω LN (êω + δωun),

which yields

α′
1(0) = êH

ω (LN − α1I)u
n.

Fromλ1 = α1 andw1 = 1, we obtain

[ûn+1]ω = e−α1∆têH
ω [1 − ∆t(LN − α1I)]u

n.

Becauseα1 = pω2 + q andLN êω = pω2êω + diag(q)êω, it follows that

un+1 = e−CN∆tPN [I − ∆t diag(q̃)]un,

whereq̃ = q − q andL = C + V is a splitting ofL such thatC is the constant-coefficient
operator obtained by averaging the coefficients ofL, and the variation of the coefficients is
captured byV . The operatorPN is the orthogonal projection ontoBLN ([0, 2π]). This simple
form of the approximate solution operator yields the following result. For convenience, we
denote byS̃N (∆t) the matrix such thatun+1 = S̃N (∆t)un, for givenN and∆t.

Theorem 4.1.Letq(x) in (1.4) belong toBLM ([0, 2π]) for a fixed integerM . Then, for
the problem (1.1), (1.2), (1.3), KSS(1) is unconditionally stable. That is, givenT > 0, there
exists a constantCT , independent ofN and∆t, such that

‖S̃N (∆t)n‖ ≤ CT ,

for 0 ≤ n∆t ≤ T .
Proof. The matrixCN has the diagonalization

CN = F−1
N ΛNFN ,

whereFN is the matrix of theN -point discrete Fourier transform, and

Λ = diag(pω2 + q), ω = −N/2 + 1, . . . , N/2.
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It follows that‖e−CN∆t‖2 = e−q∆t.
Becauseq(x) is bounded, it follows that

‖PN [I − ∆t diag(q̃)]‖2 ≤ 1 + ∆tQ,

whereQ = max0≤x≤2π q(x). We conclude that

‖S̃N (∆t)‖2 ≤ e(Q−q)∆t,

from which the result follows withCT = e(Q−q)T .
Now we can prove that the method converges. For convenience,we define the 2-norm of

a functionu(x, t) to be the vector 2-norm of the restriction ofu(x, t) to the spatial grid:

‖u(·, t)‖2 =





N−1
∑

j=0

|u(j∆x, t)|2




1/2

.

We also say that a method is convergent of order(m,n) if there exist constantsCt andCx,
independent of the time step∆t and grid spacing∆x = 2π/N , such that

‖u(·, t) − u(·, t)‖2 ≤ Ct∆t
m + Cx∆xn, 0 ≤ t ≤ T.

Theorem 4.2.Let q(x) in (1.4) belong toBLM ([0, 2π]) for some integerM . Then, for
the problem (1.1), (1.2), (1.3), KSS(1) is convergent of order(1, p), where the exact solution
u(x, t) belongs toCp([0, 2π]) for eacht in [0, T ].

Proof. Let S(∆t) be the solution operator for the problem (1.1), (1.2), (1.3). For any
nonnegative integern and fixed grid sizeN , we define

En = N−1/2‖S(∆t)nf − S̃N (∆t)nf‖2.

Then, there exist constantsC1, C2 andC such that

En+1 = N−1/2‖S(∆t)n+1f − S̃N (∆t)n+1f‖2

= N−1/2‖S(∆t)S(∆t)nf − S̃N (∆t)S̃N (∆t)nf‖2

= N−1/2‖S(∆t)S(∆t)nf − S̃N (∆t)S(∆t)nf +

S̃N (∆t)S(∆t)nf − S̃N (∆t)S̃N (∆t)nf‖2

≤ N−1/2‖S(∆t)S(∆t)nf − S̃N (∆t)S(∆t)nf‖ +

N−1/2‖S̃N (∆t)S(∆t)nf − S̃N (∆t)S̃N (∆t)nf‖2

≤ N−1/2‖S(∆t)u(tn) − S̃N (∆t)u(tn)‖2 + ‖S̃N (∆t)‖2En

≤ C1∆t
2 + C2∆t∆x

p + eC∆tEn,

where the spatial error arises from the truncation of the Fourier series of the exact solution. It
follows that

En ≤ eCT − 1

eC∆t − 1
(C1∆t

2 + C2∆t∆x
p) ≤ C̃1∆t+ C̃2∆x

p ,

for constants̃C1 andC̃2 that depend only onT .
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5. The two-node case.Using a 2-node Gaussian rule, the Fourier components of the
approximate solution are given by

