Electronic Transactions on Numerical Analysis. ETNA
Volume 26, pp. 330-349, 2007. Kent State University
Copyright © 2007, Kent State University. etna@mcs.kent.edu
ISSN 1068-9613.

EFFICIENT DEFLATION METHODS APPLIED TO
3-D BUBBLY FLOW PROBLEMS*

J. M. TANGT AND C. VUIK

Abstract. For various applications, it is well-known that deflated ICCG is an efficient method to solve linear
systems with an invertible coefficient matrix. Tang and Vuik [J. Comput. Appl. Math., 206 (2007), pp. 603—
614] proposed two equivalent variants of this deflated method, which can also solve linear systems with singular
coefficient matrices that arise from the discretization of the Poisson equation with Neumann boundary conditions
and discontinuous coefficients. In this paper, we also consider the original variant of DICCG in Vuik, Segal, and
Meijerink [J. Comput. Phys., 152 (1999), pp. 385-403], that already proved its efficiency for invertible coefficient
matrices. This variant appears to be theoretically equivalent to the first two variants, so that they all have the same
convergence properties. Moreover, we show that the associated coarse linear systems within these variants can be
solved both directly and iteratively. In applications with large grid sizes, the method with the iterative coarse solver
can be substantially more efficient than the one with the standard direct coarse solver.

Additionally, the results for stationary numerical experiments of Tang and Vuik [J. Comput. Appl. Math., 206
(2007), pp. 603—-614] have only been given in terms of number of iterations. After discussing some implementation
issues, we show in this paper that deflated ICCG is considerably faster than ICCG in the most test cases, by taking
the computational time into account as well. Other 3-D time-dependent numerical experiments with falling droplets
in air and rising air bubbles in water are performed, in order to show that deflated ICCG is also more efficient than
ICCG in these cases, considering both the number of iterations and computational time.

Key words. deflation, conjugate gradient method, preconditioning, Poisson equation, symmetric positive semi-
definite matrices, bubbly flow problems, inner-outer iterations

AMS subject classifications. 65F10, 65F50, 65N22

1. Introduction. Numerical simulations of bubbly flows are relevant to problems found
in various disciplines, such as the oil, nuclear and chemical industries. These bubbly flows are
governed by the incompressible Navier-Stokes equations. In many popular operator-splitting
formulations of these equations, it is the Poisson problem, used to approximate the pressures,
which is the most computationally challenging despite its elliptic origins, see also [22,23,27].
In our applications, the pressure problem has discontinuous coefficients, due to jumps in the
density.

Efficient solution of the Poisson problem in complex domains depends upon the avail-
ability of fast solvers for sparse linear systems. Popular in use are Krylov subspace iterative
solvers, such as the CG method with an incomplete Cholesky preconditioner, denoted by
ICCG [17]. The results given in this paper for ICCG and its variants may be generalized to
other SPD preconditioners, which have comparable spectral properties.

We seek to improve the ICCG method for the Poisson solve in order to overcome the
slow convergence frequently observed in the presence of highly refined grids and flows
with high density ratios or with many bubbles. The presence of small eigenvalues has a
harmful influence on the convergence of ICCG. These slowly converging components are
not cured by classical preconditioning. A significant improvement arises from the removal
of the eigenmodes corresponding to these small eigenvalues from the system. This leads
to the DICCG method, which is equivalent to ICCG complemented with a deflation tech-
nique [21]. The deflation technique has been further exploited by several authors, among
them are [1,7,12,16,18,19,20,24,31,32].

*Received July 6, 2006. Accepted for publication June 8, 2007. Recommended by Y. Saad. Part of this research
has been funded by the Dutch BSIK/BRICKS project.

TDelft University of Technology, Faculty of Electrical Engineering, Mathematics and Computer Science,
Delft Institute of Applied Mathematics, Mekelweg 4, 2628 CD Delft, The Netherlands ({J .M.Tang,
C.Vuik}@tudelft.nl).

330

ETNA

Kent State University
etna@mcs.kent.edu

EFFICIENT DEFLATION METHODS APPLIED TO 3-D BUBBLY FLOW PROBLEMS 331

In many applications, DICCG has been proven to be an efficient method, such as in the
applications of porous media flows [19] and ground water flows [32]. However, in these
cases, the interfaces in the domain can be explicitly described and, so, applying the defla-
tion technique is straightforward. Due to the possible appearance of complex geometries in
our bubbly flow problems, the interfaces of the bubbles can only be described implicitly in
general. Moreover, in the above applications, the coefficient matrix of the linear system is
always nonsingular making the deflation technique straightforward to apply. However, in
our applications with bubbly flows, we have singular coefficient matrices. Recently, we have
investigated theoretical aspects with respect to the singularity of the linear systems for bub-
bly flow problems [28]. We proposed two equivalent variants of DICCG, where it has been
demonstrated, both theoretically and numerically, that the resulting methods accelerate the
convergence of the iterative process. Moreover, in practice, the singular coefficient matrix is
often made invertible by modifying, for example, the last element, since this can be advan-
tageous for the solver. The drawback of this approach is that the condition number becomes
worse. We showed that this problem can be completely remedied by applying the deflation
technique with one or more deflation vectors.

In this paper, we continue the research on deflation and the singularity of the linear
system. We propose and investigate another variant of DICCG which can deal with the bubbly
flow problems. This will be compared to the existing two variants, both theoretically and
numerically. The new variant appears to be the most natural analogue of the existing DICCG
method for invertible coefficient matrices as known in literature; see, e.g., [7,19,31,32].

The main focus of [28] was to show theoretically that DICCG can be adapted so that
it is applicable to singular systems, where 3-D numerical experiments have been carried out
without taking efficiency issues into account. The ICCG and DICCG methods have been
compared in terms of the number of iterations required for convergence to the solution. How-
ever, it is known that a reduction of the number of iterations does not guarantee a reduction
of the required computational time, since the work per iteration may increase in the new
method. Therefore, in this paper, we present some results investigating both the number of
iterations and the required CPU time, in order to show that DICCG is efficient in use. To
do so, DICCG has to be implemented efficiently. Hence, in this paper we will also consider
some implementation issues in order to obtain an efficient program code.

Finally, in the 3-D numerical experiments done in [28], we used fixed density fields.
However, in practice the density fields can change in time. Therefore, in this paper, we will
perform some real-life time-dependent simulations with rising bubbles in water and falling
droplets in air. We investigate whether DICCG is also effective for these kinds of applications.

Besides DICCG, well-known in the field of multigrid (MG) and domain decomposition
methods (DDM) are the CG method in combination with additive coarse grid correction [5,4]
or balancing preconditioners [13, 14]. For elliptic problems with large jumps in the coef-
ficients, successful multigrid solvers and preconditioners can be found in, e.g., [2, 3, 33],
whereas appropriate domain decomposition methods and preconditioners have been consid-
ered in, e.g., [6,15,26,30]. In this paper, we restrict ourselves to ICCG-type methods. This is
because (complexity issues for) DDM and MG preconditioners are still the subject of current
research for bubbly flow applications. In addition, ICCG-type methods have already proved
to be extremely robust, even in cases with complex density fields containing relatively small
bubbles and droplets.

