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FROM TAYLOR TO QUADRATIC HERMITE-PADÉ POLYNOMIALS
�

HERBERT STAHL
�

Dedicated to Ed Saff on the occasion of his 60th birthday

Abstract. Taylor polynomials, Padé approximants, and algebraic Hermite-Padé approximants form a hierarchy
of approximation concepts of growing complexity. In the present contribution we climb this ladder of concepts by
reviewing results about the asymptotic behaviour of polynomials that are connected with the three concepts. In each
case the concepts are used for the approximation of the exponential function. The review starts with a classical result
by G. Szegö about the asymptotic behaviour of zeros of the Taylor polynomials, it is then continued with asymptotic
results by E.B. Saff and R.S. Varga about the asymptotic behaviour of zeros and poles of Padé approximants, and
in the last part, analogous results are considered with respect to quadatic Hermite-Padé polynomials. Here, known
results are reviewed and some new ones are added. The new results are concerned with the non-diagonal case of
quadatic Hermite-Padé polynomials.
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1. Introduction. The present contribution is an extended version of a talk given at the
Conference ’Constructive Functions Tech-04’ in honor of Eduard B. Saff’s 60th birthday. It
is concerned with the asymptotic behavior of Taylor, Padé, and Hermite-Padé polynomials
(of type I) associated with the exponential function.

The investigations in all three cases are based on a rescaling method that has been intro-
duced by G. Szegö in [39] in the 20th of the last century for the study of Taylor polynomials.
The method has then been extended in [29], [32], [34], and [35] by E.B. Saff and R.S. Varga
for the study of Padé polynomials and Padé approximants to the exponential function, and
lately the method has also been used by the author of the present contribution in [37] and
[38] for an investigation of the asymptotic behavior of quadratic Hermite-Padé polynomials
of type I and their zeros in the diagonal case. These last investigations will be extended to
non-diagonal ray sequences in Section 6 of the present contribution.

The investigations in [29] - [35] deal with Padé approximants in the whole Padé table.
Thus, also non-diagonal ray sequences have been considered, and among many other interest-
ing things, it is quite instructive to see how Szegö’s earlier results about Taylor polynomials
reappear as a limiting case in [35]. Inspired by this aspect of the investigations in [35], an
extension of results from [37] to the non-diagonal case has been included in the present con-
tribution.

In the next section we start with formal definitions of all three types of polynomials.
In Section 3 we then turn to Szegö’s result, followed by a review of E.B. Saff’s and R.S.
Varga’s results in Section 4. Results from [37] and [38] about the asymptotic behavior of
diagonal quadratic Hermite-Padé polynomials of type I are reviewed in Section 5, and in
Section 6 results from [37] are extended to non-diagonal ray sequences of quadratic Hermite-
Padé polynomials.

2. From Taylor Polynomials to Hermite-Padé Polynomials in Three Steps. Let the
function � be given by its power series development�������
	������������������� � ��������
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at the origin.

2.1. Taylor Polynomials. For each ����� the Taylor polynomial of the function � is
defined as

(2.1)  "!#�$�%�'&(	���)�������*�+�����,����!-� !/.
and the remainder term satisfies

(2.2) ���$�%�102 ! �����3	 O �$� !546� � as �87:9;�
The polynomial  ! is uniquely determined by relation (2.2).

2.2. Padé Polynomials and Padé Approximants. For each pair �$< . �#�)�=� � of indices
there exist two polynomials >@?A!B�DCE? and F�?A!B�1CE!HG�IJ9;K such that

(2.3) F ?A! �$�%�L�������10M> ?A! �����
	 O �$� ?A4N!546� � as �O7:9 .
and they are called Padé polynomials associated with the function � and the indices < and � .
By C ! we have denoted the set of all polynomials of degree at most �P�1� .

The existence of the pair �Q> ?A! . F ?A! � of polynomials follows immediately from consider-
ing relation (2.3), which is equivalent to <R�
�8�TS homogenous linear equations in the coef-
ficients of the two unknown polynomials > ?A! and F ?)! . Padé polynomials are not unique; in
any case, they can be multiplied by a non-zero constant, but more substantial non-uniqueness
may exist.

Contrary to the Padé polynomials, the Padé approximant

(2.4) U <
V,�@W@	XU <
V,�@WZY[&(	 > ?A!F�?A!
is unique for each pair of indices �Z< . �#� . We note that in general we have

(2.5) �������=0:U <
V,�@W\�$�%�^]	 O ��� ?)4#!546� � as �87_9 .
which shows that relation (2.2) does not generalize directly to Padé approximants. Indeed,
(2.5), the proper generalization of (2.2) is relation (2.3), and it is called the linearized version
of the error relation.

