
Electronic Transactions on Numerical Analysis.
Volume 26, pp. 285-298, 2007.
Copyright  2007, Kent State University.
ISSN 1068-9613.

ETNA
Kent State University
etna@mcs.kent.edu

JOINT DOMAIN-DECOMPOSITION
�

-LU PRECONDITIONERS
FOR SADDLE POINT PROBLEMS �

SABINE LE BORNE � AND SUELY OLIVEIRA �
Abstract. For saddle point problems in fluid dynamics, several popular preconditioners exploit the block struc-

ture of the problem to construct block triangular preconditioners. The performance of such preconditioners depends
on whether fast, approximate solvers for the linear systems on the block diagonal (representing convection-diffusion
problems) as well as for the Schur complement (in the pressure variables) are available. In this paper, we will in-
troduce a completely different approach in which we ignore this given block structure. We will instead compute an
approximate LU-factorization of the complete system matrix using hierarchical matrix techniques. In particular, we
will use domain-decomposition clustering with an additional local pivoting strategy to order the complete index set.
As a result, we obtain an � -matrix structure in which an � -LU factorization is computed more efficiently and with
higher accuracy than for the corresponding block structure based clustering. � -LU preconditioners resulting from
the block and joint approaches will be discussed and compared through numerical results.

Key words. hierarchical matrices, data-sparse approximation, Oseen equations, preconditioning, factorization

AMS subject classifications. 65F05, 65F30, 65F50

1. Introduction. Hierarchical (or
�

-) matrices have first been introduced in 1998 [9]
and since then have entered into a wide range of applications. They provide a format for the
data-sparse representation of fully populated matrices. The key idea is to approximate certain
subblocks of a matrix by data-sparse low-rank matrices which are represented by a product
of two rectangular matrices as follows: Let ���	��

��
 with rank(�)= � and ����� . Then
there exist matrices ����������

��� such that �������! . Whereas � has �#" entries, � and� together have $%�&� entries which results in significant savings in storage if �'�(� . A new�

-matrix arithmetic has been developed which allows (approximate) matrix-vector multipli-
cation and matrix-matrix operations such as addition, multiplication, LU-factorization and
inversion of matrices in this format. Hierachical matrices are related to fast multipole meth-
ods [8, 13] as well as mosaic-skeleton methods [22] in which low-rank representations of
off-diagonal blocks are also exploited for the representation and solution of dense systems.

In finite element methods, the stiffness matrix is sparse but its LU factors are no longer
sparse and can be approximated by an

�
-matrix. These approximate

�
-LU factors may

then be used as a preconditioner in iterative methods [2, 7]. Recent developments such as
a weak admissibility condition [11], the parallelization of the

�
-matrix arithmetic [14], and

the introduction of an
�

-matrix format based on domain-decomposition [6, 12, 16] have
significantly reduced the set-up times for such preconditioners.

In previous papers,
�

-matrices have been developed for scalar equations, and they have
been used to construct preconditioners for linear systems arising from uniformly elliptic dif-
ferential operators. Recently, the application of

�
-matrix techniques has been extended to

the construction of block preconditioners for the discrete Oseen equations [15]. Numerous
solution techniques have been proposed in the literature for this type of saddle point problem.
A recent comprehensive survey [3] reviews many of the most promising solution methods
with an emphasis on the iterative solution of these large, sparse, indefinite problems. Sev-
eral of these methods are based on the underlying block structure of the system matrix and)

Received January 23, 2007. Accepted for publication March 22, 2007. Recommended by M. Benzi.� Department of Mathematics, Box 5054, Tennessee Technological University, Cookeville, TN 38505
(sleborne@tntech.edu). The work of this author was supported in part by the US Department of Energy under
Grant No. DE-FG02-04ER25649 and in part by the National Science Foundation under grant No. DMS-0408950.� Department of Computer Science, The University of Iowa, Iowa City, Iowa 52242
(oliveira@cs.uiowa.edu).

285

ETNA
Kent State University
etna@mcs.kent.edu

286 S. LE BORNE AND S. OLIVEIRA

require (an approximation to) an auxiliary Schur complement and its approximate inverse
or LU factors to be used as preconditioners. Typically, one avoids the explicit computation
of a Schur complement due to complexity constraints and replaces the exact solution to the
Schur complement problem by a sufficient number of inner iterations. However, taking ad-
vantage of the efficient

�
-matrix arithmetic, one can compute an explicit approximation to

the LU factors of the Schur complement [15]. This
�

-LU factorization may then be used
in block preconditioners which result from a block LU factorization of the saddle point ma-
trix representing the discrete Oseen equations. A drawback of this method is the relatively
time consuming computation of the approximate Schur complement. Therefore, in this paper
we will develop an alternative approach which we will refer to as a “joint” approach since
it does not employ the block structure of the system matrix but computes an

�
-LU factor-

ization of the complete system matrix after a domain-decomposition based clustering of the
unknowns. Such a clustering imitates the nested dissection process and therefore leads to a
matrix structure in which large, off-diagonal blocks remain zero in an LU-factorization, there-
fore reducing the computational complexity of such a computation. In particular, instead of
computing a Schur complement in the pressure variables as required in the block approach,
we now compute a Schur complement in the variables of the interior boundary of the domain
decomposition which typically is of much smaller size. In order to ensure the existence of
an LU factorization for the joint approach, we will introduce a local pivoting strategy. This
new joint approach will turn out to be clearly superior to the block approach with respect to
computational efficiency as well as accuracy.

The remainder of this paper is organized as follows: In Section 2, we provide an intro-
duction to

�
-matrices with references to further literature on this topic. Section 3 is devoted

to the introduction of the model problem, a review of the block
�

-matrix preconditioner
as well as the introduction and analysis of the new joint domain decomposition clustering
strategy and resulting preconditioner for saddle point problems. Finally, Section 4 provides
numerical results that compare set-up times, storage requirements, and convergence rates of
the resulting preconditioned iterative methods for both approaches for a variety of test cases.

2. Introduction to
�

-matrices. In this section, we introduce the main concepts of
�

-
matrices to the extent of which they are required for the remainder of this paper. For more
detailed introductions, we refer the reader to [4, 5, 9, 10] and the references therein.

An
�

-matrix approximation to a given (dense) matrix is obtained by replacing certain
blocks of the matrix by matrices of a low rank � , stored in so-called Rk-format as will be
further explained below. Given such an

�
-matrix, the standard matrix operations such as

matrix-vector multiplication, (approximate) matrix-matrix addition and multiplication as well
as matrix inversion and LU factorization can be defined for this

�
-matrix format. Whereas

these (
�

-) matrix operations yield only approximations, they can be performed in almost
optimal complexity, i.e., *�+,�.-0/%1�23�#4 with moderate parameter 5 . The construction of

�
-

matrices is reviewed in subsection 2.1 and their arithmetic is reviewed in subsection 2.2.

2.1. Construction of
�

-matrices. The formal definition of an
�

-matrix depends on
appropriate hierarchical partitionings of the index set 6 and also of the product index set 68796
which are organized in (block) cluster trees as defined next. Instead of fixed partitionings,
these trees will provide hierarchies of partitionings which gives a hierarchical matrix its name.

DEFINITION 2.1 (Cluster tree). Let 6 be a finite index set and let :<;.�=+?>@�BAC4 be a tree
with vertex set > and edge set A . For a vertex DE�F> , we define the set of successors of D asG +,D&4IHJ�LKNMO�P>RQ�+SDT�UMV4I�PAXW . The tree :Y; is called a cluster tree of 6 if its vertices consist
of subsets of 6 and satisfy the following conditions:

1. 6Z�P> is the root of :[; , and D�\	6 , DP]�_^ , for all DE�P> .
2. For all D��`> , there either holds

G +SDa4@�_^ or DX�cbd�egfihkjmlon M .

ETNA
Kent State University
etna@mcs.kent.edu

JOINT � -DD-LU PRECONDITIONER 287

In the following, we identify > and : ; , i.e., we write Dp�q: ; instead of Dp�r>�s The nodesD��`> are called clusters.
A cluster tree is constructed iteratively by dividing an index cluster D into a number

of successors M3t . There exist several alternative clustering strategies. Our new precondi-
tioner will require the so-called domain-decomposition clustering [6, 12, 16] which will be
described here.

In preparation, we define the following geometric entities: We associate every index u
with a basis function v�t of the underlying finite element space and define wxtg�Ly{zi|i|
v}t . For
every index u , we then assign a (fixed) nodal point ~Yt@��+S~TtS� �%���{���Y�B~
t,� �N4V��wIt . For a clusterD , we define w l ���#� f%l w@� . Since we will later need (upper bounds of) the diameters of these
cluster supports w l and distances between two clusters (in the Euclidean norm), we will
introduce rectangular bounding boxes for which these quantities can be computed efficiently:
For a cluster D , let � l ��� ��B�g��� 5 l � � �B� l � ��� such that the bounding box contains the support of
the cluster, i.e., w l \�� l . We define the direction of maximum extent ���	Ki�i�����{�Y�B�kW of a
cluster D as the index for which �����Q � l � �V� 5 l � � Q assumes a maximum. Finally, we define
the midpoint of the interval in this direction � as � l � � HJ��+?5 l � �8� � l � � 4B��$.

We distinguish between subdomain and interface clusters where the root 6 is set to be a
subdomain cluster.
A subdomain cluster D will be divided into three successorsMx�.HJ�LKNu@�'D�Q � l � ��� � l � � W �<M " HJ�OKNu��¡D�Q 5 l � ��¢ � l � � W �<M3£!HJ�qD9¤.+SMx����M " 4��
where M � �UM " are set to be subdomain clusters, and M £ is set as an interface cluster.
An interface cluster D will be subdivided by geometric bisection into successors M � �BM " only
every other step: G +,D&4�� ¥ KNDkW H§¦?¨{D&¨©¦U+,D&4���ª (mod d)K{Mx�©�BM " W«H otherwise s
All successors of an interface cluster are set to be interface clusters themselves. The subdi-
vision of interface clusters is delayed every d’th step in order to calibrate the diameters of
interface clusters with those of domain-clusters. A simple example is provided in Fig. 2.1.
Here, in the first subdivision step, the index set is divided into three subsets: A domain clus-
ter of $­¬ vertices that lie to the left of the vertical shaded region, another domain cluster of$­¬ vertices that lie to the right of the vertical shaded region, and an interface cluster of the
remaining �N® vertices within the shaded region. This subdivision process is repeated for the
two domain clusters. The interface is subdivided by bisection in the next but one step.

A cluster tree : ; is used in the construction of a hierarchy of block partitionings of the
product index set 6�7¡6 which is organized in a block cluster tree:

DEFINITION 2.2 (Block cluster tree). Let :[; be a cluster tree of the index set 6 . A
cluster tree : ; � ; is called a block cluster tree (based upon : ;) if for all D��¡: j°¯°n; � ; there existyi�U±²��: jm¯°n; such that D��_y97'± . The nodes DE�':[; � ; are called block clusters.

The objective is to construct a block cluster tree from a given cluster tree such that the
leaves (of the block cluster tree) correspond to (preferably large) matrix blocks with “smooth”
data that can be approximated by low rank matrices in the following Rk-matrix representation:

DEFINITION 2.3 (Rk-matrix representation). Let ���U���B�(�´³´�µKNªaW . Let ¶·�´��
T�a¸
be a matrix of at most rank � . A representation of ¶ in factorized form¶��q�x� � �O�P�

��� ���R�¡� ¸¹�k� �
with � and � stored in full matrix representation, is called an Rk-matrix representation of¶ , or, in short, we call ¶ an Rk-matrix.