This paper is organized as follows. First, the problem setting of bubbly flows is given in
Section 2. Subsequently, in Section 3, we describe briefly the existing DICCG variants and
define another DICCG variant for singular coefficient matrices. Moreover, some notes about
the algorithm and the efficiency of deflation are made. After that, in Section 4, the DICCG

ETNA

Kent State University
etna@mcs.kent.edu

332 J. M. TANG AND C. VUIK

variants are treated and compared in more detail. In addition, we propose efficient methods
to solve the coarse linear systems within these variants. Section 5 is devoted to some 3-D
stationary and time-dependent numerical experiments, where the performance of both ICCG
and DICCG are investigated, considering both the number of iterations and the computational
cost. Finally, the conclusions are presented in Section 6. For more details we refer to [29].

2. Problem setting. We consider the singular symmetric and positive-semi-definite
(SPSD) linear system,

@2.1) Az =b, AeRV™.

The linear system (2.1) is derived from a second-order finite-difference discretization of the
3-D Poisson equation with Neumann boundary conditions:

(2.2) {—V'(ﬁvg(X)) = f(x), x€Q,
mp(x) = g(x), x€0Q,

where p, p,x and n denote the pressure, density, spatial coordinates, and the unit normal
vector to the boundary, 92, respectively. In the 3-D case, domain {2 is chosen to be a unit
cube. We perform the computations on a uniform Cartesian grid, so that n = nynyn, where
ng,Ny and n are the grid sizes in each spatial direction. Furthermore, we consider two-
phase bubbly flows with, for example, air and water. In this case, p is piecewise constant with
a relatively small contrast:

_J po=1, x € Ao,
p_{ p1:10737 XeAl;
where Ag is water, the main fluid of the flow around the air bubbles, and A1 is the region
inside the bubbles. We define the contrast of the problem as 8 := p1/pg .

Next, define 1,, and 0,, to be the all-one and all-zero vectors with p elements, respectively.
Then, throughout this paper, the following assumption holds, which follows implicitly from
the above problem setting.

ASSUMPTION 2.1. We assume that the singular SPSD matrix, A, and the vector, b, sat-
isfy Al,, = 0,,, and bT1,, = 0. In addition, the algebraic multiplicity of the zero-eigenvalue
of A is equal to one.

Obviously, from Assumption 2.1, it follows that the system, Az = b, is compatible.
Hence, although A is singular, this linear system is always consistent and an infinite number
of solutions, z, exist. Additionally, we stress that the results given in this paper cannot be
generalized to singular matrices with an algebraic multiplicity of the zero-eigenvalue larger
than one.

3. Implementation aspects of DICCG. In this section, we will give three variants of
the DICCG method, after defining the deflation matrices. Moreover, the DICCG algorithm
will be presented, and some implementation issues with respect to computations with the
deflation matrices will be considered.

3.1. Definition of the deflation matrices. In ICCG, the resulting linear system to be
solved is M ~Y Az = M ~'b, where M denotes the standard incomplete Cholesky (IC) pre-
conditioner without fill-in; see, e.g., [8, Section 10.3.2]. Although A is singular, it can be
shown that the IC preconditioner, M, is invertible [11, Theorem 3.2].

Next, let the open domain €2 be divided into subdomains 5, j = 1,2,...,k, such that
0= U;?:lﬁj and Q; N Q; = 0 for all i # j. The discretized domain and subdomains are

ETNA

Kent State University
etna@mcs.kent.edu

EFFICIENT DEFLATION METHODS APPLIED TO 3-D BUBBLY FLOW PROBLEMS 333

denoted by €2, and Qy;, respectively. Then, for each Qp; with j = 1,2,..., k, we introduce
a deflation vector, z;, as follows:

N 0, .’EiEQh\th;
(z])z T {]-5 T; € th;

where z; is a grid point in the discretized domain, Q. Then, for & > 1, we define Zj, :=
[21 22 - -- 2], which is called the deflation subspace matrix. Hence, Z}, consists of disjunct
orthogonal piecewise-constant vectors. In the flop count analysis (Section 3.4) and in the
numerical experiments (Section 5), we will take the subdomains, €2, to be identical cubes.
Subsequently, we define

Poy:=1-AZy \E;NZL |, Ep_y:=2Z1_1AZ_,
and
Py :=1—-AZE;'ZL, E,:=2zFAz,

where the invertible matrix, ﬁ is identical to A except for the last element, which is &, , =
1+ a)an » With ¢ > 0. It can be noticed that P;_; results from one deflation vector less

than Pk Moreover, note that both coarse matrices E},_; and Ek are nonsingular, so that the
corresponding coarse linear systems can be solved in a direct way.

3.2. Variants of DICCG. In [28], two variants of DICCG were proposed that can deal
with singular coefficient matrices. In Variant (a), one solves

M7'P, 1A% = M~1P,_1b,
and, in Variant (b), one solves
M~'P,A% = M~ Py,

where M is the IC preconditioner based on A. It has been proven that the equalities,]Skle' =
P,_1Aandlim,_, /-:eﬂ(M 1Py A) = k(M1 P,_1 A), hold. Both variants require approx-
imately the same computational time for various test problems. Therefore, the two variants
are equivalent for o < 1.

It is common to solve the coarse linear systems, associated to Ey_; or Ek, in a direct
way; see [28]. However, in principle, these coarse sytems can also be solved iteratively,
which can be more efficient if k is relatively large. In this case, Variant (a) is related to
another variant of DICCG, called Variant (c), where we solve

M~'P A% = M~ Pb,
where
P, :=1-AZvE}ZF, Ey:=ZFAZ,

with Ek+ equal to the Moore-Penrose inverse or pseudo-inverse. The standard inverse cannot
be used, since Ey, is singular due to

(3.1) Eply, = ZTAZ 1, = ZT A1, = Z70,, = 0y,

using the fact that Z;1; = 1,,. Although the inverse of Ej does not exist, it may be possible
to use a direct solver for the corresponding coarse linear systems. Extra care should be needed

ETNA

Kent State University
etna@mcs.kent.edu

334 J. M. TANG AND C. VUIK

by applying, e.g., Gaussian elimination or the band-Cholesky decomposition, to handle the
singularity of Ej. One should generate a solution up to the null space of Ej,. However, in this
paper, we restrict ourselves to solve the coarse linear systems in Variant (c) iteratively. This
does not cause problems, as long as these systems with E}, are consistent, see Section 4.1.2.

In addition, note that Variant (c) is basically identical to the original DICCG for invertible
systems (see, e.g., [7, 19,32]), since the original coefficient matrix and all k£ deflation vectors
are used in this variant. Hence, it is the most natural generalization of DICCG for singular
systems. Moreover, in Section 4.2, we will show that Variant (c) is mathematically equal to
the other two variants. For the sake of completeness, the three variants are summarized in
Table 3.1.

TABLE 3.1
Deflation and coarse matrices of the proposed deflation variants.

Variant | Deflation matrix ~ Coarse matrix

(a) Py, Ey 1
(b) B E,
(c) P Ey

Subsequently, we will distinguish two main DICCG methods in this paper, where the
difference is the solver of the coarse systems; see Definition 3.1.

DEFINITION 3.1.

e DICCGI—k is defined as DICCG corresponding to any deflation variant, where
each coarse system is solved directly.

e DICCG2—k is defined as DICCG corresponding to any deflation variant, where
each coarse system is solved iteratively.