2.3. Hermite-Padé Polynomials. Hermite-Padé polynomials appear in two versions
that are known as type I and type II. There exists a duality between both types. Contrary
to Taylor and Padé polynomials, where we deal with a single function � , the Hermite-Padé
polynomials are associated with a whole system

(2.6) `#	a�"S . � � . ����� . � ? � , <cb�S .
of functions. We assume that each of the < functions �,d , ef	gS . ����� . < , is analytic in
a neighborhood of the origin. Each set of Hermite-Padé polynomials is associated with a
multi-index �=	X�Z�  . ����� . � ? �)�h� ?A46� with <M��S components.

DEFINITION 2.1. Hermite-Padé Polynomials of Type I: For any multi-index �i	�Z�j . ����� . �N?k�)�h� ?)4l� there exists a vector of polynomials �Q>m . ����� . >/?n�)�1CA!po�qj�#r*CA!tsuqj�#r�����;rBCE!5v)qN��G�I%�$9 . ����� . 9��wK such that

(2.7)
?xdzy  > d �$�%�L� d �����{	}|[���/~ ! ~ qN� ���t���87:9 .
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where � �'�%&(	+�j'���������{�N? . The vector �(>/ . ����� . >/?n� is called Hermite-Padé form of type I,
and its elements > d 	�> d ! , eD	f9 . ����� . < , ���T� ?A46� , are the Hermite-Padé polynomials of
type I of multi-index � associated with the system of functions ` .

DEFINITION 2.2. Hermite-Padé Polynomials of Type II: For any multi-index ��	�Z�  . ����� . � ? �T��� ?A46� there exists a vector of polynomials �Z�  . ����� . � ? �{�MCE�6oJG�IJ9;KBrCE��s*rP�����/rBCE�lv with

(2.8) ��dk&(	a� �'��0P�md , e�	�9 . ����� . < .
such that

(2.9) �  �$�%�L�Jd5������03�pd5�����{	}|[��� ~ ! ~ 4l� � as �87:9 for eO	fS . ����� . < .

The vector ���  . ����� . � ? � is called Hermite-Padé form of type II, and its elements �pd[	a�pd ! ,e�	i9 . ����� . < , �M�X� ?)4l� , are the Hermite-Padé polynomials of type II of multi-index �
associated with the system of functions ` .

Counting the number of linear restrictions implied by relation (2.7) or by the relations
in (2.9) shows that Hermite-Padé polynomials of both types always exist. But the polyno-
mials are not unique, the situation is similar to that of Padé polynomials only that now the
possibilities for non-uniqueness are more manifold.

From both relations (2.7) and (2.9), one gets the defining relation (2.3) of the Padé poly-
nomials as a special case if one chooses <}	iS . Indeed, in (2.7) one has to take <�	iS ,�p�E	X0*� , and �$�j . �6����	a�Z�[�^S . <X�^SJ� , while in (2.9) the choice has to be <�	XS , �t�E	�� ,
and �Z�N . �6����	X�$< . �#� . Thus, Hermite-Padé polynomials of both types can be seen as gener-
alizations of Padé polynomials in a quite analogous way as Padé polynomials can be seen as
a generalization of Taylor polynomials.

2.4. Hermite-Padé Approximants. The ideas behind the definition of the two types
of Hermite-Padé polynomials are two different approximation concepts, of which each one
uses one of the two types of polynomials as basic building blocks. The two concepts will be
introduced next.

Let � be a single function that is assumed to be analytic at the origin. We define a system
of functions (2.6) by

(2.10) `�&(	X�LS . � . ����� . � ? ���
DEFINITION 2.3. Algebraic Hermite-Padé Approximants: For a given multi-index ���� ?A46� let >  . ����� . > ? �1C ! o qj� rn�����zr)C ! v qN� G%I��$9 . ����� . 9��wK be the Hermite-Padé polynomials

of type I defined by (2.7) and the system (2.10). Let then the algebraic function �1	��j�$�%� be
defined by

(2.11)
?xdzy  > d �����"�@����� d�� 9;�

From the < branches of � we select the branch ��	�� ! which has the highest contact with� at the origin. This branch � ! is called the algebraic Hermite-Padé approximant to � of
degree < associated with the multi-index � .