ETNA
Kent State University
etna@mcs.kent.edu

288 S. LE BORNE AND S. OLIVEIRA

ºiº»i» ¼i¼½ ¾i¾¿ÀiÀÁÂiÂÃÄiÄÅiÅ ÆiÆÇiÇ ÈiÈÉ ÊiÊËÌiÌÍÎiÎÏÐiÐÑiÑ
I={1,2,...,64}

Cluster tree

1

64

1 64

A=

H−matrixCorresponding block clusters/matrix partitions

{1,...,24} {25,..,48}

{1,...,9}{10,...,18}{19,...,24} {49,...,64}

{49,...,64}

...

.... . .

Ωh

0

0

0
0

0
0

FIG. 2.1. A mesh Ò<Ó (left) and its domain-decomposition cluster tree (right).

If the rank � is small compared to the matrix size given by � and � , we obtain consider-
able savings in the storage and work complexities of an Rk-matrix compared to a full matrix,
i.e., +,� � �#4U� versus �'� memory cells (or flops).

In the following construction, we build a block cluster tree iteratively by starting from6'7F6 and refining the block clusters if they do not satisfy a certain admissibility condition.
The choice of the admissibility condition depends on the underlying continuous problem (i.e.,
the elliptic partial differential equation, in particular its associated Green’s function) and shall
ensure that all admissible blocks allow a sufficiently accurate Rk-approximation. We will use
the following admissibility condition:

Adm Ô�Ô9+Õy¹7'±U4�� TRUE ÖX× ØXÙ0Ú<+ diam +?y©4o� diam +S±U4U43Û�Ü dist +?yi�B±U4 or+ÕyZ]�q±o�}yi�U± are domain clusters 4(2.1)

Here, “diam” and “dist” denote the Euclidean diameter/distance of the (union of the)
supports of the basis functions with indices in yi�U± , resp.. A given cluster tree together with an
admissibility condition allows the following canonical construction of a block cluster tree:

Let the cluster tree :[; be given. We define the block cluster tree :[; � ; byÝ /&/%Þ{+S:V4²HJ�q6E7'6 , and each vertex y¹7�±²��: has the set of successors

(2.2)
G +?y¹7�±U4IHJ�àßá â ^ if y¹7�± admissible,^ if ØXÙmÚ#K­ã�yi�äãC±äW9Û��Yå�æ ça�K©yNèY7'±éè#Q�yNèY� G +Õy©4o�U±éè[� G +S±U4oê�W otherwise.

The parameter � ¸ t
 ensures that blocks do not become too small where the matrix arith-
metic of a full matrix is more efficient than any further subdivision. It is typically set such
that �{ªEÛë� ¸ t
 Û��Nª%ª . The leaves of a block cluster tree obtained through this construction
will be used in the definition of an

�
-matrix:

DEFINITION 2.4 (
�

-matrix). Let �Y�U�[å�æ ç��'³ì�PK©ªaW , and let ��HJ��ã�6 be the number of
indices in an index set 6 . The set of

�
-matrices induced by a block cluster tree :�Hí�=:<; � ;

ETNA
Kent State University
etna@mcs.kent.edu

JOINT � -DD-LU PRECONDITIONER 289

with blockwise rank � and minimum block size � å�æ ç is defined by� +S:8�ä��4²Hí��K©¶��'�
 �
 Q{î[y97'±ï�'ðV+,:V4²H Ýäñ Ú�ò�+?¶RQ ó �aô 4²Ûë� or ØXÙmÚ[K­ã�yi�äãC±äW9Û��Yå�æ ç&W s
A matrix ¶ � � +S:8�ä��4 is said to be given in

�
-matrix representation if the blocks ¶RQíó �&ô

with Ýäñ ÚkòT+Õ¶RQ ó �&ô 4_Ûc� are in Rk-matrix representation and the remaining blocks withØXÙmÚYK�ã�y%�oãC±äW!Û	� å�æ ç are stored as full matrices.
Both the accuracy and (storage) complexity of an

�
-matrix approximation to a given

matrix depend on the construction of an appropriate cluster tree, i.e., a hierarchy of index set
partitionings. Details regarding approximation errors for blocks that satisfy the admissibility
condition as well as storage requirements for full, Rk- and

�
-matrices are given in [5].

Whereas the classical
�

-matrix uses a fixed rank for the Rk-blocks, it is possible to
replace it by variable (or adaptive) ranks in order to enforce a desired accuracy within the
individual blocks. In particular, for a given admissible block y�7P± , we set the rank � of the
corresponding matrix block ¶RQ ó �aô as follows:

(2.3) �Y+?¶RQ ó �&ô 4IHJ�ëØXÙmÚ#K©� è QNõ �oö Û�÷­õ�øiW
where õ�øpùúõ � ù§���{� denote the singular values of ¶RQ ó �aô , and ª � ÷ � � denotes the
desired relative accuracy within each block. Numerical tests have shown that adaptive ranks
are typically superior to fixed ranks, especially when applied to singularly perturbed problems
[7]. A related idea where variable ranks have been assigned depending on the cluster level
has been pursued in [22].

2.2. Arithmetic of
�

-matrices. Given two
�

-matrices �C�B�û� � +,:8���k4 based on the
same block cluster tree : , i.e., with the same block structure, the exact sum or product of
these two matrices will typically not belong to

� +,:8����4 . In the case of matrix addition, we
have � � �ü� � +S:8�ä$%��4 ; the rank of an exact matrix product is less obvious. We will use
a truncation operator ýCþ��ÿ¹� ö to define the

�
-matrix addition �üHí�ú��� þ � and

�
-matrix

multiplication ��HJ�r�p� þ � where again ��� � +,:8����4 .
A truncation of a rank ��è matrix � to rank � � �aè is defined as the best approximation

with respect to the Frobenius (or spectral) norm in the set of rank � matrices. In the context
of
�

-matrices, we use such truncations for all admissible (rank �) blocks. Using truncated
versions of the QR-decomposition and singular value decomposition, the truncation of a rank�aè matrix �ú���}
 � ¸ (given in the form �R���V�� where �ú�´�}
 � � ö and � ���}¸ � � ö) to a
lower rank can be computed with complexity ��+Õ�kè 4é" +S� � �¡4 � $��k+Õ�aèm4 £ ; further details are
provided in [5].

We then define the
�

-matrix addition and multiplication as follows:��� þ � �qý þ��ÿ9"ä� +,� � ��4�ê��� þ � �qý þ��ÿ¹� ö +?�x��4
where �aè[Û���+°| � �©4U� is the rank of the exact matrix product, � denotes some constant (which
depends on the block cluster tree :) and | denotes the depth of the tree. Estimates show that
the
�

-matrix addition and multiplication have almost optimal complexity and are provided
in [5] along with efficient implementations of these operations.

The approximate
�

-matrix addition and multiplication permit the explicit computation
of an approximate LU factorization in

�
-matrix format. The

�
-LU factorization has been

described in detail for various clustering techniques [1, 6, 7, 12, 17]. The existence of
�

-
LU factors has been the subject of [2]. The

�
-LU factorization is defined recursively in the

hierarchical block structure of the
�

-matrix. For a tree of depth 0, we compute the exact LU
decomposition in full matrix format.

ETNA
Kent State University
etna@mcs.kent.edu

290 S. LE BORNE AND S. OLIVEIRA

For domain-decomposition based
�

-matrices (assuming a problem in two spatial dimen-
sions where the generalization to three dimensions is straight-forward), the structure of the
matrix � and its LU factors is

(2.4)

�	 � �B� � �U£� "�" � " £�V£ä� �x£ " �x£�£

� � �	�
 �B�
 "B"
 £ä�
 £ "
 £B£

� � �	�� ��� � �U£� "�" � " £� £�£

�

The decomposition is computed in three steps:

1. Determine the
�

-LU factorizations �.t0t �
 t0t[� � t0t for uV�ëKi�i��$&W (defined recur-
sively).

2. Perform the triangular solves

 £ � � � � � �x£é� and

 � � � �B£ � �I�B£ for ���FK �%��$aW .
3. Compute the Schur complement �� £�£ Hí� � £�£�� +
 £o� � � �U£ 4 � +
 £ " � � " £ 4 and a

subsequent
�

-LU decomposition �� £�£ �
 £B£ � £�£ , where �� £B£ is based on a binary
tree [7].

The complexity for the
�

-LU decomposition is estimated in [6] to be almost optimal.
Once we have obtained an approximate

�
-LU decomposition � �
 þ � þ , we can solve

the system

 þ � þ ~q��� by two subsequent triangular solves

 þ�� ��� , � þ ~ë� � , which
both are performed exactly in *E+S�!-m/i1��#��4 .

3.
�

-matrix preconditioners in saddle point problems. In this section, we introduce
the model problem and its discretization (subsection 3.1), review the construction of the block
preconditioner developed in [15] (subsection 3.2), and then develop a new, joint precondi-
tioner for the iterative solution of the discrete model problem (subsection 3.3).

Both the block and joint approaches to construct preconditioners cannot use the standard�
-matrix techniques but require careful adjustments to lead to successful preconditioners.

The adjustments for the block preconditioner are described in [15], whereas the adjustments
for the joint preconditioner, a local pivoting strategy and the enforcement of the pressure
uniqueness, are derived in this paper. Without these adjustments, a brute-force application of
standard

�
-matrix techniques would fail to yield successful preconditioners.

3.1. The model problem: Oseen equations. As a model problem, we consider the
Oseen equations: Let w \ � � , �L�RK­$a����W , denote a bounded, connected domain with a
piecewise smooth boundary � . Given a force field �ìH�wr�(� � , boundary data �PH���� � � ,
the kinematic viscosity coefficient � , and a given, divergence-free coefficient �VHiwë� � � , the
problem is to find the velocity field z�H�w�� � � and the pressure |pHYwO� � such that the
Oseen equations � � ��z � +!�²�#"X4 z � "V|��$� in w.�(3.1) � divz¡�qª in w.�(3.2) % z��&� on �@�(3.3)

are satisfied. Here,
%

denotes some type of boundary operator. A (mixed finite element)
discretization of the Oseen equations leads to a system of equations of the form

(3.4) ' � �� � ª)(' z|*(�+' � ª$(
with ���ë�}"�
 � "B
 and � ���}¸ � "�
 . The pressure | is determined only up to a constant. In
order to enforce a unique solution, one typically requires ,.-I|C�&w	��ª which may be realized

ETNA
Kent State University
etna@mcs.kent.edu

JOINT � -DD-LU PRECONDITIONER 291

through the use of Lagrange multipliers and leads to an augmented, non-singular system/0 � �C ª� ª �ª �� ª
123/0 z| 4 12 � /0 � ªª

12
where �.�P�}¸ . Elimination of the Lagrange multiplier

4
leads to the equivalent, non-singular

system

(3.5) ' � �� � �²�#�� 5(' z|*(� ' � ª6(s
In the following subsections, we will derive preconditioners to be used in the iterative solution
of such systems of equations. The block approach of subsection 3.2 builds upon the given
two-by-two block structure in (3.5) which results from the distinction of velocity and pressure
variables. The joint approach of subsection 3.3 in turn does not employ this block structure.