Notice that any variant, as given in Table 3.1, can be used for both DICCG1—k and
DICCG2—k, since it appears that all variants are mathematically equivalent. However, for
convenience, we restrict ourselves to Variant (a) and (b) for DICCG1—k and Variant (a)
and (c) for DICCG2—£ in this paper.

3.3. DICCG algorithm. From Z, we can find solution x using the following expression
(see, e.g., [19]), where P and Z are the corresponding deflation matrix and subspace deflation
matrix, associated with DICCG1—k or DICCG2—k:

z=ZE1ZTh + PT;3.

The DICCG algorithm is presented in Algorithm 1.
Operations with P in Algorithm 1 need a careful implementation, since the success of DICCG
depends strongly on the way of implementing these operations. In the next subsection, we
consider this topic in more detail.

Finally, we use the following termination criterion,

IM~1P(b — AZs)|l>

3.2 < €,
G2 10— Azo)l ~©

in DICCG, which is equivalent to the standard termination criterion

M o= Azlls _
=16 = Aao)]l =

in ICCG, where € > 0. The left-hand sides of (3.2) and (3.3) are called the norm of the
relative residual of DICCG and ICCG, respectively.

(3.3)

ETNA

Kent State University
etna@mcs.kent.edu

EFFICIENT DEFLATION METHODS APPLIED TO 3-D BUBBLY FLOW PROBLEMS 335

Algorithm 1 DICCG Algorithm solving Ax = b
1: choose a starting vector z,
choose DICCG1—k or DICCG2—k with a corresponding deflation variant
and matrices A, Z, E, P and M
2: compute rg := b — Axg, Zo := xo and 7y := Pry,
solve Mvg = 7y and take pg := vg

3: for j := 0, ..., until convergence do
4: wj = PApj

50 o= (F),05)/ (pj, wy)

6: Tjp1 =T + ajp;

7 fj+1 = fj — Q;W;

8: solve Mvj+1 = fj_;_l

9 Bj = (Fj1,v541)/ (75, 0;)

100 pjt1 = vj41 + Bjp;
11: end for
12: ¢:=ZE-1ZTp + PT:Z‘j+1

3.4. Treatment of operations with the deflation matrix. Some implementation analy-
sis for DICCG will be treated in this subsection. Using this analysis, DICCG can be efficiently
implemented in a program code, resulting in a fast solver; see also [29] for more details. Note
that the main part of this analysis is only valid for 3-D regular grids, and that the flop counts
and their analysis only hold for deflation subdomains, which are taken to be non-overlapping
identical cubes.

3.4.1. Construction of AZ. The matrix-matrix product AZ can be computed by only
determining the non-zero elements, which will be stored as a sparse matrix denoted by S 4z.
Denote the number of non-zero elements of the matrix, AZ, by . Then, Saz isa~y x 3
matrix, where the first and second columns are filled with the row and column indices of the
non-zero elements of AZ, respectively. The third column of S 4z stores the corresponding
values of these non-zero elements. The elements of S 4z can be determined efficiently, since
Z represents subdomains (2; which are non-overlapping cubes. Moreover, AZ has only
contributions near the interfaces of these cubes and, hence, consists of relatively many zeros.
So, the few nonzero elements of AZ may be known beforehand.

EXAMPLE 3.2. Let A € R*** and Z € R**? be matrices, obtained from the 1-D
Poisson problem, given by

1 -1 0 0 1 0
-1 2 -1 0 1 0
A= 0 -1 2 -1’ Z= 01
0 0 -1 1 01
Then, this leads immediately to
0 0 2 1 1
1 -1 3 1 -1
AZ=1 1 1| Saz=]4 9 4 |>
0 0 3 2 1

where v = 2.
In addition, considering the number of floating point operations, it is not difficult to show
that constructing S 4z requires O(n?/3k/3) flops in the 3-D case.

ETNA

Kent State University
etna@mcs.kent.edu

336 J. M. TANG AND C. VUIK

3.4.2. Construction of E. The coarse matrix, E := ZT AZ, can be easily formed dur-
ing the construction of AZ. Each non-zero element of AZ makes exactly one contribution
to E, by simply adding the value to the corresponding element of E.

It depends on the choice of technique for solving the linear system Ey2 = y; in which
sparse way E is best stored, resulting in Sg; see Section 4. For now, the number of floating
point operations to solve such a linear system is denoted by 6.

3.4.3. Calculation of matrix-vector products Py and P”y. In contrast to AZ and
E, the deflation matrix, P, is not explicitly constructed. Instead, the matrix-vector product
Py := y — AZE~'Z7y is computed in a sequential way; see Algorithm 2. PTy can be
treated in the same way. Both algorithms require O(n +) flops.

Algorithm 2 Computing Py

1y :=ZTy

2: solve Eys = 11
3. Y3 = AZy2

4. Py :=y —uys

Note that Z is not explicitly stored, since the matrix-vector products, Zy and Zy,, can
be simply determined from y, requiring O(n) flops. Furthermore, since S 4z is known, the
products AZys and (AZ)Ty can also be easily computed using O (n2/3k'/3) flops in 3-D.

4. Further analysis of the DICCG variants. In this section, we first show how the
coarse systems, Fys = yi, can be solved for both DICCG1—k and DICCG2—k. We then
compare the deflation variants theoretically.

4.1. Solving the coarse linear system efficiently. Solving the coarse systems, Fys =
y1, efficiently is crucial in both DICCG1—k and DICCG2—k. Recall that we use a direct
method to solve them in DICCG1—k, whereas an iterative method is adopted in DICCG2—k.

We define k, to be the number of grid points in each spatial direction of a cube from
Z,i.e., k; := {/n/k, assuming that k is a divisor of n and that the number of grid points is
equal in each spatial direction.

4.1.1. DICCG1—k. To solve Ey, = y; with a direct method, we can apply the band-
Cholesky decomposition [8, Section 4.3.5] and, thereafter, band-back/forward substitution [8,
Section 4.3.2]. In this case, the bandwidth of E is k2/3 + k'/3 making the decomposition
only efficient for relatively small k& and/or 7. N

In the previous section, we noted that both Ey and Ej_; are invertible, so that their
band-Cholesky decompositions exist. Considering floating point operations, constructing the
Cholesky decomposition requires O(k7/ 3) flops, whereas the backward and forward substi-
tutions take O(k%/3) flops.

4.1.2. DICCG2—k. To find a solution of Eyy = y; in DICCG2—k, we will apply the
iterative solver ICCG (using the standard IC preconditioner without fill-in, i.e., IC(0)). This
is possible and efficient, since E has the same properties as A. Obviously, E is SPSD and has
a similar sparsity pattern to A, because Z is based on non-overlapping deflation subdomains.
Moreover, E is better conditioned than A; see Theorem 4.1.

THEOREM 4.1. Suppose E to be Ey,_1 or Ey. Let the eigenvalues of both A and E be
sorted increasingly. Then,

4.1 Kepf(E) < Kepp(A),

ETNA

Kent State University
etna@mcs.kent.edu

EFFICIENT DEFLATION METHODS APPLIED TO 3-D BUBBLY FLOW PROBLEMS 337

where k.55 denotes the effective condition number.

Proof. Note first that both Ey_; and Ej, have rank k — 1, since Z has full rank and the
algebraic multiplicity of the zero-eigenvalue of A is one. In addition, it is allowed to scale
Z), with \/n/k such that it satisfies ZI Z), = I. We do not lose generality, since the column
space of Zj, remains the same.