[ûn+1]ω = êH
ω un

(

w1e
−λ1∆t + (1 − w1)e

−λ2∆t
)

+ w′
1

(

e−λ1∆t − e−λ2∆t
)

−
∆t
(

w1λ
′
1e

−λ1∆t + (1 − w1)λ
′
2e

−λ2∆t
)

.(5.1)

To obtain the derivatives of the nodes and weights, we use thefollowing recursion coefficients
and their derivatives. For convenience, when two column vectors are multiplied, it represents
component-wise multiplication:

α1 = pω2 + q

α′
1 = [êωq̃]Hun

β2
1 = q̃H q̃

(β2
1)′ = [−piωêωq̃′ − pêωq̃′′ + q̃êωq̃− β2

1 êω]Hun

α2 = α1 +
{

p[q′]Hq′ + [q̃2]H [q̃]
}

/β2
1

α′
2 = −2α′

1 + [q̃3êω − 4ω2p2q̃′′êω + 4iωp2q̃′′′êω + p2q̃′′′′êω +

4iωpq̃q̃′êω + 3pq̃q̃′′êω + 2pq′q̃′êω −
(
{

p[q′]Hq + [q̃2]H [q̃]
}

/β2
1)[2piωq̃′êω + pq̃′′êω] −

(α2 − α1)q̃
2êω − 2iωpqq̃′êω]Hun/β2

1

It follows that

λ1,2 =
α1 + α2

2
±
√

(α1 − α2)2 + 4β2
1

2
,

λ′1,2 =
α′

1 + α′
2

2
± (α1 − α2)(α

′
1 − α′

2) + 2(β2
1)′

2
√

(α1 − α2)2 + 4β2
1

,

w1 =
β2

1

(α1 − λ1)2 + β2
1

,

w′
1 =

(β2
1)′

(α1 − λ1)2 + β2
1

− β2
1 [2(α1 − λ1)(α

′
1 − λ′1) + (β2

1)′]

[(α1 − λ1)2 + β2
1 ]

.

It should be emphasized that these formulas are not meant to be used to compute the
derivatives of the recursion coefficients, nodes, and weights that are used in the new formu-
lation of KSS methods introduced in section3; the algorithms presented in that section are
more practical for this purpose. However, the above formulas are still useful for analytical
purposes. A key observation is that the derivatives of the nodes and weights, taken collec-
tively for all ω, define second-order differential operators. This leads tothe following result.

Lemma 5.1.LetC be a constant-coefficient, self-adjoint, positive definitesecond-order
differential operator, and letV be a second-order variable-coefficient differential operator
with coefficients inBLM ([0, 2π]) for some integerM . Let CN and VN be their spectral
discretizations on anN -point uniform grid. Then there exists a constantB, independent of
N and∆t, such that

∥

∥∆te−CN∆tVN

∥

∥

∞ ≤ B.

Proof. For fixedN and∆t, let AN (∆t) = ∆te−CN∆tVN . Then, the row ofAN (∆t)
corresponding to the wave numberω includes the elements

∆te−C(ω+ξ)∆t
2
∑

j=0

v̂j(ξ)(ω + ξ)j , ξ = −M/2 + 1, . . . ,M/2,
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whereC(λ), the symbol ofC, is a second-degree polynomial with negative leading coeffi-
cient, andv̂j is the Fourier transform of thejth-order coefficient ofV . If we examine the
function

f(N, t) = te−cN2tN j , N, t > 0,

wherec is a positive constant, we find that for the values ofj of interest,j = 0, 1, 2, f(x, t)
is bounded independently ofN andt. This, and the fact that the number of nonzero Fourier
coefficients is bounded independently ofN , yield the theorem’s conclusion.

It is important to note that the fact thatj ≤ 2 is crucial. For larger values ofj, f(N, t) is
still bounded, but the bound is no longer independent ofN andt. Now, we are ready to state
and prove one of the main results of the paper.

Theorem 5.2.Let q(x) in (1.4) belong toBLM ([0, 2π]) for some integerM . Then, for
the problem (1.1), (1.2), (1.3), there exists a constantC such that

‖S̃N (∆t)‖∞ ≤ C,

whereS̃N (∆t) is the approximate solution operator̃SN (∆t) for KSS(2) on anN -point uni-
form grid with time step∆t. The constantC is independent ofN and∆t.