3.2. Block approach. In the so-called block preconditioners, we employ the given
block structure of the matrix. In fact, if the first diagonal block � is invertible, the saddle
point matrix in (3.5) admits the following block LDU factorization:

(3.6) ' � �C � �I�7�� 8(�9' 6 ª���;: � 6�(' � ªª G (' 6 �<: � �� ª 6 (
where

G �$�a�=�� � ���;: � �C denotes the (pressure) Schur complement. In [15], such an LDU
factorization (3.6) is used as the basis for the construction of block diagonal, block triangular
and block LU preconditioners> �ät@?BACHJ�9'
 þ C � þC ªª
 þ h � þh (� > ôED t=?
 A�HJ�9'
 þ C � þC �C ª
 þ h � þh (�> þGFIH HJ� ' 6 ª�E+
 þ C � þC�4B: � 6&(� > ôED t@?
 A�J'
 þ C ª
 þ h C
 þ h (' � þC � þC hª � þh (
with

�
-LU factorizations

 þ C � þC � � and

 þ h � þh � G

, resp.. The off-diagonal blocks

 þ h C ,� þC h in

> þKFIH have been computed from

 þ h C � þC � � and

 þ C � þC h �R� using (block)
triangular solves in

�
-arithmetic [6, 7]. Details on how to obtain these

�
-LU factorizations

are given in [15]. In this approach, the set-up time for the preconditioner is dominated by the
time to compute the approximate Schur complement (of size � 7�� where � �q*�+,�#4 for
many mixed finite element discretizations) and its

�
-LU factorization (both in

�
-arithmetic).

In order to reduce the set-up time, we will propose a so-called joint approach based on domain
decomposition clustering in which the computation of a pressure Schur complement of size*�+,�#4 is replaced by an interior boundary Schur complement of size *E+S� � : ��Lä� 4 where �
denotes the spatial dimension of the problem.

3.3. Joint approach. In the joint approach, we no longer distinguish between velocity
and pressure unknowns during the clustering process but apply the domain-decomposition
clustering (which has been described in subsection 2.1) to the complete index set. An il-
lustration in the case of a Taylor Hood discretization is given in Fig. 3.1: In the case of
two spatial dimensions, every gridpoint (filled or hollow) corresponds to two velocity un-
knowns whereas every filled grid point corresponds in addition to a pressure unknown. This

ETNA
Kent State University
etna@mcs.kent.edu

292 S. LE BORNE AND S. OLIVEIRA

pressure

d velocity unknowns

interior boundary

subdomain 2subdomain 1

FIG. 3.1. Domain-decomposition clustering for the Taylor Hood finite elements.

subdomain cluster is subdivided into three subsets. Two subsets contain the indices of the
respective subdomains, and the third subset contains the indices of the interior boundary. All
three subsets typically contain velocity as well as pressure variables.

Typical
�

-matrix structures resulting from the block and joint approaches, resp., are
displayed in Fig. 3.1.