In order to prove (4.1) for E := Ej, it suffices to show that

4.2) A2(A) < p2(By) and - puy(Eg) < An(A),

where 0 = p1 (Eg) < po(Er) < ... < pp(E) and 0 = A\ (4) < A2(A4) < ... < Ay (A) are
the eigenvalues of Ej, and A, respectively.

The inequalities (4.2) can be derived from the Courant-Fischer Minimax Theorem; see,
e.g., [10, Theorem 4.2.11]. From this theorem, we obtain in particular

4.3) A2 (A) = min zT Az, AM(A) = max z7 Az,

zTz=1, zLluq(A) zTz=1

where u; (A) is the eigenvector corresponding to A1 (A); see [10, Section 4.2] for details.
Note that the identities, u1(A) = 1,, and u1 (E) = 1j, hold due to Assumption 2.1 and

(3.1). In addition, for z = Zyy we have 27 Az = (Zyy)T AZvy = v By, (Z1y)* (Zry) =

yly and (Zyy)"'1, = y*'Z}F1,, = yT'1}, using the fact that Z{'1,, = 1;. Hence, this implies

4.4 min Zwy)TA(Zry) = min TEy.
4 (Zky)T(Zky)=1,ZkyJ-1n(k)" AlZey) yTy:l,yJ-lky Y

Now, combining (4.3) and (4.4) gives us

A (A) = i TA < i TE = E
2(4) szgﬂr.lzJ_ln TATS yTygl,rgl;J_lk v By = pa(E),
which is the left inequality of (4.2). For the right inequality of (4.2), it follows in a similar
way that

ur(E) = max y'Ey < max 27 Az = \,(A),

yTy=1 zTz=1

where we have applied max z, ,)7(z, y)=1 (Zry)T A(Zry) = max,r,—; y* Ey.

Expression (4.1) for E := Ej,_1 can be proven in a similar way as above. [

Next, there is no need to force invertibility of E}, since ICCG can deal with singular
matrices. We only have to ensure the consistency of all coarse linear systems during the
process of DICCG2—k; see Theorem 4.2.

THEOREM 4.2. All coarse linear systems within DICCG2—F are consistent.

Proof. Recall that E},_ is invertible, so that we can restrict ourselves to £ := Ej. The
coarse linear systems Eyy = y; appear three times in Algorithm | (Lines 2, 4 and 12) which
will be separately treated below.

In the matrix-vector product Pry we have to solve the coarse linear system Eys = Z .
This system is consistent, since it is compatible due to (3.1) and

(ZTro)T1y, = 21, = #l1, =071, — 2l AL, =0, — 200, =0,.
Moreover, since

(Z" Ap;)" 1y = p] AZ1}, = pj AL, = 0,,,

ETNA

Kent State University
etna@mcs.kent.edu

338 J. M. TANG AND C. VUIK

the system Ey, = ZTAp]- is also compatible. Hence, PAp; is consistent. Finally, using
the same argument as above, we conclude that PT:T:j+1 is also consistent, since PT;ch_,_l =
.i'j+1 — ZEleTA:EjH. O

From Theorem 4.2, we conclude that it is possible to solve the coarse systems, Fys =
y1, iteratively. Each of the ICCG steps costs O(k) flops, and the efficiency of this method
depends on the number of required inner ICCG iterations. Note that the solution of the
coarse systems in Variant (c) is not unique, since it is determined up to a constant vector. If
y2 is a solution of Ejy> = yi, then ya + aly with @ € R is also a solution. Fortunately,
y3 := AZi(ya+aly) is unique, due to the fact that AZ, 1, = Al,, = 0,,. Hence, Algorithm 2
gives a unique Py for all deflation variants.

Next, in DICCG2—k we have an inner-outer iterative process with DICCG and ICCG,
so we need two different termination criteria. The inner and outer tolerances are called €,
and €;,,, respectively. We will take

€in = W €z, w > 0.

For large w > 1, DICCG2—k does not converge, since the method appears to be sensitive to
inaccurate solves of the coarse systems; see also [19, Section 3]. However, for small w < 1,
the convergence of the inner iterations of DICCG2—k is relatively slow or the inner solve
may stagnate or even diverge due to a too severe tolerance. Therefore, w should be chosen
carefully to obtain an accurate and efficient method. From our numerical experiments with
bubbly flows, it appears that

w=10"2

is an appropriate choice. We refer to [9, 25] for more information about inner-outer iterative
processes and their termination criteria.

For large problems, it could be advantageous to solve the inner iterations with DICCG
as well, instead of ICCG. The inner iterations could even be solved by a recursive application
of DICCG. This is in analogy with multigrid; see also [7, Section 3].

4.2. Theoretical comparison of the DICCG variants. DICCG variants (a) and (b)
have already been compared in [28]. Since they appear to be equivalent, we can restrict the
theoretical comparison to Variant (a) and (c), in this subsection. We will show theoretically
that both variants are the same, since it can be proven that the preconditioned deflated system
M~1P;_1 Ain Variant (a) is equal to M ~! P, A in Variant (c); see Theorem 4.3.

THEOREM 4.3. The following identity holds:

(4.5) M 'P,A=M"1P,_,A.

Proof. Define first 0, 4 and 1, , as the all-zero and all-one p x ¢ matrices, respectively.
Moreover, suppose that Zy, = [Zj,_1 1,] instead of Zj, = [Z}_1 2x]. Now, it suffices to show
that P, — P,_1 = 0, . Note that

zr Zr AZT 0r_
ZgAZkZ[ffl]A[Zk—l ln]z[k_(;T ot kol];
n k—1

leading to

T T -1 —1
Bl = (Z{AZy)* = [a8 Zia) ™ O] = [By O] :

0; 0 0, O

ETNA

Kent State University
etna@mcs.kent.edu

EFFICIENT DEFLATION METHODS APPLIED TO 3-D BUBBLY FLOW PROBLEMS 339

Hence, this yields

Py—P = AZyENZE | - AZkE,jZle
_ E ' 0,
= AZ,E Y ZF | - AZ, [of_ll ’“01]ZkT
= AZk_lEk_le,%”_l - AZk—lE;jlzl?—l

On,n;

which completes the proof for Zj, = [Zy_1 1,].

From Theorem 2 of [28], we obtain the equality P, 1A =]skg. Therefore, [19,
Lemma 2.9] can be applied, which states that both Z = [Z_1 1,] and Z, = [Zp_1 2]
would lead to exactly the same matrix P, A, since the column space of [Z—1 2] and [Z—1 1,)
are equal. Hence, (4.5) also holds for the original Z = [Z_1 z¢]. ' O

According to Theorem 4.3, the preconditioned deflated systems for A with £ — 1 and
k deflation vectors are the same. Hence, Variant (a) and Variant (c) give exactly the same
convergence results in exact arithmetic. This conclusion is highly expected and seems quite
natural.

We end this section with Corollary 4.4, which is a generalization of Theorem 2.12 of [19].

COROLLARY 4.4. Let s,t € Nwiths < t < k. Then,

M(M~IP,A) > M\ (M~ 1P A);
/\s+1(M_1PsA) <)\t-i—l (M_IPtA).

Moreover,
fieff(Mil.PsA) > l-’.:eff(MilptA),

where k.55 denotes the effective condition number.