Proof. It follows from (5.1) that

S̃N (∆t) = w1e
−C1∆t + (1 − w1)e

−C2∆t + [e−C1∆t − e−C2∆t]W ′
1 −

∆t[w1e
−C1∆tV1 + (1 − w1)e

−C2∆tV2],

whereW1 = diag(w1(ω)), Ci is a constant-coefficient differential operator with symbol
Ci(ω) = λi(ω), andêH

ω Vif = λ′i(ω), where′ denotes the directional derivative ofλi(ω) in
the direction off .

The symmetric Lanczos algorithm assures thatCi, i = 1, 2, is positive definite, so

(5.2) ‖e−Ci∆t‖∞ = e−λi(0)∆t.

From Lemma5.1, we can conclude that there exist constantsVT andWT such that

(5.3) ‖∆te−Ci∆tVi‖∞ ≤ VT , i = 1, 2, ‖∆te−Ci∆tWi‖∞ ≤WT ,

whereW2 = I −W1. Becauseλ1(ω) − λ2(ω) is a constant̃λ0 independent ofω, we can
conclude that

(5.4) ∆t
∥

∥[e−C1∆t − e−C2∆t]W ′
1

∥

∥

∞ = ∆t
∥

∥

∥
(I − e(C1−C2)∆t)e−C1∆tW ′

1

∥

∥

∥

∞
≤WT |λ̃0|.

Putting together the bounds (5.2), (5.3) and (5.4) yields

‖S̃N (∆t)‖∞ ≤ max
i∈{1,2}

e−λi(0)∆t +WT |λ̃0| + VT ,

from which the theorem follows.
It should be emphasized that this result is not sufficient to conclude unconditional stabil-

ity, as in the 1-node case, but it does demonstrate the scalability of KSS methods with respect
to the grid size.
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6. Application to the wave equation. In this section we apply Krylov subspace spectral
methods developed in [18] to the problem

(6.1)

{

∂2u
∂t2 + Lu = 0 in (0, 2π) × R ,
u(0, t) = u(2π, t) onR ,

with the initial conditions

(6.2) u(x, 0) = f(x), ut(x, 0) = g(x), x ∈ (0, 2π),

where, as before, the operatorL is as described in (1.4).

6.1. Structure of the solution. A spectral representation of the operatorL allows us
the obtain a representation of the solution operator (thepropagator) in terms of the sine and
cosine families generated byL by a simple functional calculus. Introduce

R1(t) = L−1/2 sin(t
√
L) :=

∞
∑

n=1

sin(t
√
λn)√

λn

〈ϕ∗
n, ·〉ϕn ,(6.3)

R0(t) = cos(t
√
L) :=

∞
∑

n=1

cos(t
√

λn)〈ϕ∗
n, ·〉ϕn ,(6.4)

whereλ1, λ2, . . . are the (positive) eigenvalues ofL, andϕ1, ϕ2, . . . are the corresponding
eigenfunctions. Then the propagator of (6.1) can be written as

P (t) =

[

R0(t) R1(t)
−LR1(t) R0(t)

]

.

The entries of this matrix, as functions ofL, indicate which functions are the integrands in
the Riemann-Stieltjes integrals used to compute the Fourier components of the solution.

6.2. Solution using KSS methods.We briefly review the use of Krylov subspace spec-
tral methods for solving (6.1), first outlined in [12].

Since the exact solutionu(x, t) is given by

u(x, t) = R0(t)f(x) +R1(t)g(x),

whereR0(t) andR1(t) are defined in (6.3), (6.4), we can obtain[un+1]ω by approximating
each of the quadratic forms

c+ω (t) = 〈êω, R0(∆t)[êω + δωun]〉 ,
c−ω (t) = 〈êω, R0(∆t)êω〉 ,
s+ω (t) = 〈êω, R1(∆t)[êω + δωun

t ]〉 ,
s−ω (t) = 〈êω, R1(∆t)êω〉 ,

whereδω is a nonzero constant. It follows that

[ûn+1]ω =
c+ω (t) − c−ω (t)

δω
+
s+ω (t) − s−ω (t)

δω
.