7.00 1.0

7.001.0

1.0 1.0 7.00 1.0

7.00 1.0

7.001.0

1.0 1.0 7.001.0

1.0 1.0 7.00
1.0

7.00 1.0

7.001.0

1.0 1.0 7.00 1.0

7.00 1.0

7.001.0

1.0 1.0 7.001.0

1.0 1.0 7.00
1.0

1.0 1.0 7.00

1.0

1.0

1.0
7.00 1.0

7.001.0

1.0 1.0 7.00 1.0

7.00 1.0

7.001.0

1.0 1.0 7.001.0

1.0 1.0 7.00
1.0

7.00 1.0

7.001.0

1.0 1.0 7.00 1.0

7.00 1.0

7.001.0

1.0 1.0 7.001.0

1.0 1.0 7.00
1.0

1.0 1.0 7.00

1.0

1.0

1.0

1.0

1.0 1.0
1.0

1.0 1.0
8.001.0

1.0 8.00

1.0

1.0

1.0

1.0

1.0

1.0

1.0 1.0
7.00 1.0

7.001.0

1.0 1.0 7.00 1.0

7.00 1.0

7.001.0

1.0 1.0 7.001.0

1.0 1.0 7.00
1.0

7.00 1.0

7.001.0

1.0 1.0 7.00 1.0

7.00 1.0

7.001.0

1.0 1.0 7.001.0

1.0 1.0 7.00
1.0

1.0 1.0 7.00

1.0

1.0

1.0
7.00 1.0

7.001.0

1.0 1.0 7.00 1.0

7.00 1.0

7.001.0

1.0 1.0 7.001.0

1.0 1.0 7.00
1.0

7.00 1.0

7.001.0

1.0 1.0 7.00 1.0

7.00 1.0

7.001.0

1.0 1.0 7.001.0

1.0 1.0 7.00
1.0

1.0 1.0 7.00

1.0

1.0

1.0

1.0

1.0 1.0
1.0

1.0 1.0
8.001.0

1.0 8.00

1.0

1.0

1.0

1.0

1.0

1.0

1.0 1.0

1.0

1.0 1.0

1.0

1.0 1.0

1.0

1.0

1.0

1.0 1.0

1.0

1.0 1.0

1.0

1.0

8.001.0

1.0 8.001.0

1.0 8.001.0

1.0 8.00

0.04

0.0 0.1
0.0 0.0

0.0

0.0 0.0
0.0

0.1

0.0 0.1

0.0 0.0

0.0 0.0

0.0

0.0 0.0

0.0

0.1

0.0 0.1
0.0 0.0

0.0

0.0 0.0
0.0 0.0

0.1

0.0 0.0

0.0

0.0 0.0

0.0

0.0 0.0

0.0

0.0 0.0

0.0

0.0

0.0

0.0

0.1

0.0
0.0

0.1

0.0 0.1

0.0 0.0
0.0 0.0

0.1

0.0 0.0

0.0

0.0

0.0

0.1

0.0 0.1

0.0 0.0

0.0 0.0 0.0

0.0 0.0

0.0

0.0

0.0

0.0 0.0

0.0

0.0

0.0
7.00 1.0

7.001.0

1.0 1.0 7.00 1.0

7.00 1.0

7.001.0

1.0 1.0 7.001.0

1.0 1.0 7.00
1.0

7.00 1.0

7.001.0

1.0 1.0 7.00 1.0

7.00 1.0

7.001.0

1.0 1.0 7.001.0

1.0 1.0 7.00
1.0

1.0 1.0 7.00

1.0

1.0

1.0
7.00 1.0

7.001.0

1.0 1.0 7.00 1.0

7.00 1.0

7.001.0

1.0 1.0 7.001.0

1.0 1.0 7.00
1.0

7.00 1.0

7.001.0

1.0 1.0 7.00 1.0

7.00 1.0

7.001.0

1.0 1.0 7.001.0

1.0 1.0 7.00
1.0

1.0 1.0 7.00

1.0

1.0

1.0

1.0

1.0 1.0
1.0

1.0 1.0
8.001.0

1.0 8.00

1.0

1.0

1.0

1.0

1.0

1.0

1.0 1.0
7.00 1.0

7.001.0

1.0 1.0 7.00 1.0

7.00 1.0

7.001.0

1.0 1.0 7.001.0

1.0 1.0 7.00
1.0

7.00 1.0

7.001.0

1.0 1.0 7.00 1.0

7.00 1.0

7.001.0

1.0 1.0 7.001.0

1.0 1.0 7.00
1.0

1.0 1.0 7.00

1.0

1.0

1.0
7.00 1.0

7.001.0

1.0 1.0 7.00 1.0

7.00 1.0

7.001.0

1.0 1.0 7.001.0

1.0 1.0 7.00
1.0

7.00 1.0

7.001.0

1.0 1.0 7.00 1.0

7.00 1.0

7.001.0

1.0 1.0 7.001.0

1.0 1.0 7.00
1.0

1.0 1.0 7.00

1.0

1.0

1.0

1.0

1.0 1.0
1.0

1.0 1.0
8.001.0

1.0 8.00

1.0

1.0

1.0

1.0

1.0

1.0

1.0 1.0

1.0

1.0 1.0

1.0

1.0 1.0

1.0

1.0

1.0

1.0 1.0

1.0

1.0 1.0

1.0

1.0

8.001.0

1.0 8.001.0

1.0 8.001.0

1.0 8.00

0.04

0.0 0.1
0.0 0.0

0.0

0.0 0.0
0.0

0.1

0.0 0.1

0.0 0.0

0.0 0.0

0.0

0.0 0.0

0.0

0.1

0.0 0.1
0.0 0.0

0.0

0.0 0.0
0.0 0.0

0.1

0.0 0.0

0.0

0.0 0.0

0.0

0.0 0.0

0.0

0.0 0.0

0.0

0.0

0.0

0.0

0.1

0.0
0.0

0.1

0.0 0.1

0.0 0.0
0.0 0.0

0.1

0.0 0.0

0.0

0.0

0.0

0.1

0.0 0.1

0.0 0.0

0.0 0.0 0.0

0.0 0.0

0.0

0.0

0.0

0.0 0.0

0.0

0.0

0.0

0.12 0.0 0.0

0.1 0.0

0.0 0.0 0.0

0.0 0.0

0.1 0.0 0.0

0.1 0.0 0.0

0.0 0.0 0.0

0.0

0.0 0.0

0.0

0.1 0.0 0.0

0.1 0.0

0.0 0.0 0.0

0.0 0.0 0.0

0.1 0.0

0.0 0.0

0.0

0.0 0.0 0.0

0.0 0.0 0.0

0.0

0.0

0.0 0.0

0.0 0.0
0.1 0.0 0.0 0.0 0.0 0.0

0.1 0.0 0.0 0.0

0.1 0.1 0.0 0.0 0.0 0.0 0.0

0.1 0.0 0.0

0.1 0.0

0.0

0.0

0.0

0.0 0.0

0.0 0.0

0.12 0.0 0.0

0.1 0.0

0.0 0.0 0.0

0.0 0.0

0.1 0.0 0.0

0.1 0.0 0.0

0.0 0.0 0.0

0.0

0.0 0.0

0.0

0.1 0.0 0.0

0.1 0.0

0.0 0.0 0.0

0.0 0.0 0.0

0.1 0.0

0.0 0.0

0.0

0.0 0.0 0.0

0.0 0.0 0.0

0.0

0.0

0.0 0.0

0.0 0.0
0.1 0.0 0.0 0.0 0.0 0.0

0.1 0.0 0.0 0.0

0.1 0.1 0.0 0.0 0.0 0.0 0.0

0.1 0.0 0.0

0.1 0.0

0.0

0.0

0.0

0.0 0.0

0.0 0.0

0.00

0.00

0.00

0.00

0.00

0.00

0.00
0.00

0.00

0.00

0.00

0.00

8.00 1.0

8.001.0

1.0 1.0 8.00

1.0

1.0
1.0

8.00 1.0

8.001.0

1.0 1.0 8.00

1.0

1.0
1.0

1.0 1.0 1.0 1.0 1.0 1.0

8.001.0

1.0 8.00

1.0

8.00 1.0

8.001.0

1.0 1.0 7.00

1.0

1.0
1.0

8.00 1.0

8.001.0

1.0 1.0 7.00

1.0

1.0
1.0

1.0 1.0 1.0 1.0 1.0 1.0

8.001.0

1.0 8.00
1.0

1.0 1.0 7.00

1.0

1.0

1.0

8.00 1.0

8.001.0

1.0 1.0 8.00 1.0

8.00 1.0

8.001.0

1.0 1.0 8.00 1.0

1.0 1.0 7.00
1.0

7.00 1.0

7.001.0

1.0 1.0 7.00 1.0

7.00 1.0

7.001.0

1.0 1.0 7.001.0

1.0 1.0 7.00 1.0
7.00 1.0

7.001.0

1.0 1.0 7.00 1.0

7.00 1.0

7.001.0

1.0 1.0 7.001.0

1.0 1.0 7.00 1.0

1.0 1.0 7.00
1.0

1.0 1.0 7.00

1.0

1.0

1.0

1.0

1.0 1.0

1.0

1.0 1.0

7.001.0

1.0 7.00

1.0

1.0

1.0 1.0

1.0

1.0

1.0

1.0 1.0

8.00 1.0

8.001.0

1.0 1.0 7.00

1.0

1.0
1.0

8.00 1.0

8.001.0

1.0 1.0 7.00

1.0

1.0
1.0

1.0 1.0 1.0 1.0 1.0 1.0

8.001.0

1.0 8.00
1.0

8.00 1.0

8.001.0

1.0 1.0 8.00

1.0

1.0
1.0

8.00 1.0

8.001.0

1.0 1.0 8.00

1.0

1.0
1.0

1.0 1.0 1.0 1.0 1.0 1.0

8.001.0

1.0 8.00

1.0

1.0 1.0 7.00

1.0

1.0

1.0
7.00 1.0

7.001.0

1.0 1.0 7.00 1.0

7.00 1.0

7.001.0

1.0 1.0 7.001.0

1.0 1.0 7.00 1.0
7.00 1.0

7.001.0

1.0 1.0 7.00 1.0

7.00 1.0

7.001.0

1.0 1.0 7.001.0

1.0 1.0 7.00 1.0

1.0 1.0 7.00
1.0

8.00 1.0

8.001.0

1.0 1.0 8.00 1.0

8.00 1.0

8.001.0

1.0 1.0 8.00 1.0

1.0 1.0 7.00
1.0

1.0 1.0 7.00

1.0

1.0

1.0

1.0

1.0 1.0

1.0

1.0 1.0

7.001.0

1.0 7.00

1.0

1.0

1.0 1.0

1.0

1.0

1.0

1.0 1.0

1.0

1.0

1.0

1.0

1.0

1.0 1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0 1.0

1.0

1.0

8.001.0

1.0 8.001.0

1.0 8.001.0

1.0 8.00

1.0

1.0
1.0

1.0 1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0
1.0

1.0

1.0 1.0

8.00 1.0

8.001.0

1.0 1.0 8.00 1.0

8.00 1.0

8.001.0

1.0 1.0 8.00 1.0

1.0 1.0 7.00
1.0

7.00 1.0

7.001.0

1.0 1.0 7.00 1.0

7.00 1.0

7.001.0

1.0 1.0 7.001.0

1.0 1.0 7.00 1.0
7.00 1.0

7.001.0

1.0 1.0 7.00 1.0

7.00 1.0

7.001.0

1.0 1.0 7.001.0

1.0 1.0 7.00 1.0

1.0 1.0 7.00
1.0

1.0 1.0 7.00

1.0

1.0

1.0

8.00 1.0

8.001.0

1.0 1.0 8.00

1.0

1.0
1.0

8.00 1.0

8.001.0

1.0 1.0 8.00

1.0

1.0
1.0

1.0 1.0 1.0 1.0 1.0 1.0

8.001.0

1.0 8.00

1.0

8.00 1.0

8.001.0

1.0 1.0 7.00

1.0

1.0
1.0

8.00 1.0

8.001.0

1.0 1.0 7.00

1.0

1.0
1.0

1.0 1.0 1.0 1.0 1.0 1.0

8.001.0

1.0 8.00
1.0

1.0 1.0 7.00

1.0

1.0

1.0

1.0

1.0 1.0

1.0

1.0 1.0

7.001.0

1.0 7.00

1.0

1.0

1.0

1.0

1.0

1.0 1.0

1.0 1.0
7.00 1.0

7.001.0

1.0 1.0 7.00 1.0

7.00 1.0

7.001.0

1.0 1.0 7.001.0

1.0 1.0 7.00 1.0
7.00 1.0

7.001.0

1.0 1.0 7.00 1.0

7.00 1.0

7.001.0

1.0 1.0 7.001.0

1.0 1.0 7.00 1.0

1.0 1.0 7.00
1.0

8.00 1.0

8.001.0

1.0 1.0 8.00 1.0

8.00 1.0

8.001.0

1.0 1.0 8.00 1.0

1.0 1.0 7.00
1.0

1.0 1.0 7.00

1.0

1.0

1.0

8.00 1.0

8.001.0

1.0 1.0 7.00

1.0

1.0
1.0

8.00 1.0

8.001.0