Proof. Recall that M 1PyA = M~'P,_1A = M 1P, A, by combining Theorem 4.3
and [28, Theorem 2]. Therefore, the systems M —1P, A and M~ P, A can be transformed into
systems with an invertible A. Then the corollary follows immediately from Theorem 2.12
of [19]. O

Corollary 4.4 states that the effective condition number of the deflated preconditioned
system corresponding to the singular matrix A decreases if we increase the number of defla-
tion vectors. This means that, theoretically, the more deflation vectors, the faster the conver-
gence of the deflation method in terms of the number of iterations, although more work is
needed to solve the coarse systems.

5. Numerical experiments. In this section, we present the results for some 3-D nu-
merical experiments with both stationary and time-dependent problems, which will illustrate
the theoretical results obtained in the previous sections. The computations are performed on
a Pentium 4 (2.80 GHz) computer with a memory capacity of 1GB. Moreover, the code is
compiled with FORTRAN g77 on LINUX.

5.1. Stationary experiments. We apply the problem setting as given in Section 2. Four
test problems are considered, with 0, 1, 8 and 27 air-bubbles, respectively, in the unit domain
filled with water. These bubbles have the form of a sphere with a constant radius. Most of the
results in this subsection are, however, based on the test problem with 27 bubbles. We will
vary the contrast, §, between phases. In addition, various numbers of deflation vectors, k, and
various grid sizes, ng,ny and n, with n, = n, = n_, will be used in the experiments.

! An alternative proof of this theorem can be found in [29, Section 6.3].

ETNA

Kent State University
etna@mcs.kent.edu

340 J. M. TANG AND C. VUIK

First, ICCG and DICCG1—k are used to solve the resulting linear systems. Then, in
the last subsection, we will compare DICCG1—k and DICCG2—k. Deflation variant (a) in
DICCGI1—k and deflation variant (c) in DICCG2—k are applied, throughout the experiments.
Random starting vectors are used, and we choose a relative termination criterion with toler-
ance € = 1078, As a measure of the accuracy of the solutions, the exact relative residuals
were also investigated in the experiments. However, since it appeared that they are compara-
ble for ICCG and for both DICCG variants in all cases, these results are omitted.

5.1.1. Results with n = 100%. The results for computational time and number of it-
erations for all test problems with grid size n = 100% and contrast § = 10~2 are given in
Table 5.1.

TABLE 5.1
Convergence results for ICCG and DICCGI1—k for all test problems with n. = 100% and 8 = 10~3. ‘#1t’
means the number of required iterations for convergence, and ‘CPU’ means the corresponding computational time
in seconds.

Test Problem No Bubbles One Bubble Eight Bubbles 27 Bubbles
Method #It. CPU | #It. CPU | #1It. CPU | #1It. CPU
ICCG 170 252 | 211 31.1 | 291 43.0 | 310 46.0
DICCG1-23 109 20.2 | 206 37.5 | 160 29.1 | 275 504
DICCG1-53 56 113 58 115 72 142 97 19.0
DICCG1-103 35 8.0 36 8.5 36 82| 60 13.0
DICCG1-203 22 265 25 276 | 22 27.2 31 293

Considering the results in Table 5.1, we see that DICCG1—k always requires fewer it-
erations when compared to ICCG. It can be observed that, for larger k, DICCG1—k requires
fewer iterations than for smaller k, which is in agreement with Corollary 4.4. In addition, the
optimal choice with respect to the CPU time is k = 103, i.e., in all test cases DICCG1—103
converges most rapidly. The improvement in the CPU time is relatively large compared to
ICCG. Furthermore, one can notice that, in general, it is not always the case that more bub-
bles in the test problem require more iterations and, therefore, more CPU time for both ICCG
and DICCG1—k to converge. Namely, for DICCG1—22 and DICCG1—202, we observe that
fewer iterations and CPU time are required for eight bubbles than for one single bubble. Fi-
nally, notice that for large k, DICCG1—k requires significant CPU time due to the increase of
the computational cost for solving systems with E. Hence, DICCG1—k does converge with
a small number of iterations for k£ > 103, but it requires a lot of CPU time for each iteration.

To visualize the results given in Table 5.1, we present those for the test problem with 27
bubbles in Figure 5.1. From Figure 5.1(a) it can be observed that as k is increased, the number
of iterations of DICCG1—k decreases significantly at the left of the curve. For large k, the
benefit is smaller. Furthermore, after a peak at k = 22, the required CPU time for DICCG1—k
decreases until £ = 103. Thereafter, the CPU time increases and DICCG1—k is less efficient;
see Figure 5.1(b). In Figure 5.1(c), the benefit factor for the number of iterations is depicted
for each k. Obviously, the larger k&, the larger the profit of DICCG1—k. For example, in the
case of k = 203, DICCG1—k requires almost 10 times fewer iterations than ICCG. Finally,
in Figure 5.1(d) the benefit factor for the CPU time is depicted for each k. For k = 103, the
maximum benefit factor is achieved. In this case, DICCG1—10° is around 3.5 times faster
than ICCG.

Finally, for the same test problem with 27 bubbles, plots of the norms of the relative
residuals of both ICCG and DICCG1—k, as defined in Section 3.3, can be found in Figure 5.2.
Notice that the behavior of the relative residuals of ICCG are somewhat irregular, due to the

ETNA

Kent State University
etna@mcs.kent.edu

EFFICIENT DEFLATION METHODS APPLIED TO 3-D BUBBLY FLOW PROBLEMS 341

Number of iterations
—_ —_ N n
o (4] o o
o o o o

a
=)

o

10 15 20 0 5 10 15 20
K3 K73

o
o

(a) Number of iterations versus k1/3. (b) CPU time versus K1/3.

I
(3}

(&)

n

&)

Ratio of number of iterations ICCG and DICCG
[<2)
Ratio of CPU time ICCG and DICCG
n
- (%))

o
o

0 5 10 15 20 0 5 10 15 20
k1/3 k1/3

(c) Ratio of numbers of ICCG and DICCG1—k (d) Ratio of CPU time required for ICCG and
iterations versus k1/3. DICCG1—k versus k1/3.

F1G. 5.1. Visualization of the results for the test problem with 27 bubbles.

presence of the bubbles. For DICCG1—k we can conclude that the larger &, the smoother the
residual plot is and so, the faster the convergence of the iterative process.

5.1.2. Results for varying grid sizes and contrasts. The results for the test problem
with 27 bubbles and with varying grid sizes are given in Figure 5.3. Here, we use ¢ := n, /k,
as the ratio of the grid size and the number of deflation vectors, both in one spatial direction.
We investigate whether DICCG1—k is scalable, i.e., whether the number of iterations of
DICCGI1—k is equal for all k£ and for a fixed 1.

From the figure, one observes immediately that for larger grid sizes, the differences in
performance between ICCG and DICCG1—k become significantly larger. For instance, in the
case of n = 1002, ICCG converges in 275 iterations and 50.4 seconds, while DICCG1-10°3
finds the solution in 60 iterations and only in 13.0 seconds. Moreover, we notice that the
number of ICCG iterations grows with the grid sizes, while the number of iterations for
DICCGI1—k for both ¢ = 5 and ¢y = 10 remains approximately constant. It seems that in
order to keep the number of iterations constant in DICCG1—k as the grid size is increased,
then the number of deflation vectors must also increase, proportionally to the grid sizes.