Similarly, we can obtain the coefficientsṽω of an approximation ofut(x, t) by approximating
the quadratic forms

c+ω (t)′ = −〈êω, LR1(∆t)[êω + δωun]〉 ,
c−ω (t)′ = −〈êω, LR1(∆t)êω〉 ,
s+ω (t)′ = 〈êω, R0(∆t)[êω + δωun

t ]〉 ,
s−ω (t)′ = 〈êω, R0(∆t)êω〉 .
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As noted in [18], this approximation tout(x, t) does not introduceany error due to differ-
entiation of our approximation ofu(x, t) with respect tot–the latter approximation can be
differentiatedanalytically.

It follows from the preceding discussion that we can computean approximate solution
ũ(x, t) at a given timeT using the following algorithm.

Algorithm 6.1. (KSS-W(K)) Given functionsc(x), f(x), andg(x) defined on the inter-
val (0, 2π), and a final timeT , the following algorithm from [12] computes a functioñu(x, t)
that approximately solves the problem (6.1), (6.2) from t = 0 to t = T .

t = 0
while t < T do

Select a time step∆t
f(x) = ũ(x, t)
g(x) = ũt(x, t)
for ω = −N/2 + 1 to N/2 do

Choose a nonzero constantδω
Compute the quantitiesc+ω (∆t), c−ω (∆t), s+ω (∆t), s−ω (∆t),

c+ω (∆t)′, c−ω (∆t)′, s+ω (∆t)′, ands−ω (∆t)′

ũω(∆t) = 1
δω

(c+ω (∆t) − c−ω (∆t)) + 1
δω

(s+ω (∆t) − s−ω (∆t))

ṽω(∆t) = 1
δω

(c+ω (∆t)′ − c−ω (∆t)′) + 1
δω

(s+ω (∆t)′ − s−ω (∆t)′)
end
ũ(x, t+ ∆t) =

∑N
ω=1 êω(x)ũω(∆t)

ũt(x, t+ ∆t) =
∑N

ω=1 êω(x)ṽω(∆t)
t = t+ ∆t

end

In this algorithm, each of the quantities inside thefor loop are computed usingK quadra-
ture nodes. The nodes and weights are obtained in exactly thesame way as for the parabolic
problem (1.1), (1.2), (1.3). It should be noted that although 8 bilinear forms are required for
each wave numberω, only three sets of nodes and weights need to be computed, andthen
they are used with different integrands.

6.3. Convergence analysis.We now study the convergence behavior of the preceding
algorithm. Following the reformulation of Krylov subspacespectral methods presented in
section3, we letδω → 0 to obtain

[

ûn+1

ûn+1
t

]

ω

=

(

K
∑

k=1

wk

[

cos(
√
λkt)

1√
λk

sin(
√
λkt)

−
√
λk sin(

√
λkt) cos(

√
λkt)

]

)

[

êH
ω un

êH
ω un

t

]

+

K
∑

k=1

[

cos(
√
λkt)

1√
λk

sin(
√
λkt)

−
√
λk sin(

√
λkt) cos(

√
λkt)

] [

w′
k

w̃′
k

]

−

K
∑

k=1

wk
t

2
√
λk

[

sin(
√
λkt) − 1√

λk
cos(

√
λkt)√

λk cos(
√
λkt) sin(

√
λkt)

] [

λ′k
λ̃′k

]

−

wk

[

0 1
2(λk)3/2

sin(
√
λkt)

1
2
√

λk
sin(

√
λkt) 0

]

[

λ′k
λ̃′k

]

,(6.5)

whereλ′k andw′
k are the derivatives of the nodes and weights, respectively,in the direction

of un, andλ̃′k andw̃′
k are the derivatives in the direction ofun

t .
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We first recall a result concerning the accuracy of each component of the approximate
solution.

Theorem 6.2. Assume thatf(x) and g(x) satisfy (1.3), and letu(x,∆t) be the exact
solution of (6.1), (6.2) at (x,∆t), and letũ(x,∆t) be the approximate solution computed by
Algorithm6.1. Then

|〈êω, u(·,∆t) − ũ(·,∆t)〉| = O(∆t4K),

whereK is the number of quadrature nodes used in Algorithm6.1.
Proof. See [12].
To prove stability, we use the following norm, analogous to that used in [12] to show

conservation for the wave equation:

‖(u,v)‖LN
=
(

uHLNu + vHv
)1/2

.