1.0 1.0 7.00

1.0

1.0
1.0

1.0 1.0 1.0 1.0 1.0 1.0

8.001.0

1.0 8.00
1.0

8.00 1.0

8.001.0

1.0 1.0 8.00

1.0

1.0
1.0

8.00 1.0

8.001.0

1.0 1.0 8.00

1.0

1.0
1.0

1.0 1.0 1.0 1.0 1.0 1.0

8.001.0

1.0 8.00

1.0

1.0 1.0 7.00

1.0

1.0

1.0

1.0

1.0 1.0

1.0

1.0 1.0

7.001.0

1.0 7.00

1.0

1.0

1.0

1.0

1.0

1.0 1.0

1.0 1.0

1.0

1.0 1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0 1.0

1.0

1.0

1.0

1.0

1.0

1.0

8.001.0

1.0 8.001.0

1.0 8.001.0

1.0 8.00

1.0

1.0
1.0

1.0 1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0
1.0

1.0

1.0 1.0

1.0 1.0 1.0 1.0

1.0

1.0 1.0 1.0

1.0

1.0 1.0

1.0 1.0 1.0 1.0

1.0

1.0

1.0 1.0 1.0 1.0

1.0

1.0 1.0 1.0

1.0

1.0 1.0

1.0 1.0 1.0 1.0

1.0

1.0

8.001.0

1.0 8.001.0

1.0 8.001.0

1.0 8.001.0

1.0 8.001.0

1.0 8.001.0

1.0 8.001.0

1.0 8.00

0.03

0.0

0.0 0.0

0.0

0.0

0.0

0.0

0.0

0.0 0.0

0.0 0.0

0.0

0.0 0.0

0.0

0.0

0.0 0.0

0.0 0.0

0.0

0.0 0.0

0.0

0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0

0.0 0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0 0.0

0.0

0.0

0.0

0.0

0.0

0.0 0.0

0.0 0.0

0.0

0.0

0.0 0.0

0.0

0.0 0.0

0.0 0.0

0.0

0.0

0.0 0.0

0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0

0.0

0.0

0.0

0.0 0.0

0.0

0.0 0.0

0.0

0.0

0.0 0.0

0.0 0.0

0.0

0.0

0.0 0.0

0.0 0.0

0.0

0.0 0.0

0.0

0.0

0.0 0.0

0.0 0.0

0.0

0.0 0.0

0.0 0.0

0.0

0.0

0.0 0.0

0.0

0.0

0.0 0.0

0.0

0.0

0.0

0.0

0.0

0.0 0.0

0.0 0.0

0.0

0.0 0.0

0.0

0.0

0.0

0.0

0.0 0.0

0.0

0.0 0.0

0.0 0.0

0.0

0.0

0.0 0.0

0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0

0.0

0.0

0.0

0.0 0.0

0.0

0.0

0.0

0.0

0.0

0.0 0.0

0.0 0.0

0.0

0.0

0.0

0.0

0.0 0.0

0.0

0.0 0.0

0.0

0.0

0.0 0.0

0.0 0.0

0.0

0.0

0.0 0.0

0.0 0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0 0.0

0.0 0.0

0.0

0.0

0.0

0.0

8.00 1.0

8.001.0

1.0 1.0 8.00

1.0

1.0
1.0

8.00 1.0

8.001.0

1.0 1.0 8.00

1.0

1.0
1.0

1.0 1.0 1.0 1.0 1.0 1.0

8.001.0

1.0 8.00

1.0

8.00 1.0

8.001.0

1.0 1.0 7.00

1.0

1.0
1.0

8.00 1.0

8.001.0

1.0 1.0 7.00

1.0

1.0
1.0

1.0 1.0 1.0 1.0 1.0 1.0

8.001.0

1.0 8.00
1.0

1.0 1.0 7.00

1.0

1.0

1.0

8.00 1.0

8.001.0

1.0 1.0 8.00 1.0

8.00 1.0

8.001.0

1.0 1.0 8.00 1.0

1.0 1.0 7.00
1.0

7.00 1.0

7.001.0

1.0 1.0 7.00 1.0

7.00 1.0

7.001.0

1.0 1.0 7.001.0

1.0 1.0 7.00 1.0
7.00 1.0

7.001.0

1.0 1.0 7.00 1.0

7.00 1.0

7.001.0

1.0 1.0 7.001.0

1.0 1.0 7.00 1.0

1.0 1.0 7.00
1.0

1.0 1.0 7.00

1.0

1.0

1.0

1.0

1.0 1.0

1.0

1.0 1.0

7.001.0

1.0 7.00

1.0

1.0

1.0 1.0

1.0

1.0

1.0

1.0 1.0

8.00 1.0

8.001.0

1.0 1.0 7.00

1.0

1.0
1.0

8.00 1.0

8.001.0

1.0 1.0 7.00

1.0

1.0
1.0

1.0 1.0 1.0 1.0 1.0 1.0

8.001.0

1.0 8.00
1.0

8.00 1.0

8.001.0

1.0 1.0 8.00

1.0

1.0
1.0

8.00 1.0

8.001.0

1.0 1.0 8.00

1.0

1.0
1.0

1.0 1.0 1.0 1.0 1.0 1.0

8.001.0

1.0 8.00

1.0

1.0 1.0 7.00

1.0

1.0

1.0
7.00 1.0

7.001.0

1.0 1.0 7.00 1.0

7.00 1.0

7.001.0

1.0 1.0 7.001.0

1.0 1.0 7.00 1.0
7.00 1.0

7.001.0

1.0 1.0 7.00 1.0

7.00 1.0

7.001.0

1.0 1.0 7.001.0

1.0 1.0 7.00 1.0

1.0 1.0 7.00
1.0

8.00 1.0

8.001.0

1.0 1.0 8.00 1.0

8.00 1.0

8.001.0

1.0 1.0 8.00 1.0

1.0 1.0 7.00
1.0

1.0 1.0 7.00

1.0

1.0

1.0

1.0

1.0 1.0

1.0

1.0 1.0

7.001.0

1.0 7.00

1.0

1.0

1.0 1.0

1.0

1.0

1.0

1.0 1.0

1.0

1.0

1.0

1.0

1.0

1.0 1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0 1.0

1.0

1.0

8.001.0

1.0 8.001.0

1.0 8.001.0

1.0 8.00

1.0

1.0
1.0

1.0 1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0
1.0

1.0

1.0 1.0

8.00 1.0

8.001.0

1.0 1.0 8.00 1.0

8.00 1.0

8.001.0

1.0 1.0 8.00 1.0

1.0 1.0 7.00
1.0

7.00 1.0

7.001.0

1.0 1.0 7.00 1.0

7.00 1.0

7.001.0

1.0 1.0 7.001.0

1.0 1.0 7.00 1.0
7.00 1.0

7.001.0

1.0 1.0 7.00 1.0

7.00 1.0

7.001.0

1.0 1.0 7.001.0

1.0 1.0 7.00 1.0

1.0 1.0 7.00
1.0

1.0 1.0 7.00

1.0

1.0

1.0

8.00 1.0

8.001.0

1.0 1.0 8.00

1.0

1.0
1.0

8.00 1.0

8.001.0

1.0 1.0 8.00

1.0

1.0
1.0

1.0 1.0 1.0 1.0 1.0 1.0

8.001.0

1.0 8.00

1.0

8.00 1.0

8.001.0

1.0 1.0 7.00

1.0

1.0
1.0

8.00 1.0

8.001.0

1.0 1.0 7.00

1.0

1.0
1.0

1.0 1.0 1.0 1.0 1.0 1.0

8.001.0

1.0 8.00
1.0

1.0 1.0 7.00

1.0

1.0

1.0

1.0

1.0 1.0

1.0

1.0 1.0

7.001.0

1.0 7.00

1.0

1.0

1.0

1.0

1.0

1.0 1.0

1.0 1.0
7.00 1.0

7.001.0

1.0 1.0 7.00 1.0

7.00 1.0

7.001.0

1.0 1.0 7.001.0

1.0 1.0 7.00 1.0
7.00 1.0

7.001.0

1.0 1.0 7.00 1.0

7.00 1.0

7.001.0

1.0 1.0 7.001.0

1.0 1.0 7.00 1.0

1.0 1.0 7.00
1.0

8.00 1.0

8.001.0

1.0 1.0 8.00 1.0

8.00 1.0

8.001.0

1.0 1.0 8.00 1.0

1.0 1.0 7.00
1.0

1.0 1.0 7.00

1.0

1.0

1.0

8.00 1.0

8.001.0

1.0 1.0 7.00

1.0

1.0
1.0

8.00 1.0

8.001.0

1.0 1.0 7.00

1.0

1.0
1.0

1.0 1.0 1.0 1.0 1.0 1.0

8.001.0

1.0 8.00
1.0

8.00 1.0

8.001.0

1.0 1.0 8.00

1.0

1.0
1.0

8.00 1.0

8.001.0

1.0 1.0 8.00

1.0

1.0
1.0

1.0 1.0 1.0 1.0 1.0 1.0

8.001.0

1.0 8.00

1.0

1.0 1.0 7.00

1.0

1.0

1.0

1.0

1.0 1.0

1.0

1.0 1.0

7.001.0

1.0 7.00

1.0

1.0

1.0

1.0

1.0

1.0 1.0

1.0 1.0

1.0

1.0 1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0 1.0

1.0

1.0

1.0

1.0

1.0

1.0

8.001.0

1.0 8.001.0

1.0 8.001.0

1.0 8.00

1.0

1.0
1.0

1.0 1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0
1.0

1.0

1.0 1.0

1.0 1.0 1.0 1.0

1.0

1.0 1.0 1.0

1.0

1.0 1.0

1.0 1.0 1.0 1.0

1.0

1.0

1.0 1.0 1.0 1.0

1.0

1.0 1.0 1.0

1.0

1.0 1.0

1.0 1.0 1.0 1.0

1.0

1.0

8.001.0

1.0 8.001.0

1.0 8.001.0

1.0 8.001.0

1.0 8.001.0

1.0 8.001.0

1.0 8.001.0

1.0 8.00

0.03

0.0

0.0 0.0

0.0

0.0

0.0 0.0

0.0

0.0

0.0 0.0

0.0 0.0

0.0

0.0 0.0

0.0

0.0

0.0 0.0

0.0 0.0

0.0

0.0 0.0

0.0

0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0 0.0

0.0

0.0

0.0 0.0

0.0

0.0

0.0 0.0

0.0 0.0

0.0

0.0

0.0

0.0

0.0 0.0

0.0 0.0

0.0

0.0

0.0 0.0

0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0

0.0

0.0

0.0

0.0 0.0

0.0

0.0 0.0

0.0

0.0

0.0 0.0

0.0 0.0

0.0

0.0

0.0 0.0

0.0 0.0

0.0

0.0 0.0

0.0

0.0

0.0 0.0

0.0 0.0

0.0

0.0 0.0

0.0 0.0

0.0

0.0

0.0

0.0

0.0

0.0 0.0

0.0

0.0

0.0 0.0

0.0

0.0

0.0 0.0

0.0 0.0

0.0

0.0 0.0

0.0

0.0

0.0

0.0

0.0 0.0

0.0

0.0 0.0

0.0 0.0

0.0

0.0

0.0 0.0

0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0

0.0

0.0

0.0

0.0 0.0

0.0

0.0

0.0 0.0

0.0

0.0

0.0 0.0

0.0 0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0 0.0

0.0

0.0

0.0 0.0

0.0 0.0

0.0

0.0

0.0 0.0

0.0 0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0 0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.11 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0 0.0