ETNA

Kent State University
etna@mcs.kent.edu

342 J. M. TANG AND C. VUIK
10° : : :
—ICCG
— pIccG1-2°
_2 --- DICCG1-5°
10 © DICCG1-10° ||
- DICCG1-20°

Norm of Relative Residuals
S

0% L ‘ ‘ ‘ ‘ ‘
50 100 150 200 250 300
lterate

F1G. 5.2. Relative residual plots for ICCG and DICCGI—k for the test problem with 27 bubbles and various k.

400 250

—— ICCG) s —— ICCG) s
_o. DICCG1-kwith N/ k=10 _o. DICCG1-kwith N /k'°=10
8801 ___ piccai-kwith N /K'2=5 —a DICCG1-kwith N /k'?=5
200
300
° z
5 el
S os0l
£ 250 5 150
2 8
5 2004 °
5 g
L L
£ 150 S5 100
=1 o
z o
100f
50t 1
------------ G
507777 REREEE R 1 -1
e S S "
% e 70 s 90 100 10 120 0 60 70 8 9 100 110 120
N, NN N, N, N
Xy oz Xy Uz
(a) Number of iterations versus grid size per di- (b) CPU time versus grid size per direction.
rection.

FIG. 5.3. Results for the test problem with 27 bubbles for varying grid sizes. ICCG and DICCGI—k with both
¥ = 5 and 1 = 10 are given.

Moreover, the CPU time required for DICCG1—£ increases more or less quadratically with
grid size, which is a consequence of the expensive direct solve of the coarse linear systems.
This is in agreement with the theory; cf. Section 4.1.1. In the next subsection, this will be
remedied by using DICCG2—k instead of DICCG1—k.

Next, after experiments with varying grid sizes, we fix the grid size as n = 100° and
vary the contrast, 8, between the phases. The results are given in Figure 5.4.

From the figure, we see that DICCG1—k for k > 23 hardly depends on the contrast, 6,
while ICCG becomes obviously worse if we choose a smaller 6. In other words, DICCG1—k
with & > 23 is insensitive to the contrast, 8, in terms of both the number of iterations and the
CPU time.

5.1.3. Comparison of DICCG1—k and DICCG2—k. In the previous subsections, we
have seen that DICCG1—k is very efficient as long as k¥ < 20°. From k = 20%, DICCG1—k
requires too large of the computational cost per iterate, although only a relatively low number

ETNA

Kent State University
etna@mcs.kent.edu

EFFICIENT DEFLATION METHODS APPLIED TO 3-D BUBBLY FLOW PROBLEMS 343
700 , " " " :
—— ICCG 90r —o- lcca i
-e- DICCG1-2° -¢- DICCG1-2°
600 —=— DICCG1-5° 80} -= DICCG1-5° ||
-o- DICCGi1-10°|| = §---===—===--- -- DICCG1-10°
» 500f ¢ DICCG1-20° 70t ¢ DICCG1-20° |
s T8
[geor
5 =
5 50
& 300¢ -. S
£ 40
< 200
309 T 0 4
100
P === e == = B = mmm @ 20,
T @ O 4 G m e e e 4
0° 107 10° 10° 10 10° pre N -5 5 = 3
10 10 10 10 10 10
Contrast 6 Contrast 6
(a) Number of iterations versus contrast be- (b) CPU time versus contrast between the
tween the phases. phases.

F1G. 5.4. Results for the test problem with 27 bubbles for varying contrast 8.

of iterations is needed. The bottleneck is the expensive construction of the banded Cholesky
decomposition of E. Direct computations with E can be avoided by using DICCG2—k,
hopefully resulting in a fast solver for large k. In this subsection, a numerical comparison
between DICCG1—k% and DICCG2—k will be made. Note that since we fix €4,s = 1078 for
all test cases, the stopping tolerance, €;, = 1071, should be adopted for the inner iterations
in DICCG2—k, as mentioned in Section 4.1.2.

Some results for the test problem with 27 bubbles and varying grid sizes can be found
in Figure 5.5. Similar results have been found for the other test problems. It appears that the
number of iterations required for both DICCG1—k and DICCG2—k is more or less equal in
all test cases, in agreement with Theorem 4.3, so these results are omitted.

We notice that for a relatively small number of deflation vectors, DICCG1—k and
DICCG2—k perform approximately the same. However, for problems with relatively large
k, DICCG2—k is clearly more efficient. The differences between the two DICCG methods
becomes significant at k = 203, In addition, observe that in all cases DICCG1—k achieves its
optimum at k = 103, whereas the optimum of DICCG2—k is achieved for k& > 103. Hence,
we conclude that DICCG2—k is the most efficient method for k > 10%. This conclusion is
rather natural, but cannot be drawn beforehand. For example, unforeseen problems solving
the coarse systems may occur, since the precise efficiency of solving these systems is not
known exactly, and the consistency of these systems may be lost due to rounding errors.

5.2. Time-dependent experiments. In the previous subsection we have considered test
problems with fixed geometries, i.e., the bubbles were fixed in the computational domain and
did not evolve in time. In this subsection, we apply two realistic 3-D simulations of 250 time
steps. In the first simulation, an air bubble is rising in water. In the second simulation, a water
droplet is falling in the air.

We adopt the mass-conserving level-set method [22] for the simulations, but it could be
replaced by any operator-splitting method in general. At each time step, a Poisson problem
(2.2) has to be solved, which is the most time-consuming part of the whole simulation. There-
fore, in this section we concentrate on this part of each time step. We investigate whether
both DICCG methods are still efficient for these time steps. Again, deflation variant (a) in
DICCGI1—k and deflation variant (c) in DICCG2—k are applied.

ETNA

Kent State University
etna@mcs.kent.edu

344 J. M. TANG AND C. VUIK
1001 -®- DICCG1-k (n=60°%)
. -8 DICCG2-k (n=60°%)
gl -m- DICCG1-k (n=100% ||
- B\ -8 DICCG2-k (n=100%)
=) -#- DICCG1-k (n=120%)
g 60f 3 —— DICCG2-k (n=120°%) |
2
()
£
S 40
o
(@)
20t
~—__ _ _ .-
0 9 ~@ T hg
0 5 10 15 20
k1/3

F1G. 5.5. CPU Time of DICCG1—k and DICCG2—k for the test problem with 27 bubbles with various grid sizes.

5.2.1. Rising air bubble in water. We consider a test problem with a rising air bubble
in water without surface tension. The exact material constants and other relevant conditions
can be found in [22, Section 8.3.2]. The starting position of the bubble in the domain and the
evolution of its movement during the 250 time steps can be seen in Figure 5.6.

(d) ¢t = 150. (e) t = 200. (f) t = 250.

FIG. 5.6. Evolution of the rising bubble in water without surface tension in the first 250 time steps.

In [22], the Poisson solver is based on ICCG. Here, we will compare this method to
both DICCG1—k and DICCG2—k for n = 100%. It turns out that DICCG1—10% and
DICCG2-20? are the best methods in the sense that they need the lowest computational
time to perform the simulation (cf. Figure 5.5). The results are presented in Figure 5.7.