LetL be a constant-coefficient, self-adjoint, positive definitesecond-order differential opera-
tor, and letu(t) be the discretization of the solution of (6.1) at timet. Then it is easily shown,
in a manner analogous to [12, Lemma 2.8], that

‖(u(t),ut(t))‖LN
= ‖(f ,g)‖LN

,

wheref andg are the discretizations of the initial dataf(x) andg(x) from (6.2).
Theorem 6.3.Let q(x) in (1.4) belong toBLM ([0, 2π]) for some integerM . Then, for

the problem (1.1), (1.2), (1.3), KSS-W(1) is unconditionally stable.
Proof. Let sω = sin(

√
α1∆t) andcω = cos(

√
α1∆t). In the caseK = 1, (6.5) reduces

to

[

ûn+1

ûn+1
t

]

ω

=

[

cω
1√
α1

sω

−√
α1sω cω

] [

êH
ω un

êH
ω un

t

]

−

∆t

2
√
α1

[

sω − 1√
α1

cω√
α1cω sω

] [

êH
ω VNun

êH
ω VNun

t

]

−
[

0 1
2(α1)3/2

sω
1

2
√

α1

sω 0

]

[

êH
ω VNun

êH
ω VNun

t

]

,(6.6)

where we use the splittingL = C+V as in section3, with corresponding spectral discretiza-
tionsLN , CN andVN . The first two terms in (6.6) yield the Fourier component[v̂1]ω of the
exact solution at time∆t to the constant-coefficient problem

∂2v

∂t2
+ Cv = 0,

v(x, 0) = u(x, tn) +
∆t

2
PNC

−1V ut(x, tn),

vt(x, 0) = ut(x, tn) − ∆t

2
PNV u(x, tn).

It follows that

‖(un+1,un+1
t )‖2

C ≤ ‖(un,un
t )‖2

C +
∆t

2
‖(C−1

N q̃un
t , q̃un)‖2

C +

∆t

2
‖(C−3/2

N q̃un
t , C

−1/2
N q̃un)‖2

C ,
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which yields

‖S̃N (∆t)‖2
C ≤ 1 +

∆t

2
Q[q−1 + q−2],

whereQ is as defined in the proof of Theorem4.1. Becauseq > 0, we can conclude that
there exists a constantα such that‖S̃N (∆t)‖C ≤ eα∆t, and the theorem follows.

Theorem 6.4. Let q(x) in (1.4) belong toBLM ([0, 2π]) for some integerM . Then,
for the problem (1.1), (1.2), (1.3), KSS-W(1) is convergent of order(3, p), where the exact
solutionu(x, t) belongs toCp([0, 2π]) for eacht in [0, T ].

Proof. Analogous to the proof of Theorems4.2and5.2, except that theC-norm is used
instead of the 2-norm.

6.4. The two-node case.We will not prove stability for the 2-node case here. Instead,
we will provide numerical evidence of stability and a contrast with another high-order explicit
method. In particular, we use the method KSS-W(2) to solve a second-order wave equation
featuring a source term. First, we note that ifp(x, t) andu(x, t) are solutions of the system
of first-order wave equations

(6.7)

[

p
u

]

t

=

[

0 a(x)
b(x) 0

] [

p
u

]

x

+

[

F
G

]

, t ≥ 0,

with source termsF (x, t) andG(x, t), thenu(x, t) also satisfies the second-order wave equa-
tion

(6.8)
∂2u

∂t2
= a(x)b(x)

∂2u

∂x2
+ a′(x)b(x)

∂u

∂x
+ bFx +G,

with the source termb(x)Fx(x, t) + G(x, t). In [14], a time-compact fourth-order finite-
difference scheme is applied to a problem of the form (6.7), with

F (x, t) = (a(x) − α2) sin(x− αt),

G(x, t) = α(1 − b(x)) sin(x− αt),

a(x) = 1 + 0.1 sin x,

b(x) = 1,

which has the exact solutions

p(x, t) = −α cos(x− αt),

u(x, t) = cos(x− αt).

We convert this problem to the form (6.8) and solve it with initial data

(6.9) u(x, 0) = cosx,

(6.10) ut(x, 0) = sin x.