0.0 0.0 0.0

0.0

0.0 0.0

0.0

0.0 0.0 0.0

0.0 0.0

0.0 0.0 0.0

0.0 0.0

0.0 0.0 0.0

0.0 0.0 0.0

0.0 0.0

0.0 0.0

0.0

0.0 0.0

0.0 0.0

0.0

0.0 0.0

0.0 0.0 0.0

0.0

0.0 0.0

0.0 0.0

0.0 0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0 0.0

0.0 0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0 0.0

0.0 0.0 0.0

0.0

0.0 0.0

0.0

0.0 0.0

0.0 0.0

0.0

0.0

0.0 0.0 0.0

0.0 0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0 0.0

0.0 0.0

0.0 0.0 0.0

0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0

0.0

0.0

0.0

0.0

0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0 0.0

0.0 0.0

0.0 0.0

0.0

0.0 0.0

0.0 0.0

0.0

0.0 0.0

0.0 0.0 0.0 0.0

0.0

0.0 0.0 0.0

0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0

0.0 0.0

0.0

0.0 0.0

0.0

0.0 0.0

0.0 0.0 0.0

0.0

0.0 0.0

0.0 0.0

0.0 0.0 0.0

0.0

0.0 0.0

0.0

0.0 0.0

0.0 0.0

0.0

0.0

0.0 0.0

0.0 0.0 0.0

0.0 0.0

0.10 0.0

0.0 0.0

0.0 0.0

0.0 0.0 0.0

0.0 0.0

0.0 0.0 0.0

0.0 0.0 0.0

0.0

0.0 0.0

0.0 0.0

0.0 0.0 0.0

0.0 0.0

0.0 0.0 0.0

0.0 0.0

0.0 0.0 0.0

0.0 0.0 0.0

0.0 0.0

0.0 0.0

0.0

0.0 0.0

0.0 0.0

0.0

0.0 0.0

0.0 0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0 0.0

0.0 0.0

0.0

0.0 0.0

0.0 0.0

0.0 0.0 0.0

0.0 0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0 0.0

0.0 0.0 0.0

0.0

0.0 0.0

0.0

0.0 0.0

0.0 0.0

0.0

0.0

0.0 0.0 0.0

0.0 0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0 0.0

0.0 0.0

0.0 0.0 0.0

0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0

0.0

0.0

0.0

0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0 0.0

0.0 0.0

0.0 0.0 0.0

0.0 0.0

0.0 0.0

0.0

0.0 0.0

0.0 0.0

0.0

0.0 0.0

0.0 0.0 0.0 0.0

0.0

0.0 0.0 0.0

0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0

0.0 0.0

0.0

0.0 0.0

0.0

0.0 0.0

0.0 0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0 0.0

0.0 0.0

0.0 0.0

0.0

0.0 0.0

0.0 0.0

0.0

0.0

0.0 0.0 0.0

0.0 0.0 0.0

0.0 0.0

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

6.02 1.0

7.031.0

1.0 1.0 7.03

1.0

1.0

1.0
6.02 1.0

7.031.0

1.0 1.0 7.03

1.0

1.0

1.0

1.0 1.0 1.0 1.0 1.0 1.0
7.04 1.0

1.0 8.03

1.0

1.0

1.0 1.0

7.03 1.0

7.031.0

1.0 1.0 7.03

1.0

1.0

1.0

7.03 1.0

7.031.0

1.0 1.0 7.03

1.0

1.0

1.0

1.0 1.0 1.0 1.0 1.0 1.0
8.031.0

1.0 8.04

1.0

1.0

1.0 1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

8.04 1.0

1.0 8.041.0

1.0 8.041.0

1.0 8.04

1.0

1.0

1.0

1.0

1.0

1.0

1.0 1.0
6.02 1.0

7.031.0

1.0 1.0 7.03

1.0

1.0

1.0
6.02 1.0

7.031.0

1.0 1.0 7.03

1.0

1.0

1.0

1.0 1.0 1.0 1.0 1.0 1.0

7.04 1.0

1.0 8.03

1.0

1.0

1.0 1.0

7.03 1.0

7.031.0

1.0 1.0 7.03

1.0

1.0

1.0

7.03 1.0

7.031.0

1.0 1.0 7.03

1.0

1.0

1.0

1.0 1.0 1.0 1.0 1.0 1.0

8.031.0

1.0 8.04

1.0

1.0

1.0 1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

8.041.0

1.0 8.041.0

1.0 8.041.0

1.0 7.04

1.0

1.0

1.0

1.0

1.0

1.0

1.0 1.0

1.0 1.0 1.0

1.0 1.0 1.0

1.0

1.0

1.0 1.0 1.0

1.0 1.0 1.0

1.0

1.0

8.01 1.0

1.0 8.031.0

1.0 8.031.0

1.0 8.03

1.0

1.0

1.0 0.0

1.0

1.0

1.0 1.0

1.0 1.0

7.03 1.0

7.031.0

1.0 1.0 7.03

1.0

1.0

1.0

7.03 1.0

7.031.0

1.0 1.0 7.03

1.0

1.0

1.0

1.0 1.0 1.0 1.0 1.0 1.0
8.041.0

1.0 8.03

1.0

1.0

1.0 1.0

7.03 1.0
6.02 1.0

1.0 1.0 7.03

1.0
1.0

1.0

7.03 1.0
6.02 1.0

1.0 1.0 7.03

1.0
1.0

1.0

1.0 1.0 1.0 1.0 1.0 1.0
8.031.0

1.0 7.04

1.0

1.0

1.0 1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

8.04 1.0

1.0 8.041.0

1.0 8.041.0

1.0 8.04

1.0

1.0

1.0

1.0
1.0

1.0

1.0 1.0

7.03 1.0

7.031.0

1.0 1.0 7.03

1.0

1.0

1.0

7.03 1.0

7.031.0

1.0 1.0 7.03

1.0

1.0

1.0

1.0 1.0 1.0 1.0 1.0 1.0

8.041.0

1.0 8.03

1.0

1.0

1.0 1.0

7.03 1.0
6.02 1.0

1.0 1.0 7.03

1.0
1.0

1.0

7.03 1.0
6.02 1.0

1.0 1.0 7.03

1.0
1.0

1.0

1.0 1.0 1.0 1.0 1.0 1.0
8.031.0

1.0 7.04

1.0

1.0

1.0 1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

8.041.0

1.0 8.041.0

1.0 8.041.0

1.0 7.04

1.0

1.0

1.0

1.0
1.0

1.0

1.0 1.0

1.0 1.0 1.0

1.0 1.0 1.0

1.0

1.0

1.0 1.0 1.0

1.0 1.0 1.0

1.0

1.0

8.031.0

1.0 8.031.0

1.0 8.031.0

1.0 7.03

1.0

0.0 1.0

1.0 0.0

0.0 1.0

1.0

1.0 1.0

1.0 1.0

1.0

1.0

1.0

0.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0 0.0

1.0

1.0

0.0 0.0

1.0

1.0

1.0

1.0

1.0

1.0

8.031.0

1.0 8.031.0

1.0 8.031.0

1.0 8.031.0

1.0 8.031.0

1.0 8.031.0

1.0 8.031.0

1.0 8.01

6.02 1.0

7.021.0

1.0 1.0 7.02 1.0

6.02 1.0

7.031.0

1.0 1.0 7.021.0

1.0 1.0 7.02

1.0

1.0

1.0

7.02 1.0

7.021.0

1.0 1.0 7.02 1.0

7.02 1.0

7.031.0

1.0 1.0 7.021.0

1.0 1.0 7.02

1.0

0.0 1.0

1.0

1.0

1.0 1.0

1.0 0.0

1.0 1.0

7.021.0

1.0 7.02

1.0

1.0

1.0 1.0
6.02 1.0

7.031.0

1.0 1.0 7.03 1.0

6.02 1.0

7.031.0

1.0 1.0 7.031.0

1.0 1.0 7.02

1.0

1.0

1.0

7.03 1.0

7.031.0

1.0 1.0 7.03 1.0

7.03 1.0

7.031.0

1.0 1.0 7.031.0

1.0 1.0 7.02

1.0

0.0 1.0

1.0

1.0

1.0 1.0

1.0 0.0

1.0 1.0

7.031.0

1.0 7.03

1.0

0.0 1.0

1.0 1.0

1.0

1.0

1.0

1.0

1.0 0.0

1.0

1.0

1.0

7.021.0

1.0 7.02

1.0

1.0

1.0

1.0

1.0

1.0

1.0 1.0
7.03 1.0

7.031.0

1.0 1.0 7.02 1.0

7.03 1.0

7.031.0

1.0 1.0 7.021.0

1.0 1.0 7.03

1.0

1.0

1.0

7.03 1.0

7.031.0

1.0 1.0 7.02 1.0

7.03 1.0

7.031.0

1.0 1.0 7.021.0

1.0 1.0 7.03

1.0

0.0 1.0

1.0

1.0

1.0 1.0

1.0 0.0

1.0 1.0

7.031.0

1.0 7.02

1.0

1.0

1.0 1.0

7.02 1.0

7.021.0

1.0 1.0 7.02 1.0

7.02 1.0

7.021.0

1.0 1.0 7.021.0

1.0 1.0 7.02

1.0

1.0

1.0

7.02 1.0

7.021.0

1.0 1.0 7.02 1.0

7.02 1.0

7.021.0

1.0 1.0 7.021.0

1.0 1.0 7.02

1.0

0.0 1.0

1.0

1.0

1.0 1.0

1.0 0.0

1.0 1.0

7.021.0

1.0 7.02

1.0

0.0 1.0

1.0 1.0

1.0

1.0

1.0

1.0

1.0 0.0

1.0

1.0

1.0

7.031.0

1.0 7.03

1.0

0.0 1.0

1.0

0.0 1.0

0.0 1.0

1.0

1.0 1.0

1.0

1.0 1.0

1.0

1.0 1.0

1.0

1.0

1.0 0.0

1.0 1.0 0.0

1.0 0.0

1.0 1.0

1.0

1.0

7.021.0

1.0 7.021.0

1.0
7.031.0

1.0 7.03 1.0

1.0 7.03

1.0

1.0

1.0

1.0

1.0

1.0

1.0 0.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0 1.0

1.0 1.0
6.02 1.0

7.031.0

1.0 1.0 7.03 1.0

6.02 1.0

7.031.0

1.0 1.0 7.031.0

1.0 1.0 7.02

1.0 0.0

1.0

1.0

7.03 1.0

7.031.0

1.0 1.0 7.03 1.0

7.03 1.0

7.031.0

1.0 1.0 7.031.0

1.0 1.0 7.02

1.0

1.0

1.0

1.0

0.0 1.0 1.0

1.0

1.0 1.0

7.031.0

1.0 7.03

1.0

1.0

1.0 1.0
6.02 1.0

7.031.0

1.0 1.0 7.03 1.0

6.02 1.0

7.021.0

1.0 1.0 7.031.0

1.0 1.0 7.02

1.0 0.0

1.0

1.0

7.03 1.0

7.031.0

1.0 1.0 7.03 1.0

7.03 1.0

7.021.0

1.0 1.0 7.031.0

1.0 1.0 7.02

1.0

1.0

1.0

1.0

0.0 1.0 1.0

1.0

1.0 1.0

7.031.0

1.0 7.03

1.0

0.0 1.0

1.0 1.0

1.0

1.0

1.0

1.0

1.0 0.0

1.0

1.0

1.0

7.021.0

1.0 7.02

1.0

0.0 1.0

1.0

0.0

1.0 0.0

1.0

1.0

1.0 1.0

7.03 1.0

7.031.0

1.0 1.0 7.03 1.0

7.03 1.0

7.031.0

1.0 1.0 7.031.0

1.0 1.0 7.03

1.0 0.0

1.0

1.0

7.03 1.0

7.031.0

1.0 1.0 7.03 1.0

7.03 1.0

7.031.0

1.0 1.0 7.031.0

1.0 1.0 7.03

1.0

1.0

1.0

1.0

0.0 1.0 1.0

1.0

1.0 1.0

7.031.0

1.0 7.03

1.0

1.0

1.0 1.0

7.03 1.0

7.031.0

1.0 1.0 7.03 1.0

7.03 1.0

7.031.0

1.0 1.0 7.031.0

1.0 1.0 7.03

1.0 0.0

1.0

1.0

7.03 1.0

7.031.0

1.0 1.0 7.03 1.0

7.03 1.0

7.031.0

1.0 1.0 7.031.0

1.0 1.0 7.03

1.0

1.0

1.0

1.0

0.0 1.0 1.0

1.0

1.0 1.0

7.031.0

1.0 7.03

1.0

0.0 1.0

1.0 1.0

1.0

1.0

1.0

1.0

1.0 0.0

1.0

1.0

1.0

7.031.0

1.0 7.03

1.0

0.0 1.0

1.0

1.0

1.0

1.0

1.0 1.0

1.0 0.0

1.0 1.0

0.0 1.0

0.0 1.0 1.0

1.0

1.0

1.0 0.0

1.0 1.0

1.0

1.0 1.0

1.0

1.0

7.031.0

1.0 7.02 1.0

1.0 7.031.0

1.0
7.021.0

1.0 7.02 1.0

1.0 7.03

1.0

1.0

1.0

0.0 1.0

1.0

1.0

1.0 0.0

0.0 1.0

1.0

1.0

0.0 1.0

1.0

1.0

1.0 1.0

1.0 1.0

1.0 1.0 1.0

1.0 1.0 1.0

1.0

0.0

1.0 1.0 1.0

1.0 1.0 1.0

1.0

1.0

1.0

1.0

1.0 1.0 1.0 0.0

1.0 1.0 1.0

1.0

0.0 0.0

1.0 1.0 1.0 0.0

1.0 1.0 1.0

1.0

1.0

1.0

1.0

8.02 1.0

1.0 8.031.0

1.0 8.021.0

1.0 8.03 1.0

1.0 8.031.0

1.0 8.031.0

1.0 8.02 1.0

1.0 8.03

1.0

1.0

1.0

1.0

1.0

1.0

1.0 0.0

1.0 0.0

1.0

1.0

0.0

1.0 0.0

1.0

1.0

1.0 1.0

1.0 1.0

7.03 1.0

7.021.0

1.0 1.0 7.02 1.0

7.03 1.0

7.021.0

1.0 1.0 7.021.0

1.0 1.0 7.03

1.0

1.0

1.0

7.03 1.0

7.021.0

1.0 1.0 7.02 1.0

7.03 1.0

7.021.0

1.0 1.0 7.021.0

1.0 1.0 7.03

1.0

0.0 1.0

1.0

1.0

1.0 1.0

1.0 0.0

1.0 1.0

7.021.0

1.0 7.02

1.0 0.0

1.0

1.0 1.0

7.03 1.0

7.031.0

1.0 1.0 7.03 1.0

7.03 1.0

7.031.0

1.0 1.0 7.031.0

1.0 1.0 7.03

1.0

1.0

1.0

7.03 1.0

7.031.0

1.0 1.0 7.03 1.0

7.03 1.0

7.031.0

1.0 1.0 7.031.0

1.0 1.0 7.03

1.0

0.0 1.0

1.0

1.0

1.0 1.0

1.0 0.0

1.0 1.0

7.031.0

1.0 7.03

1.0

1.0

1.0 1.0

1.0

0.0 1.0

1.0

1.0

1.0

1.0

1.0

1.0

7.031.0

1.0 7.03

1.0

0.0 1.0

1.0

1.0

1.0

1.0

1.0 1.0
7.03 1.0

7.021.0

1.0 1.0 7.02 1.0

7.03 1.0

7.021.0

1.0 1.0 7.021.0

1.0 1.0 7.03

1.0

1.0

1.0

7.03 1.0
6.02 1.0

1.0 1.0 7.02 1.0

7.03 1.0
6.02 1.0

1.0 1.0 7.021.0

1.0 1.0 7.03

1.0

0.0 1.0

1.0

1.0

1.0 1.0

1.0 0.0

1.0 1.0

7.021.0

1.0 7.02

1.0 0.0

1.0

1.0 1.0

7.03 1.0

7.031.0

1.0 1.0 7.03 1.0

7.03 1.0

7.031.0

1.0 1.0 7.031.0

1.0 1.0 7.03

1.0

1.0

1.0

7.03 1.0
6.02 1.0

1.0 1.0 7.03 1.0

7.03 1.0
6.02 1.0

1.0 1.0 7.031.0

1.0 1.0 7.03

1.0

0.0 1.0

1.0

1.0

1.0 1.0

1.0 0.0

1.0 1.0

7.031.0

1.0 7.03

1.0

1.0

1.0 1.0

1.0

0.0 1.0

1.0

1.0

1.0

1.0

1.0

1.0

7.031.0

1.0 7.03

1.0

0.0 1.0

1.0

0.0 1.0

0.0 1.0

1.0

1.0 1.0

1.0 0.0

1.0 1.0

1.0

1.0 1.0

1.0

1.0

1.0 0.0

1.0 1.0 0.0

1.0 0.0

1.0 1.0

1.0

1.0

7.021.0

1.0 7.021.0

1.0
7.031.0

1.0 7.03 1.0

1.0 7.03

1.0

1.0

1.0

0.0 1.0

1.0

1.0

1.0 0.0

0.0

1.0

1.0

1.0

0.0

1.0
1.0

1.0

1.0 1.0

1.0 1.0

7.02 1.0

7.031.0

1.0 1.0 7.02 1.0

7.02 1.0

7.031.0

1.0 1.0 7.021.0

1.0 1.0 7.03

1.0 0.0

1.0

1.0

7.02 1.0

7.031.0

1.0 1.0 7.02 1.0

7.02 1.0

7.031.0

1.0 1.0 7.021.0

1.0 1.0 7.03

1.0

1.0

1.0

1.0

0.0 1.0 1.0

1.0

1.0 1.0

7.031.0

1.0 7.03

1.0 0.0

1.0

1.0 1.0

7.02 1.0

7.031.0

1.0 1.0 7.02 1.0

7.02 1.0

7.031.0

1.0 1.0 7.021.0

1.0 1.0 7.03

1.0 0.0

1.0

1.0

7.02 1.0

7.031.0

1.0 1.0 7.02 1.0

7.02 1.0

7.031.0

1.0 1.0 7.021.0

1.0 1.0 7.03

1.0

1.0

1.0

1.0

0.0 1.0 1.0

1.0

1.0 1.0

7.031.0

1.0 7.03

1.0

1.0

1.0 1.0

1.0

0.0 1.0

1.0

1.0

1.0

1.0

1.0

1.0

7.031.0

1.0 7.03

1.0

1.0

1.0

0.0

1.0 0.0

1.0

1.0

1.0 1.0

7.02 1.0

7.031.0

1.0 1.0 7.02 1.0

7.02 1.0

7.031.0

1.0 1.0 7.021.0

1.0 1.0 7.03

1.0 0.0

1.0

1.0

7.02 1.0
6.02 1.0

1.0 1.0 7.02 1.0

7.02 1.0
6.02 1.0

1.0 1.0 7.021.0

1.0 1.0 7.03

1.0

1.0

1.0

1.0

0.0 1.0 1.0

1.0

1.0 1.0

7.031.0

1.0 7.03

1.0 0.0

1.0

1.0 1.0

7.02 1.0

7.031.0

1.0 1.0 7.02 1.0

7.02 1.0

7.031.0

1.0 1.0 7.021.0

1.0 1.0 7.03