ETNA

Kent State University
etna@mcs.kent.edu

EFFICIENT DEFLATION METHODS APPLIED TO 3-D BUBBLY FLOW PROBLEMS 345
%0 — Icca > ‘ ‘ - [—cce
— DIccai-10° sor — DICCG1-10°
soor - - - DIccG2-20° || 45] - - DICCG2-20° |

— n N
a =3 a
S S =)

Number of Iterations

o
S

50 M
RPN VO -~ 5l i
0 i i i ‘ 0 i i i i
0 50 100 150 200 250 0 50 100 15 200 250
Time Step Time Step
(a) Number of iterations versus time step. (b) CPU time versus time step.

-

1ol — Iterations ICCG / lterations DICCG1-10°
0 = - - - lterations ICCG / lterations DICCG2-20°
9k — CPU Time ICCG / CPU Time DICCG1-10° |{
gl | - -+ CPU Time ICCG / CPU Time DICCG2-20°
\\l . A
o7t ,\,”\/”,»““ 4
‘g e RO R ST YIRS C N
L‘E 61] ‘,‘\ v ‘,\«‘/\U"\/\U‘\H\\q v’\’/ a v
N N
£ 5¢ A
S
4
3
2r 1
1r 1
0 1 1 1 1
0 50 100 150 200 250

Time Step

(c) Gain factors of DICCG1—103 and DICCG2—203
with respect to ICCG.

FIG. 5.7. Results for ICCG, DICCG1—103 and DICCG2—203 for the simulation with a rising air bubble in water.

From Figure 5.7(a), we notice that the number of iterations is strongly reduced by the
deflation method. DICCG1-10% and DICCG2—203 require at most 60 iterations, while
ICCG converges in between 200 and 300 iterations for most time steps. For each time
step, DICCG2—20? requires fewer iterations than DICCG1—102, which is in agreement with
Corollary 4.4. Moreover, we observe the erratic behavior of ICCG, whereas the deflation
methods seem to be less sensitive to the geometries of the bubbles, during the evolution of
the simulation. Considering CPU time, DICCG1—10% and DICCG2—203 also show very
good performance, see Figure 5.7(b). For most time steps, ICCG requires 25-45 seconds
to converge, whereas both deflation methods are comparable and only need around 9-14
seconds. Moreover, in Figure 5.7(c), one can find the gain factors for both the ratios of the it-
erations and the CPU time between ICCG and the two deflation methods, respectively. From
this figure, we conclude that DICCG1—102 or DICCG2—202 need approximately 4—8 times
fewer iterations, depending on the time step. More importantly, at all time steps both deflation
methods converge approximately 2—4 times faster than ICCG.

ETNA

Kent State University
etna@mcs.kent.edu

346 J. M. TANG AND C. VUIK

We end this subsection with the remark that similar results can be found for other choices
of grid sizes. It appears that for problems with larger grid sizes, the deflation method becomes
more favorable, when compared to ICCG.

5.2.2. Falling water droplet in air. Similar to the previous subsection, we consider a
test problem with a falling water droplet in air without surface tension; see [22, Section 8.3.4].
Again, DICCG1—103 and DICCG2—20° are the fastest methods for the simulation. The
results are presented in Figure 5.9.

(d) t = 150. (e) t = 200. (f) t = 250.

F1G. 5.8. Evolution of the falling droplet in air without surface tension in the first 250 time steps.

Similar observations as those in the previous subsection can be drawn from Figure 5.9.
Obviously, the deflation method is a more efficient method, when compared with ICCG, in
terms of both number of iterations and required CPU time. We observe that both DICCG1—103
and DICCG2—202 need approximately 3-5 times fewer iterations and they converge more or
less 2—4 times faster than ICCG. In this test problem, it can be observed that DICCG2—202
performs somewhat better than DICCG1—103.

Finally, a small jump in the DICCG1—102 performance can be noticed around the 205th
timestep in Figure 5.9. This might be the result of the appearance of an rising droplet,
which can also be observed in Figures 5.8(e) and 5.8(f). This jump is not significant in
DICCG2-202. Apparently, a larger set of deflation vectors k gets rid of that droplet.

6. Conclusions. In the literature, the deflation method DICCG has already been proven
to be efficient for invertible linear systems. In [28], it has been shown that DICCG can
be easily adapted so that it is also applicable for singular linear systems. Additionally, the
method appeared to be efficient for bubbly flow problems when measured by the required
number of iterations. In this paper, we have shown that computational time is also gained by
applying DICCG instead of ICCG, if an efficient implementation has been used.

ETNA

Kent State University
etna@mcs.kent.edu

EFFICIENT DEFLATION METHODS APPLIED TO 3-D BUBBLY FLOW PROBLEMS 347
50 —icca ® : : [rece
— DICCG1-10° 40r — DICCG1-10° |
250¢ : - - - DICCG2-20° |{ | - -- DICCG2-20°

w
o
L

n

o

S
w
=]

Number of Iterations
@
o

o
S

o
L

50 ———
. [5t 1
0 i i i ‘ 0 i i i i
0 50 100 150 200 250 0 50 100 150 200 250
Time Step Time Step
(a) Number of iterations versus time step. (b) CPU time versus time step.

— lterations ICCG / lterations DICCG1-10°
- - - Iterations ICCG / Iterations DICCG2-20°
101 — CPU Time ICCG / CPU Time DICCG1-10° ||
- -+ CPU Time ICCG / CPU Time DICCG2-20°

W
vl (LR
RS T

|

\

hy
Ay

i
i \y' \‘

Gain Factor
(2]

e =
- 1o
‘_,\n- DAy

0 50 100 150 200 250
Time Step

(¢) Gain factors of DICCG1—103 and DICCG2—203
with respect to ICC G.

FIG. 5.9. Results for ICCG, DICCG1—103 and DICCG2—203 for the simulation with a falling water droplet

in air.

Three variants of DICCG are proposed, where we have proven that all of them give the
same convergence results in exact arithmetic, since their preconditioned deflated systems are
identical. Furthermore, the involved coarse linear systems can be solved both directly and it-
eratively. The resulting DICCG methods are denoted by DICCG1—k% and DICCG2—k, which
only differ in the implementation of the coarse solvers. A direct coarse solver is adopted in
DICCGI1—k, whereas an iterative coarse solver is applied in DICCG2—k. Some theoretical
properties of these coarse systems have been derived, which are of importance to DICCG2—k.

Several 3-D numerical experiments for bubbly flow problems have been performed to
test the efficiency of both DICCG methods. For relatively small numbers of deflation vectors,
DICCGI1—k performs very well, but DICCG2—k is more efficient for larger grid sizes and/or
number of deflation vectors. Compared with ICCG, both methods significantly reduce the
computational cost in all test cases, especially for large problems. Additionally, DICCG is
insensitive to the contrasts between the phases, while ICCG has difficulties for large contrasts.
Furthermore, we have shown that DICCG is scalable in terms of iterations and CPU time, as

ETNA

Kent State University
etna@mcs.kent.edu

348 J. M. TANG AND C. VUIK

long as the number of deflation vectors is chosen proportional to the grid size.

Finally, the success of the deflation method has been emphasized in realistic simulations
with a falling droplet in air and a rising bubble in water. Compared to ICCG, the benefit of
the deflation method is obviously observed, in terms of both the number of iterations and the
CPU time.

Acknowledgments. We would like to thank the anonymous referees for their valuable
remarks and comments that enabled us to substantially improve this paper. Moreover, we
also thank Kees Oosterlee and especially Scott MacLachlan for the helpful discussions and
comments on the paper and thorough proof-reading of this manuscript.