The results of applying both methods to this problem are shown in Figure6.4, for the case
α = 1. Due to the smoothness of the coefficients, the spatial discretization error in the
Krylov subspace spectral method is dominated by the temporal error, resulting in greater than
sixth-order accuracy in time.

Tables6.1 and6.2 illustrate the differences in stability between the two methods. For
the fourth-order finite-difference scheme from [14], the greatest accuracy is achieved for
cmax∆t/∆x close to the CFL limit of 1, wherecmax = maxx

√

a(x)b(x). However, for
KSS-W(2) this limit can be greatly exceeded and reasonable accuracy can still be achieved.
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Gustafsson/Mossberg, 4th−order
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FIG. 6.1. Estimates of relative error in the approximate solution of problem (6.8), (6.9), (6.10) with periodic
boundary conditions, att = 8π, computed with the time-compact fourth-order finite-difference scheme from [14]
(solid curve) and a Krylov subspace spectral method (dashedcurve). In the finite-difference scheme,λ = ∆t/∆x =
0.99, and in the Krylov subspace spectral method, a 2-point Gaussian quadrature rules are used, andN = 40 grid
points.

TABLE 6.1
Relative error in the solution of (6.8) with the time-compact fourth-order finite difference scheme from [14],

for various values ofN .

cmax∆t/∆x N error
10 0.0024

0.99 20 0.00014
40 0.0000088

7. Homogenization. So far, we have assumed that the leading coefficient of the oper-
atorL is constant, to simplify the analysis. We now consider a general second-order self-
adjoint positive definite operator

(7.1) L = −Da2(x)D + a0(x),

with symbol

L(x, ξ) = a2(x)ξ
2 − a′2(x)iξ + a0(x).

Instead of applying a KSS method directly to the problem (1.1) with this operator, we use
the fact that KSS methods are most accurate when the coefficients ofL are nearly constant
(see [19, Theorem 2.5]) and use similarity transformations to homogenize these coefficients,
effectively preconditioning the problem. In this section,we discuss these transformations.
We begin with a known transformation that homogenizes the leading coefficienta2(x), and
show how it can be used to generalize the stability results from the previous sections. Then,
we introduce a new transformation that can homogenizea0(x) whena2(x) is constant, and
demonstrate that such a transformation can improve the accuracy of KSS methods.
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TABLE 6.2
Relative error in the solution of (6.8) with KSS-W(2), for various values ofλ = ∆t/∆x.

∆t/∆x N error
32 64 0.007524012
16 64 0.000145199
8 64 0.000008292

7.1. Homogenizing the leading coefficient.We first construct acanonical transforma-
tion Φ that, while defined on the region of phase space[0, 2π] × R, arises from a simple
change of variable in physical space,y = φ(x), whereφ(x) is a differentiable function and

φ′(x) > 0, Avgφ′ =
1

2π

∫ 2π

0

φ′(s) ds = 1.

The transformationΦ has the form

(7.2) Φ(y, η) → (x, ξ), x = φ−1(y), ξ = φ′(x)η.

Using this simple canonical transformation, we can homogenize the leading coefficient
of L as follows: Chooseφ(x) and construct a canonical transformationΦ(y, η) by (7.2) so
that the leading term of the transformed symbol

(7.3) L̃(y, η) = L(x, ξ) ◦ Φ(y, η) = L(φ−1(y), φ′(φ−1(y))η)

is independent ofy.
We can conclude by Egorov’s theorem (see [4]) that there exists a unitary Fourier integral

operatorU such that ifA = U−1LU , then the symbol ofA agrees with̃Lmodulo lower-order
errors. In fact,Uf(y) = |Dφ−1(y)|−1/2f ◦ φ−1(y). Therefore, using the chain rule and
symbolic calculus (see below), it is a simple matter to construct this new operatorA(y,D).

Applying (7.3) and examining the leading coefficient of the transformed symbol yields

φ′(x) = c[a2(x)]
−1/2,

where the constantc is added to ensure that Avgφ′ = 1. This transformation is used by
Guidotti, et al. in [12] to obtain approximate high-frequency eigenfunctions of asecond-
order operator.