The Padé approximants defined in (2.4) are algebraic Hermite-Padé approximants of
degree <�	�S , and in an analogous sense the Taylor polynomials can be seen as algebraic
approximants of degree <i	f9 . Thus, the different concepts of approximants considered so
far form a hierarchy of increasing complexity and generality.
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Like the Hermite-Padé polynomials of type I lead to algebraic Hermite-Padé approxi-
mants, so in an analogous way the Hermite-Padé polynomials of type II lead to simultaneous
rational Hermite-Padé approximants. Now, we start from a system (2.6) with �  � S and <
independent functions � � . ����� . � ? that are assumed to be analytic in a neighborhood of the
origin.

DEFINITION 2.4. Simultaneous Rational Hermite-Padé Approximants: For a given
multi-index ����� ?)4l� let �  . ����� . � ? be the Hermite-Padé polynomials of type II define by
(2.9). Then the vector of rational functions

(2.12) � � ��  ����� . ����� . � ?�  �$�%�\�
with common denominator polynomial �- is called simultaneous rational (Hermite-Padé)
approximant to the (reduced) system of functions `��w�"�3	����p� . ����� . ��?�� associated with the
multi-index � .

For <:	�S , in (2.12) we have the Padé approximant to ��� with numerator and denomi-
nator degrees �Z�N , �6��� .

Although algebraic Hermite-Padé and simultaneous rational approximants are two rather
different concepts, they have at least one aspect in common: in both cases the approximant
has < simultaneous components. In case of simultaneous rational approximants the assertion
is immediate; in case of algebraic Hermite-Padé approximants, the components are the <
branches of the algebraic function ��! . If the function � in (2.10) has branch points, then a
very interesting question is whether and how far the < branches of the algebraic approximants� ! follow branches of the function � around its branch points.

2.5. Historic Remarks. Padé’s thesis [21] is generally seen as the birth certificate of
Padé approximants. Of course, important aspects of the concept had already been studied
earlier in the framework of continued fractions, most notably the investigations by G. Frobe-
nius in [10]. Now-a-days, the situation is somewhat reversed, and large parts of the analytic
theory of continued fractions are seen as part of the theory of Padé approximation. A great
part of Padé’s research were concerned with the exponential function, which incidentally is
also the central topic of the present contribution.

The research by G. Frobenius [10] is seen as an important forerunner of Padé’s contribu-
tions since there already the emphasis has been put on the whole table of approximants, and
there the algorithmically important identities between neighboring approximants or between
numerators and denominators of neighboring approximants have been studied for the first
time.

The introduction of Hermite-Padé polynomials is perhaps most famous for its role in C.
Hermite’s proof of the transcendency of the number   (cf. [11]). A very readable account of
this historic achievement is contained in the appendix of [13]. In the further development of
the theory of Hermite-Padé polynomials one can distinguish two different lines of research:
One direction is concerned with systems of special functions, like the exponential, the bino-
mial, or the logarithmic function, etc. We mention here the publications [16], [17], and [18]
by K. Mahler and the publications [12] and [5] by authors who are closely connected with
Mahler’s research. In the other direction one is concerned with polynomials associated with
general classes of functions and systems of functions. The situation is comparable with that
of the theory of orthogonal polynomials, where also a split into the same two orientations can
be observed. As representatives for the second direction we mention the studies of Angelesco
and Nikishin systems, and for an introduction to this direction of research we mention the
book [19] or the survey articles [1].
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3. Szergö’s Result. In an investigation published in [39] G. Szegö has studied the
asymptotic distribution of the zeros of the Taylor polynomials

(3.1)  ! �Z¡k��	�S������+�����J� ¡ !��¢
to the exponential function  �£ .

Since the exponential function is entire, and since it is different from zero everywhere in¤
, all zeros of the polynomials  ! tend to infinity as �
7�¥ , and consequently all informative

characteristics of the asymptotic distribution of the zeros gets lost during the process. In order
to avoid such an unfavorable effect, G. Szegö reorganized the independent variable ¡ in such
a way that the zeros of the transformed polynomials ¦ ! have finite cluster points in

¤
that are

not reduced to a single point. An appropriate transformation is given by

(3.2) ��	���!f	 ¡ � �
With (3.2) the Taylor polynomial  ! transforms into

(3.3) ¦ ! �����
	§ ! �Z�N�%�
	¨S��T���*�+�����J� � !��¢ � ! .
and Stirling’s formula shows that the ��0 th root of the leading coefficient of ¦6! converges to
a value different from 9 and ¥ . Actually, it converges to   , i.e., we have

(3.4) ©«ª¬!t®°¯c±² � !��¢ 	 ©ª«¬!t®°¯  *³ ±² S´ �jµ 	� ��
Let ¶ ! 	�¶8�Z¦ ! � denote the set of all zeros of the polynomial ¦ ! , and let further · !

denote the set of all zeros of the transformed remainder term

(3.5) ¸*!N�$�%�)&¹	�  !5º 0P¦j!j�$�%���
In [39] the following theorem has been proved.