REFERENCES

[1] A. CHAPMAN AND Y. SAAD, Deflated and augmented Krylov subspace techniques, Numer. Linear Algebra
Appl., 4 (1997), pp. 43-66.

[2] A.J. CLEARY, R. D. FALGOUT, V. E. HENSON, J. E. JONES, T. A. MANTEUFFEL, S. F. MCCORMICK,
G. N. MIRANDA, AND J. W. RUGE, Robustness and scalability of algebraic multigrid, SIAM J. Sci.
Comput., 21 (2000), pp. 1064-8275.

[3] J. E. DENDY, JR., Black box multigrid, J. Comput. Phys., 48 (1982), pp. 366-386.

[4] M. DRYIJA, An additive Schwarz algorithm for two and three dimensional finite element elliptic problems, in
Domain Decomposition Methods, T. F. Chan, R. Glowinski, J. Periaux, and O. B. Widlund, eds., SIAM,
Philadelphia, PA, 1989, pp. 168-172.

[S] M. DRYJA AND O. B. WIDLUND, Towards a unified theory of domain decomposition algorithms for elliptic
problems, Third International Symposium on Domain Decomposition Methods for Partial Differential
Equations, T. F. Chan, R. Glowinski, J. Periaux, and O. B. Widlund, eds., SIAM, Philadelphia, PA, 1990,
pp. 3-21.

[6] M. DRYJA AND O. B. WIDLUND, Schwarz methods of Neumann-Neumann type for three-dimensional ellip-
tic finite element problems, Comm. Pure Appl. Math., 48 (1995), pp. 121-155.

[7]1 J. FRANK AND C. VUIK, On the construction of deflation-based preconditioners, SIAM J. Sci. Comput., 23
(2001), pp. 442-462.

[8] G.H. GoLUB AND C. F. VAN LOAN, Matrix Computations, Third ed., The John Hopkins University Press,
Baltimore, 1996.

[9]1 G. H. GOLUB AND Q. YE, Inexact preconditioned conjugate gradient method with inner-outer iteration,
SIAM J. Sci. Comput. 21 (1999), pp. 1305-1320.

[10] R. HORN AND C. JOHNSON, Matrix Analysis, Cambridge University Press, USA Edition, 1990.

[11] E. F. KAASSCHIETER, Preconditioned conjugate gradients for solving singular systems, J. Comput. Appl.
Math., 24 (1988), pp. 265-275.

[12] L. YU. KOLOTILINA, Preconditioning of systems of linear algebraic equations by means of twofold deflation,
1. Theory, J. Math. Sci., 89 (1998), pp. 1652-1689.

[13] J. MANDEL, Balancing domain decomposition, Comm. Numer. Methods Engrg., 9 (1993), pp. 233-241.

[14] J. MANDEL, Hybrid domain decomposition with unstructured subdomains, in Domain Decomposition Meth-
ods in Science and Engineering, Sixth International Conference on Domain Decomposition, A. Quar-
teroni, J. Periaux, Y. A. Kuznetsov, and O. B. Widlund, eds., Contemp. Math., vol. 157, Amer. Math.
Soc., Providence, RI, 1994, pp. 103-112.

[15] J. MANDEL AND M. BREZINA, Balancing domain decomposition for problems with large jumps in coeffi-
cients, Math. Comp., 216 (1996), pp. 1387-1401.

[16] L. MANSFIELD, Damped Jacobi preconditioning and coarse grid deflation for conjugate gradient iteration
on parallel computers, SIAM J. Sci. Stat. Comput., 12 (1991), pp. 1314-1323.

[17] J. A. MEIJERINK AND H. A. VAN DER VORST, An iterative solution for linear systems of which the coeffi-
cient matrix is a symmetric M-matrix, Math. Comp., 31 (1977), pp. 148-162.

[18] R. B. MORGAN, A restarted GMRES method augmented with eigenvectors, SIAM J. Matrix Anal. Appl., 16
(1995), pp. 1154-1171.

[19] R. NABBEN AND C. VUIK, A comparison of deflation and coarse grid correction applied to porous media
flow, SIAM J. Numer. Anal., 42 (2004), pp. 1631-1647.

[20] R. NABBEN AND C. VUIK, A comparison of deflation and the balancing preconditioner, SIAM J. Sci. Com-
put., 27 (2006), pp. 1742-1759.

[21] R. A. NICOLAIDES, Deflation of conjugate gradients with applications to boundary value problems, SIAM
J. Matrix Anal. Appl., 24 (1987), pp. 355-365.

[22] S.P. VAN DER PUIL, Computation of bubbly flows with a mass-conserving level-set method, PhD thesis, Delft
University of Technology, 2005.

[23]
[24]
[25]
[26]

(271

[28]
[29]
[30]

[31]

[32]

[33]

ETNA

Kent State University
etna@mcs.kent.edu

EFFICIENT DEFLATION METHODS APPLIED TO 3-D BUBBLY FLOW PROBLEMS 349

S. P. VAN DER PIIL, A. SEGAL, C. VUIK, AND P. WESSELING, A mass-conserving Level-Set method for
modelling of multi-phase flows, Int. J. Numer. Meth. Fluids, 47 (2005), pp. 339-361.

Y. SAAD, M. YEUNG, J. ERHEL, AND F. GUYOMARC’H, A deflated version of the conjugate gradient
algorithm, SIAM J. Sci. Comput., 21 (2000), pp. 1909-1926.

V. SIMONCINI AND D. B. SZYLD, On the occurrence of superlinear convergence of exact and inexact
Krylov subspace methods, SIAM Rev., 25 (2005), pp. 247-272.

B. SMITH, P. BJORSTAD, AND W. GROPP, Domain Decomposition, Cambridge University Press, Cam-
bridge, 1996.

F. S. SousA, N. MANGIAVACCHI, L. G. NONATO, A. CASTELO, M. F. TOME, V. G. FERREIRA, J. A.
CUMINATO AND S. MCKEE, A front-tracking/front-capturing method for the simulation of 3D multi-
Sfluid flows with free surfaces, J. Comput. Phys., 198 (2004), pp. 469—499.

J. M. TANG AND C. VUIK, On deflation and singular symmetric positive semi-definite matrices, J. Comput.
Appl. Math., 206 (2007), pp. 603-614.

J. M. TANG AND C. VUIK, An efficient deflation method applied on 2-D and 3-D bubbly flow problems, DUT
Report 06-01, Delft University of Technology, 2006.

A. TOSELLI AND O. B. WIDLUND. Domain Decomposition: Algorithms and Theory, Computational Math-
ematics, 34, Springer, Berlin, 2005.

C. VUIK, A. SEGAL, AND J. A. MEUERINK, An efficient preconditioned CG method for the solution of
a class of layered problems with extreme contrasts in the coefficients, J. Comput. Phys., 152 (1999),
pp. 385-403.

C. VUIK, A. SEGAL, J. A. MEIJERINK, AND G. T. WIIMA, The construction of projection vectors for a
deflated ICCG method applied to problems with extreme contrasts in the coefficients, J. Comput. Phys.,
172 (2001), pp. 426-450.

P. M. DE ZEEUW, Matrix-dependent prolongations and restrictions in a blackbox multigrid solver, J. Com-
put. Appl. Math., 33 (1990), pp. 1-27.