In the case wherea0(x) = 0, 0 is an eigenvalue with corresponding eigenfunction equal
to a constant function. However, because of the factor|Dφ−1(y)|−1/2 in Uf(y), the constant
function is not an eigenfunction of the transformed operator. It follows that in the splitting
L = C + V , whereL is the transformed operator andC, as in previous sections, is the
constant-coefficient operator obtained by averaging the coefficients ofL, thenC is positive
definite, even thoughL is positive semi-definite. Therefore, the stability results stated in
Theorem4.1and Theorem6.3can still apply toL.

7.2. Symbolic calculus.For homogenizing lower-order coefficients, we will rely on the
rules ofsymbolic calculusto work with pseudodifferential operators (see [16], [17]), or ψdO,
more easily and thus perform similarity transformations ofsuch operators with much less
computational effort than would be required if we were to apply transformations that acted
on matrices representing discretizations of these operators.

We will be constructing and applying unitary similarity transformations of the form

L̃ = U∗LU,
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whereU is a Fourier integral operator, and, in some cases, aψdO. In such cases, it is necessary
to be able to compute the adjoint of aψdO, as well as the product ofψdO.

To that end, given a differential operatorA, the symbol of the adjointA∗ is given by

(7.4) A∗(x, ξ) =
∑

α

1

α!

∂α

∂xα

∂α

∂ξα
A(x, ξ),

while the symbol of the product of two differential operatorsAB, denoted byAB(x, ξ), is
given by

(7.5) AB(x, ξ) =
∑

α

1

α!

∂αA

∂ξα

∂αB

∂αx
.

These rules are direct consequences of the product rule for differentiation.

7.3. The pseudo-inverse of the differentiation operator.For generalψdO, the rules
(7.4), (7.5) do not always apply exactly, but they do yield an approximation. However, it
will be necessary for us to work withψdO of negative order, so we must identify a class of
negative-orderψdO for which these rules do apply.

LetA be anm×n matrix of rankr, and letA = UΣV T be the singular value decompo-
sition ofA, whereUTU = Im, V TV = In, andΣ = diag(σ1, . . . , σr, 0, . . . , 0). Then, the
pseudo-inverse(see [10]) of A is defined as

A+ = V Σ+UT ,

where then×m diagonal matrixΣ+ is given by

Σ+ =





















σ−1
1

. . .
σ−1

r

0
. . .

0





















.

We can generalize this concept to define the pseudo-inverse of the differentiation operatorD
on the space of2π-periodic functions by

D+u(x) =
1√
2π

∞
∑

ω=−∞
eiωx(iω)+û(ω), z+ =

{

z−1 z 6= 0
0 z = 0

.

The rules (7.4) and (7.5) can be used for pseudodifferential operators defined usingD+;
see [18]. This allows us to efficiently construct and apply unitary similarity transformations
based onψdO of the form

U =
∞
∑

α=0

aα(x)[D+]−α.

We now consider such transformations.
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7.4. Lower-order coefficients. It is natural to ask whether it is possible to construct a
unitary transformationU that smoothsL globally, i.e. yield the decomposition

U∗LU = L̃(η).

In this section, we will attempt to answer this question. We seek to eliminate lower-order
variable coefficients. The basic idea is to construct a transformationUα such that

1. Uα is unitary,
2. The transformatioñL = U∗

αLUα yields an operator̃L =
∑m

α=−∞ aα(x)
(

∂
∂x

)α

such thataα(x) is constant, and
3. The coefficientsbβ(x) of L, whereβ > α, are invariant under the similarity trans-

formationL̃ = U∗
αLUα.

It turns out that such an operator is not difficult to construct. First, we note that ifφ is a
skew-symmetric pseudodifferential operator, thenU = exp[φ] is a unitary operator, since

U∗U = (exp[φ])∗ exp[φ] = exp[−φ] exp[φ] = I.

We consider an example to illustrate how one can determine a operatorφ so thatU = exp[φ]
satisfies the second and third conditions given above. Consider a second-order self-adjoint
operator of the form

L = a2D
2 + a0(x).

In an effort to transformL so that the zeroth-order coefficient is constant, we apply the simi-
larity transformatioñL = U∗LU , which yields an operator of the form

L̃ = L+ (Lφ− φL) +
1

2
[(Lφ− φL)φ− φ(Lφ− φL)] +

1

2
[φ(φLφ) − (φLφ)φ] + · · · .