THEOREM 3.1. Let the curve »N be defined by

(3.6) »j�&¹	fI)�[� ¤g¼¼¼ � �@�"  ��q/½m¾z¿ºuÀ 	XSnÁ8�
Then the sets ¶ ! of zeros of the transformed polynomials ¦ ! cluster on the subcurve » )Â Ã
of »  as ��7�¥ , and the sets · ! of zeros of the remainder terms (3.5) cluster on »  G Ã as�
7�¥ .

The curve »j is nowadays known as the Szegö curve. It is shown in Figure 3.1 together
with the zeros of the polynomial ¦NÄuÅ and some zeros of the remainder term ¸�ÄuÅ . We note that
for zeros of ¸*ÄzÅ close to infinity the asymptotic distance between two neighboring zeros is´ µ6V5ÆpÇÉÈ	R9;�S,ÊpË . In Figure 3.1 the Ç zeros are not far enough away from the origin since the
distance between them is still somewhat larger than 9;�S,ÊpË .

The curve »  can be interpreted as the intersection of the plane defined by In�ZÌ . � . �%�Í�Î Ä �J�8	+ÌÍ0ÏSÐK in
Î Ä with the logarithmic cone In�$Ì . � . ���
� Î Ä ¼¼ ©«ÑtÒ�� Ì � ��� � �6	 ´ �8K .

A short proof of Theorem 3.1 can be based on this fact together with a clever use of Cauchy’s
integral formula. Many related results about the distribution of zeros of sections of power
series to the exponential function and other entier functions can be found in [9].

With potential-theoretic means it is possible to describe the asymptotic density of the
zeros of ¦ ! ; cf. [25], [26]. Estimates of the speed with which the zeros of ¦ ! converge
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FIG. 3.1. The Szegö curve ÓtÔ together with the zeros ( ÕLÖZ×�Ø�Õ ) of the transformed polynomial Ù%Ú\Û and Ü zeros
( Ý�Þ�×�ß�àuá�Ý�Õ ) of the remainder term â Ú\Û that has been introduced in (3.5).

towards » °Â Ã have been proved in [4]. Recently, R.S. Varga has also investigated the
discrepancy between the sets ¶ ! and their asymptotic distribution on » nÂ Ã , and he has
spoken about this topic at the same conference in honor of E.B. Saff’s 60th birthday, to which
also the present contribution is dedicated.

Szegö’s result, which have just been reviewed, was an important inspiration for the re-
search by E.B. Saff and R.S. Varga about the convergence and asymptotic behavior Padé
approximants and Padé polynomials, which will be reviewed in the next Section.

4. E.B. Saff’s and R.S. Varga’s Results. In Subsection 2.2 it has already been noted
that Padé approximants are a natural generalizations of Taylor polynomials into the field of
rational functions. The Padé polynomials > ?)! �1C ? , F ?A! �1C ! , and the Padé approximantsU <
V,�@W have been defined in (2.3) and (2.4), respectively. In case of the exponential function
there exist explicit formulae for the Padé polynomials (cf. [35], formula (1.3), or [2], Section
1.2). For instance, for the diagonal approximants U �6V,�@W , we have

(4.1) >/!p!j�Z¡��)	 � ´ �� � � � ´ �B0ÏS�h0ÏS � ¡ St¢ �+�����,� � � 9 � ¡ !��¢ . F�!5!#�Z¡��'	�>/!p!j�"0E¡����
Questions about convergence are basic for any type of approximants; for Padé approx-

imants and the exponential function basic answers have already been given in Padé’s thesis
[21] (cf. also [22], [23], [24]). Locally uniform convergence holds true throughout

¤
for

any sequence of numerator and denominator degrees �$<1d . �mdJ� satisfying ¬[ªã#�Z<Bd . �mdJ�'7�¥
as eP7ä¥ . In case of ray sequences, we have the surprising result that the numerator and
denominator polynomials > ?)! and F ?A! converge even individually. Indeed, we have