1.0 0.0

1.0

1.0

7.02 1.0
6.02 1.0

1.0 1.0 7.02 1.0

7.02 1.0
6.02 1.0

1.0 1.0 7.021.0

1.0 1.0 7.03

1.0

1.0

1.0

1.0

0.0 1.0 1.0

1.0

1.0 1.0

7.031.0

1.0 7.03

1.0

1.0

1.0 1.0

1.0

0.0 1.0

1.0

1.0

1.0

1.0

1.0

1.0

7.031.0

1.0 7.03

1.0

0.0 1.0

1.0

1.0

1.0

1.0

1.0 1.0

1.0

1.0 1.0

0.0 1.0

0.0 1.0 1.0

1.0

1.0

1.0 0.0

1.0 1.0

1.0

1.0 1.0

1.0

1.0

7.031.0

1.0 7.02 1.0

1.0 7.031.0

1.0
7.021.0

1.0 7.02 1.0

1.0 7.03

1.0

1.0

1.0

0.0 1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0
1.0

1.0

1.0 1.0

1.0 1.0

1.0 1.0 1.0 0.0

1.0 1.0 1.0

1.0

0.0

0.0 1.0 1.0 1.0

0.0 1.0 1.0 1.0

1.0

1.0

1.0

1.0

1.0 1.0 1.0 0.0

1.0 1.0 1.0

1.0

1.0 1.0 1.0

1.0 1.0 1.0

1.0

1.0

1.0

1.0

8.031.0

1.0 8.021.0

1.0 8.02 1.0

1.0 8.021.0

1.0 8.031.0

1.0 8.021.0

1.0 8.031.0

1.0 7.03

1.0

0.0 1.0

1.0

0.0 1.0

0.0 1.0

1.0

1.0 0.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0 1.0

1.0 1.0

1.0

1.0 1.0

1.0

1.0 1.0

1.0

0.0

1.0

0.0 1.0 1.0

0.0 1.0

0.0 1.0 1.0

1.0

1.0

1.0

1.0

1.0 0.0

1.0 1.0 0.0

1.0 0.0

1.0 1.0

1.0

0.0

1.0

1.0 1.0

1.0

1.0 1.0

1.0

1.0

1.0

1.0

8.02 1.0

1.0 8.031.0

1.0 8.021.0

1.0 8.031.0

1.0 8.031.0

1.0 8.031.0

1.0 8.031.0

1.0 8.031.0

1.0 8.031.0

1.0 8.021.0

1.0 8.031.0

1.0 8.021.0

1.0 8.031.0

1.0 8.021.0

1.0 8.031.0

1.0 7.03

FIG. 3.2. Typical � -matrix structures: Block approach for M MON N (first) and PBQSR R (second) unknowns. Joint
approach for M MON N (third) and PBQSR R (fourth) unknowns.

The first two matrix structures result from the block approach for $�� � � ��$i$a�%� and$­� � � �+T�¬i®i® unknowns, resp.. We note that the number of pressure variables (size of
third block row) in relation to the total number of unknowns remains about the same, i.e.,� �	*E+S�#4 , when the grid is refined. The third and fourth matrix structures result from the
joint approach for the same two matrix sizes as before. Here, the third block row corresponds
to the unknowns of the interior boundary in the domain decomposition clustering. We note
that its relative size decreases as the problem size increases, namely � ��*E+S� � : ��Lä� 4 . This
fact will have a positive effect on the computation time of the

�
-LU factorization with respect

to the given
�

-matrix structure.
However, before an

�
-LU factorization can be computed, we need to address the ques-

tion of its existence. In particular, we need toU revisit the use of Lagrange multipliers to regularize the system matrix (3.5),U address local pivoting strategies to avoid breakdowns through division by zero dur-
ing the LU factorization.

3.3.1. Uniqueness of pressure. The discrete version of the condition , - |P�i~q�úª is
given by �� k|r��ª and enters the discrete system (3.5) in form of the rank 1 block �!�V�� .
These additional matrix entries do not impose any difficulties for the block approach of Sec-

ETNA
Kent State University
etna@mcs.kent.edu

JOINT � -DD-LU PRECONDITIONER 293

tion 3.2. In fact, their rank 1 representation allows for their efficient addition to an
�

-matrix
approximation of � �C�W: � �C in order to obtain an

�
-approximation to the Schur comple-

ment
G �$�²�#�� � �C�;: � �� .

The joint approach, however, is based on a domain decomposition of the complete index
set into two subsets of pairwise uncoupled indices and an additional interior boundary. Here,
two indices uä� � are called uncoupled if the corresponding matrix entry Xktí� is zero. The result-
ing matrix structure has large, off-diagonal zero blocks which remain zero in a subsequent
LU-factorization. In (3.4), any two pressure indices are uncoupled due to the zero diagonal
block in the system. However, in the regularized system (3.5), any two pressure indices may
now be coupled (in case �{t.]��ª��Bu²���i���{���Y�U�). As a result, all pressure variables will have
to belong to the interior boundary in which case this joint approach would lose its advantage
over the block approach.

Therefore, instead of ,.-I|X�%~`�_ª , we will require | ¸ �Lª�s ª , i.e., fix the pressure at the
geometric location that corresponds to the pressure variable | ¸ . The corresponding discrete
system then has the form ' � � � � (' z|Y(�9' �� ª (
with the (still rank 1) �§7�� matrix

�L�
/ZZZ0 ª ������ª«ª

...
. . .

...
...ª ������ª«ªª ������ª �

17[[[2 s
As a result, all pressure variables remain uncoupled and may be clustered into separate sub-
domains in the domain decomposition clustering of this joint approach.

3.4. Local pivoting strategy. According to (2.2), a block cluster y�7ì± is not further
subdivided if the clusters y or ± are small, i.e., contain less than � ¸ t
 indices where typically�i$�Û	� ¸ t
 Û_�Nª%ª . A leaf cluster y typically contains velocity as well as pressure indices, and
the corresponding diagonal matrix block ��Q ó � ó is represented as a full matrix. During an

�
-

LU factorization, the entries in this diagonal block will be updated during the elimination of
prior diagonal blocks to obtain some matrix ��XQ ó � ó for which then an exact LU factorization
is computed. Up to now, the ordering of indices within leaf clusters has been arbritrary.
This, however, may lead to a breakdown in the

�
-LU factorization if pressure indices are

ordered prior to velocity indices (due to the zero entries along the diagonal in the matrix �).
We will therefore enforce a local, apriori pivoting strategy within leaf clusters by requiring
velocity indices to be ordered before pressure indices. Except for pathological, unlikely to
occur leaf subdomains (e.g., a leaf consisting of only pressure variables which can be avoided
in the preceding clustering process), ��Q ó � ó may be interpreted as a discrete (non-singular)
Oseen problem on a subdomain of w with appropriate (Dirichlet and Neumann) boundary
conditions. If ��Q ó � ó is non-singular, then the local pivoting strategy of ordering velocity
variables before pressure variables will ensure that all submatrices � � � +\X tJ�N4B�]Tt,� �S] � of��Q ó � ó are invertible so that there exists a unique LU factorization of ��Qíó � ó .

3.5. A recursive evaluation scheme to reduce storage requirements. The off-diagonal
blocks in an

�
-LU factorization (2.4), are typically computed explicitly in

�
-arithmetic and

stored as
�

-matrices. The (exact) solutions of

 þ ~µ�^� or

� þ ~µ�5� for ~ require matrix-
vector multiplications involving these off-diagonal blocks. Recalling that these off-diagonal

ETNA
Kent State University
etna@mcs.kent.edu

294 S. LE BORNE AND S. OLIVEIRA

blocks have been computed by triangular solves, e.g.,

 £o� in (2.4) has been computed from
 £o� � �B� �=� £o� , we may replace the multiplication by

 " � with a triangular solve involving� ��� , followed by a multiplication with the sparse matrix block � " � , i.e., the computation_ HJ�
 " �o~ may be replaced by _ ��� " � � : ���� ~ . As a result, the matrix block

 " � is no longer
required and need not be stored. Whereas this approach can be applied for both geometric
bisection and domain-decomposition based

�
-LU preconditioners, it is only recommmended

if storage is more critical than computational complexity. In general, the indirect evaluation
is more expensive than the multiplication by

 " � , and if this scheme is applied recursively
on all levels of the

�
-matrix block structure, it can be shown that the solution

 þ ~p�`� is
of *E+S�["©4 where � denotes the size of

 þ , i.e., it is no longer (almost) optimal. It should
also be noted that even though the off-diagonal blocks are not required for such an indirect
solution of the triangular blocks, they are still required for the computation of the (diagonal
blocks of the)

�
-LU factors, i.e., storage for them needs to be initially provided before it can

be released again once the
�

-LU factorization is computed.

4. Numerical results. In this section, we will provide comparative numerical results for
the block and joint

�
-preconditioners in the iterative solution of the discrete (two-dimensional)

Oseen equations on w � � � �%�{� � 7 � � �%��� � . We will provide numerical results for vary-
ing values of � (i.e., varying convection dominance) and various convection directions �¡�K.�Sa ¯ t
cb �B�Sd t D d��e� DBb d t D d�W in the Oseen equations (3.1) where

� a ¯ t
cb +,~#� � 4@� +é�i�Bª 4 � � d t D d +S~<� � 4�� ' �$ � � �<~ � �$ (�� Deb d t D d�+,~#� � 4@� +S¬i~<+,~ � �©4�+U� � $ � 4�� � ¬ � + � � �N4�+é� � $­~T4B4 s
We use a finite element discretization on a structured mesh with Tabata’s upwind triangle
scheme [18, Chap. III, Sec. 3.1.1] to obtain the discrete saddle point system of linear equa-
tions f9~¡�6� .

All numerical tests have been performed on a Dell 690n workstation (2.33GHz, 32GB
memory) using the standard

�
-matrix library HLIB (cf. http://www.hlib.org). We

choose ~ ø � +,ªk�����{�Y�Bª 4é as the initial vector to solve the discrete system by a preconditioned
BiCGstab iteration. We iterate until either the maximum number of 200 iterations has been
reached, or until the residual has been reduced by a factor of �NªI:hg . If the residual is not
reduced by a factor of at least �Nªi:jg within 200 iteration steps, we denote this by “div”. We
list the average convergence rates which are computed as kl m
 � m ø where

m
 �5n#� � �x~
 n "
denotes the norm of the n’th residual. Throughout we used the adaptive

�
-arithmetic (2.3)

which is typically superior to fixed ranks, in particular for highly non-symmetric problems
[7]. We set � ¸ t
 � ®%¬ , i.e., any cluster with less than ®%¬ nodes is no further refined, andÜì��¬ in the admissibility condition (2.1). The performance of both block and joint

�
-LU

preconditioners in the bicgstab iteration are compared with each other and also compared
with the exact factorization solver PARDISO [19, 20, 21].

In the first Table 4.1, we provide the set-up times (in seconds) for the joint and block
preconditioners for adaptive

�
-accuracies ÷p�üª�s0�%��ª�s ª�� , and ÷��ûªks ªiª�� , resp.. We note

that in the block approach, the first matrix block � in (3.4) is block diagonal with identical
diagonal blocks so that only its first diagonal block needs to be stored and factored.

The set-up times increase (almost) linearly in the problem size � , with the joint precon-
ditioner being computed more than twice as fast as the block preconditioner. With increasing
problem size, the set-up times for the joint and also block

�
-LU factorizations become sig-

nificantly faster than the time for the exact factorization provided by PARDISO.