Since we want the first and second-order coefficients ofL to remain unchanged, the pertur-
bationE of L in L̃ = L + E must not have order greater than zero. If we require thatφ has
negative order−k, then the highest-order term inE isLφ−φL, which has order1− k, so in
order to affect the zeroth-order coefficient ofL we must haveφ be of order−1. By symbolic
calculus, it is easy to determine that the highest-order coefficient of Lφ − φL is 2a2b

′
−1(x)

whereb−1(x) is the leading coefficient ofφ. Therefore, in order to satisfy

a0(x) + 2a2b
′
−1(x) = constant,

we must haveb′−1(x) = −(a0(x) − Avg a0)/2a2. In other words, we can choose

b−1(x) = − 1

2a2
D+(a0(x)),

whereD+ is the pseudo-inverse of the differentiation operatorD introduced in section7.3.
Therefore, for our operatorφ, we can use

φ =
1

2
[b−1(x)D

+ − (b−1(x)D
+)∗] = b−1(x)D

+ + lower-order terms.

Using symbolic calculus, it can be shown that the coefficientof order−1 in L̃ is zero. We
can use similar transformations to make lower-order coefficients constant as well. This will
be explored in [21].
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FIG. 7.1. Estimates of relative error in the approximate solutionũ(x, t) of (1.1), (1.2), (1.3) at T = 1,
computed using no preconditioning (solid curve), a similarity transformation to make the leading coefficient of
L1 = U∗LU constant (dashed curve), and a similarity transformation to makeL2 = Q∗U∗LUQ constant-
coefficient modulo terms of negative order. In all casesN = 64 grid points are used, with time steps∆t = 2−j for
j = 0, . . . , 6.

We conclude this section with a demonstration of the benefit of this homogenization.
Figure7.1 depicts the temporal error for an operatorL of the form (7.1), with smooth co-
efficients. Because the coefficients are already smooth, homogenizinga2(x) only slightly
improves the accuracy, but homogenizinga0(x) as well yields a much more substantial im-
provement.

8. Discussion. In this concluding section, we consider various generalizations of the
problems and methods considered in this paper.

8.1. Higher space dimension.In [20], it is demonstrated how to compute the recur-
sion coefficientsαj andβj for operators of the formLu = −p∆u + q(x, y)u, and the ex-
pressions are straightforward generalizations of the expressions given in section5 for the
one-dimensional case. It is therefore reasonable to suggest that for operators of this form,
the stability results given here for the one-dimensional case generalize to higher dimensions.
This will be investigated in the near future. In addition, generalization of the similarity trans-
formations of section7 is in progress.

8.2. Discontinuous coefficients.For the stability results reported in this paper, partic-
ularly Theorem5.2, the assumption that the coefficients are bandlimited is crucial. It can be
weakened to some extent and replaced by an appropriate assumption about the regularity of
the coefficients, but for simplicity that was not pursued here. Regardless, these results do not
apply to problems in which the coefficients are particularlyrough or discontinuous. Future
work will include the use of KSS methods with other bases of trial functions besides trigono-
metric polynomials, such as orthogonal wavelets or multiwavelet bases introduced in [1].
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8.3. Higher-order schemes.As the number of quadrature nodes per component in-
creases, higher-order derivatives of the coefficients are included in the expressions for the
recursion coefficients, and therefore the regularity conditions that must be imposed on the
coefficients are more stringent. However, even withK = 1 orK = 2, high-order accuracy
in time can be achieved, so it is not a high priority to pursue this direction, except in the case
of KSS-R(2), as the prescribed node significantly improves accuracy for parabolic problems,
as observed in [19].

8.4. Summary. We have demonstrated that for both parabolic and hyperbolicvariable-
coefficient PDE, KSS methods compute Fourier components of the solution from directional
derivatives of moments, where the directions are obtained from the solution from previous
time steps. The resulting reformulation of these methods facilitates analysis of their stability,
and in the case of sufficiently smooth coefficients, unconditional stability is achieved. There-
fore, KSS methods represent a viable compromise between thecomputational efficiency of
explicit methods and the stability of implicit methods. Although these analytical results apply
to a rather narrow class of differential operators, they canbe applied to problems with more
general operators by means of unitary similarity transformations, which have the effect of
preconditioning the problem in order to achieve greater accuracy.
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