(4.2) ©ª«¬d ®°¯ > ?)åwæ !�å �$¡��>/? å æ ! å ��9t� 	�  ss$ç�è £ . ©«ª¬d ®°¯ F ?)å�æ !�å �Z¡k�F�? å æ ! å �$9�� 	+ °é ès�çtè £
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for ray sequences I%�Z< d . � d �wK with

(4.3)
�md< d 7_ê=�{�$9 . ¥^� as eO7�¥+�

From (4.2) it follows that all zeros of >m?A! as well as those of FJ?)! converge to infinity
if ¬[ª«ã#�$< . �#� tends to infinity. This is an impressive property, which is quite unusual for the
general convergence theory of Padé approximants. As in the case of Taylor polynomials, one
would like to know more about the specific manner in which poles and zeros of the Padé
approximants tend to infinity.

In a series of papers ([29], [30], [32], [33], [34], [35]) E.B. Saff and R.S. Varga have
investigated the location of zeros and poles of Taylor polynomials and Padé approximants to
the exponential function. Following the example set by G. Szegö with his rescaling method,
which has been reviewed in the last section, they carried out an analogous study of the asymp-
totic behavior of the zeros and poles of Padé approximants. We follow here in our review the
treatment in [35].

Since Padé approximants U <
V,�@W contain <����D� ´ free parameters, E.B. Saff and R.S.
Varga used

(4.4) �8	 ¡<M�T�
as new independent variable for the rescaling, which then leads to the transformed (rescaled)
Padé polynomials

(4.5) ë ?A! �$�%�)&(	{> ?A! �z�Z<M���#�-�%� and ì ?A! �$�%�)&¹	�F ?A! �L�$<M���#�-�%���
One of the most interesting results in [35] is an explicit description of the arcs on which
the zeros of the rescaled polynomials ë ?A! and ì ?A! and also the zeros of the transformed
remainder term

(4.6) ¸ ?A! �$�%�)&¹	�ì ?A! �$�%�"  ¿«?A4N!5À�º 0{ë ?A! �$�%�
cluster if the sequence of indices I��Z< . �#��K
	:I��$<Dd . �mdJ�wK tends to infinity along a ray se-
quence satisfying (4.3). These arcs are the analogue of the Szegö curve »# from (3.6) for the
Padé case.

The situation is now somewhat more complicated, and we need some auxiliary defini-
tions before we can specify the arcs of the asymptotic relations. We follow very closely the
terminology introduced in Section 1 of [35].

Depending on the parameter ê of the ray sequence in (4.3), the two points � 4í . � qí �=î Ã
are defined as

(4.7) �%ïí &(	 SE0{êS���êPðTñ ´ 4'ò êS'�^ê .
and the function ó í is defined as

(4.8) ó í �����)&(	Xô S���� � 0 ´ �õ� SE0TêS��^ê �°�
The function ó í has branch points at � 4í and � qí , and its natural domain of definition is the
two-sheeted Riemann surface ö í defined by the relation

(4.9) ö í &i¡ � 	fS���� � 0 ´ � � SA0TêS'�^ê � �
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FIG. 4.1. The rescaled zeros (stars) and poles (diamonds) of the Padé approximant ÷ øwù�úwûuü and several zeros
(triangles) of the remainder term (4.6) together with the arcs ýÐþ�ÿ Ú , â�þ�ÿ Ú , and �mþ�ÿ Ú defined in (4.12), (4.13), and
(4.14), respectively, on which the zeros and poles cluster as á���� . The figure has been taken from [35], Fig. 2,
but its values have been recalculated.

Let the two half-lines
� ïí be defined by

� ïí &(	 IÍ��� ¤ ���	�t�$�%�{	
���t��� 4í � . ð � ¬h�����b ð � ¬=�$� ïí �OK , then the Riemann surface ö í can be represented by two sheets » 4 and» q that are identical copies of
¤ Gk� � 4 í� � qí � glued together in the usual crosswise fashion

along
� 4 í and

� qí . In the sequel we identify the sheet » 4 with
¤ GO� � 4 í� � qí � and make

the assumption that the sign of the square root in (4.8) is positive on » 4 near �T	�9 , i.e.,ó í ��9t��	XS . It is not difficult to verify that the two expressions S ð �E��ó í �$�%� do not vanish in
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(4.10) ¡ í �$�%�)&¹	 � ê í�� ¿ �L4 í À �' �� è ¿«ºwÀ�"S��^ê/���"S)�����Tó í �����z� � � ¿ �"4 í À �"SE0{���{ó í �$�%�L� � í�� ¿ �L4 í À
is well defined for all 9���ê��+¥ and �[� ¤ Gk� � 4 í� � qí � .