ETNA
Kent State University
etna@mcs.kent.edu

JOINT � -DD-LU PRECONDITIONER 295

TABLE 4.1
Set-up times in seconds for the � -LU factorization (ohpqNsr.tvu#w�xzyz{}|~y)� 91,206 178,086 362,406 724,203 1,444,806

Joint
�

(0.1) 9 14 33 51 110
Joint

�
(0.01) 13 21 50 93 206

Joint
�

(0.001) 18 30 72 141 326
Block

�
(0.1) 18 38 95 199 471

Block
�

(0.01) 25 57 141 321 804
Block

�
(0.001) 38 90 225 568 1573

PARDISO 17 47 140 406 1172

In Table 4.2, we show the storage (in MB) that is required to compute and store the
�

-
LU factors. As anticipated, the joint

�
-LU factors require less storage than the block

�
-LU

factors. In both cases, however, storage increases almost linearly in the problem size.

TABLE 4.2
Storage (in MB) for the � -LU factorization (ohpqNsr.tvu#w�xzyz{}|�y)� 91,206 178,086 362,406 724,203 1,444,806

Joint
�

(0.1) 161 285 638 1100 2302
Joint

�
(0.01) 195 356 790 1500 3185

Joint
�

(0.001) 228 416 928 1754 3763
Block

�
(0.1) 163 321 769 1414 3071

Block
�

(0.01) 191 382 860 1712 3723
Block

�
(0.001) 236 472 1075 2141 4696

PARDISO 180 385 863 1875 4049

Table 4.3 shows the convergence rates and iteration times (in seconds) that have been
achieved by the resulting

�
-LU preconditioners. Comparing the iteration times with the set-

up times in Table 4.1, we note that the set-up still takes longer than the actual iteration. The
high set-up times can be justified if the system has to be solved for a higher accuracy or if
it has to be solved for several right hand sides. Since PARDISO requires only a backward
and forward solve, its solution time is faster than the iterative schemes (however, with greater
set-up time, see Table 4.1).

In Table 4.4 we show the convergence rates and times of both the block and the joint
approach for varying convection directions. Here, we set �µ� �NªI:�" and � ���%$­¬k�ä$�ª�� .
“ � a ¯ t
cb ” denotes a constant convection in x-direction, resp.. “ � d t D d ” and “ � DBb d t D d ” denote two
different non-constant, cyclic convection directions as defined at the beginning of this section.
The results of the joint preconditioner vary to some degree with the convection directions. The
block preconditioner appears to be independent of the convection direction.

In Table 4.5, we test the block and joint preconditioners’ dependence on the convection
dominance. Interestingly, they behave quite opposite: The block approach yields a convergent
iteration for ��� �is ª whereas the joint approach diverges, but as � decreases, i.e., as the
convection becomes dominant, the performance of the block approach deteriorates whereas
the convergence properties of the joint approach improve.

In Fig. 4.1, we display typical convergence histories for varying convection dominance
for both the joint (top) and block (bottom) approach. Here, we plot the residual norm (on a
logarithmic scale) versus the number of iteration steps. The convergence histories have been
obtained for a problem with �����%® $a�U¬ ª%® unknowns, an adaptive

�
-accuracy ÷X�Lª�s ª�� and

ETNA
Kent State University
etna@mcs.kent.edu

296 S. LE BORNE AND S. OLIVEIRA

TABLE 4.3
Convergence rates (top block) and iteration times (in seconds, bottom block) for increasing problem sizes

(ohpqNsr tvu w�xzyz{}|�y) � 91,206 178,086 362,406 724,203 1,444,806
Joint

�
(0.1) 0.89 0.93 div div div

Joint
�

(0.01) 4.2e-3 0.05 0.50 0.27 0.62
Joint

�
(0.001) 4.4e-4 3.4e-4 5.5e-4 1.4e-3 3.0e-3

Block
�

(0.1) div div div div div
Block

�
(0.01) 0.21 0.38 0.78 0.54 0.76

Block
�

(0.001) 1.9e-2 0.06 0.16 0.42 0.39
Joint

�
(0.1) 23 70 div div div

Joint
�

(0.01) 0.9 2.6 20 22 114
Joint

�
(0.001) 0.5 1.5 3 6 16

Block
�

(0.1) div div div div div
Block

�
(0.01) 2.6 8 20 58 267

Block
�

(0.001) 0.9 1.8 4 11 23
PARDISO 0.3 0.5 1.2 2.5 5

TABLE 4.4
Set-up (in seconds), iteration rate and time (in seconds), and storage (MB) for various convection directions

(ohpqNsr tvu , ��p��BMBQ.w!M r �)

direction xline circ recirc
setup 93 93 92

Joint
�

(0.01) iteration 0.16/18 0.27/22 0.57/47
storage 1502 1500 1482
setup 311 321 293

Block
�

(0.01) iteration 0.55/63 0.54/58 0.54/55
storage 1716 1712 1674
setup 422 406 434

PARDISO solve 2.5 2.5 2.5
storage 1881 1875 1911

TABLE 4.5
Set-up (in seconds), iteration rate and time (in seconds), and storage (MB) for increasing convection dominance

(�;p��BMBQ.w!M r � , xzyz{}|�y)� 1.0 0.1 1e-2 1e-3 1e-4
set-up 95 81 93 94 118

Joint
�

(0.01) iteration div div 0.27/22 0.05/11 0.21/18
storage 1291 1395 1500 1487 1482
set-up 379 385 321 261 256

Block
�

(0.01) iteration 0.56/59 0.57/70 0.54/58 0.80/147 div
storage 1749 1755 1712 1665 1696
set-up 405 406 406 406 414

PARDISO solve 2.5 2.5 2.5 2.5 2.5
storage 1875 1875 1875 1875 1887

ETNA
Kent State University
etna@mcs.kent.edu

JOINT � -DD-LU PRECONDITIONER 297

the convection �7d t D d .

0 5 10 15 20 25 30
10−8

10−6

10−4

10−2

100

102

104

Iteration steps

R
es

id
ua

l n
or

m

eps=1.0

eps=1e−2

eps=1e−8

eps=1e−6

eps=1e−4

0 5 10 15 20 25 30
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

103

Iteration steps

R
es

id
ua

l n
or

m

eps=1.0
eps=1e−2
eps=1e−4
eps=1e−6

FIG. 4.1. Convergence histories for ��p�� R MBQSr R unknowns, convection x~yz{}|�y , varying convection domi-
nance o . Top: Joint(0.01) preconditioner; Bottom: Block(0.01) preconditioner.

In summary, the joint approach is significantly more efficient than the block approach
with respect to storage, set-up time and resulting convergence rates for the Oseen problem
with dominant convection. Whereas both approaches lead to almost exact solvers as the
adaptive

�
-accuracy approaches zero, i.e., ÷´� ª , the joint approach leads to convergent

iterations for much coarser accuracies. As a result, the joint
�

-LU preconditioners require
less set-up time and storage than the block

�
-LU preconditioners. In the case of the Stokes

equations, the block approach performs better than the joint approach. However, for this case
there already exist several efficient preconditioners in the literature [3].

ETNA
Kent State University
etna@mcs.kent.edu

298 S. LE BORNE AND S. OLIVEIRA

REFERENCES

[1] M. BEBENDORF, Hierarchical LU decomposition based preconditioners for BEM, Computing, 74 (2005),
pp. 225–247.

[2] M. BEBENDORF, Why approximate LU decompositions of finite element discretizations of elliptic operators
can be computed with almost linear complexity, Tech. Report 8, Max Planck Institute for Mathematics
in the Sciences, 2005.

[3] M. BENZI, G. GOLUB, AND J. LIESEN, Numerical solution of saddle point problems, Acta Numer., 14
(2005), pp. 1–137.

[4] S. BÖRM, L. GRASEDYCK, AND W. HACKBUSCH, Hierarchical Matrices, 2003, Lecture Notes No.
21, Max-Planck-Institute for Mathematics in the Sciences, Leipzig, Germany, available online at
www.mis.mpg.de/preprints/ln/.

[5] L. GRASEDYCK AND W. HACKBUSCH, Construction and arithmetics of � -matrices, Computing, 70 (2003),
pp. 295–334.

[6] L. GRASEDYCK, R. KRIEMANN, AND S. LE BORNE, Parallel black box domain decomposition based � -LU
preconditioning, Tech. Report 115, Max-Planck-Institute for Mathematics in the Sciences, 2005.

[7] L. GRASEDYCK AND S. LE BORNE, � -matrix preconditioners in convection-dominated problems, SIAM J.
Math. Anal., 27 (2006), pp. 1172–1183.

[8] L. GREENGARD AND V. ROKHLIN, A fast adaptive multipole algorithm for particle simulations, SIAM J.
Sci. Statist. Comput., 9 (1988), pp. 669–686.

[9] W. HACKBUSCH, A sparse matrix arithmetic based on � -matrices. Part I: Introduction to � -matrices, Com-
puting, 62 (1999), pp. 89–108.

[10] W. HACKBUSCH, L. GRASEDYCK, AND S. BÖRM, An introduction to hierarchical matrices, Math. Bohem.,
127 (2002), pp. 229–241.

[11] W. HACKBUSCH, B. KHOROMSKIJ, AND R. KRIEMANN, Hierarchical matrices based on a weak admissi-
bility criterion, Computing, 73 (2004), pp. 207–243.

[12] I. IBRAGIMOV, S. RJASANOW, AND K. STRAUBE, Hierarchical Cholesky decomposition of sparse matrices
arising from curl-curl-equations, Tech. Report 154, Universität des Saarlandes, 2005, to appear in J.
Numer. Math.

[13] P. JONES, J. MA, AND V. ROKHLIN, A fast algorithm for the solution of the Laplace equation on regions
with fractal boundaries, J. Comput. Phys., 113 (1994), pp. 35–51.

[14] R. KRIEMANN, Parallel � -matrix arithmetics on shared memory systems, Computing, 74 (2005), pp. 273–
297.

[15] S. LE BORNE, Hierarchical matrix preconditioners for the Oseen equations, Comput. Vis. Sci., (2006), to
appear.

[16] S. LE BORNE, L. GRASEDYCK, AND R. KRIEMANN, Domain-decomposition Based � -LU Preconditioners,
in Domain Decomposition Methods in Science and Engineering XVI, O. Widlund and D. Keyes, eds.,
Lect. Notes Comput. Sci. Eng., Vol. 55, Springer, Berlin, 2006, pp. 661–668.

[17] M. LINTNER, The eigenvalue problem for the 2D Laplacian in � -matrix arithmetic and application to the
heat and wave equation, Computing, 72 (2004), pp. 293–323.

[18] H. ROOS, M. STYNES, AND L. TOBISKA, Numerical Methods for Singularly Perturbed Differential Equa-
tions: Convection Diffusion and Flow Problems, vol. 24, Computational Mathematics, Springer, Berlin,
1996.

[19] O. SCHENK AND K. GÄRTNER, Solving unsymmetric sparse systems of linear equations with PARDISO,
Journal of Future Generation Computer Systems, 20 (2004), pp. 475–487.

[20] , On fast factorization pivoting methods for symmetric indefinite systems, Electron. Trans. Numer.
Anal., 23 (2006), pp. 158–179.
http://etna.math.kent.edu/vol.23.2006/pp158-179.dir/pp158-179.html.

[21] O. SCHENK, K. GÄRTNER, AND W. FICHTNER, Efficient sparse LU factorization with left-right looking
strategy on shared memory multiprocessors, BIT, 40 (2000), pp. 158–176.

[22] E. E. TYRTYSHNIKOV, Incomplete cross approximation in the mosaic-skeleton method, Computing, 64
(2000), pp. 367–380.

http://etna.math.kent.edu/vol.23.2006/pp158-179.dir/pp158-179.html