By » í we denote the sector

(4.11) » í 	�IA�õ� ¤ ���L���uÒH�$�%��������Ñt� qN� � SE0TêS��^ê ��Kt�
In [35] it has been proved that� í &¹	RIA�[� Ã�Â » í ��� ¡ í �������p	XSÐK and(4.12) ¸ í &(	RIA�[� Ã GA» í ��� ¡ í �������p	fS*K(4.13)

are two analytic Jordan arcs, each connecting the two points � 4í and � qí in Ã , and further that

(4.14)  í &(	fI)�[� ¤ G Ã �k� ¡ í �$�%���p	XSÐK
consists of two disjoint Jordan arcs each connecting one of the two points � 4í and � qí with
infinity. We have  í"! » í Â I°�T� ¤ �#�����$�%�[b����t��� 4í �*K for 9$��ê&%2S and  í'! I�Í� ¤ �(�	�t�$�%�)%*�����$� 4í ��K)GA» í for S+%+ê,�+¥ . In Figure 4.1, the two arcs

� í and ¸ í are
shown together with pieces of the two arcs that constitute  í for ê
	�S�V�Æ . In Figure 4.2 the
same arcs are shown for the symmetric case êD	RS .

The result from [35], which is of central interest in the present review, is formulated in
the next theorem.

THEOREM 4.1. ([35], Theorem 2.2) Let the ray sequence I�U <DdJV,�md�W K of Padé approxi-
mants satisfy (4.3) with parameter ê=�T�$9 . ¥^� , then the poles and zeros of the rescaled Padé
approximants U <Bd,V,�md�WN	+ë ?)åL!�å V5ì ?�å"!5å and the zeros of the rescaled remainder terms (4.6)
have the following properties:

(i) All zeros of U <Bd,V��md�W cluster on
� í for e�7�¥ .

(ii) All poles of U <Bd,V,�md�W cluster on ¸ í for e�7�¥ .
(iii) All zeros of the transformed remainder terms ¸ ?)åL!�å �$�%��	�ì ?)å"!�å �$�%��r  ¿«? å 4N! å À�º 0{ë ?�åz!�å �$�%� introduced in (4.6) cluster on  í for eO7�¥ .
In Figure 4.1 the rescaled poles and zeros of the Padé approximant U ´ � V.-�W are plotted

together with the two arcs
� � � Ä and ¸ � � Ä on which these objects cluster with growing de-

grees. Further, those zeros of the remainder term ¸ �0/�æ 1 that fit to the window of Figure 4.1
are plotted together with the parts of the two arcs of  � � Ä that belong to the same window.
Note that the pair of indices � ´ � . -t� is an element of a ray sequence with êB	XS,V�Æ .

The plot in Figure 4.1 shows that already for the degrees <¨	 ´ � and ��	2- a good
agreement between the points and their asymptotic loci can be observed. The density of the
poles and zeros as well as their asymptotic agreement with the arcs is poorest near the two
bifurcation points � 4í and � qí .

With some imagination one can recognize that the configuration shown in Figure 4.1
turns into that of Figure 3.1, i.e., into the Szegö curve »  from (3.6), if ê tends to 9 . This
observation can be made solid by investigating the limit of the expression in (4.10) for êD7:9 ,
which has been done in formula (’2.5) of [35]. In this respect, Szegö’s result is a special case
of the results proved by E.B. Saff and R.S. Varga in [35].

In case of diagonal Padé approximants U �6V,�@W , we have ê�	�S , � ï� 	 ð�ñ , and the union� �  ¸ �   � of the arcs
� � , ¸ � , and  � from (4.12), (4.13), and (4.14) forms a configuration
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FIG. 4.2. The zeros (stars) and poles (diamonds) of the rescaled Padé approximant ÷ 3�ø�ú43�øuü and some zeros
(triangles) of the remainder term (4.6) together with the arcs ý þ , â þ , and � þ defined in (4.12), (4.13), and (4.14),
respectively. Note that the scales of the 5#6 and 786 axes differ by a factor 9;: < .
that is symmetric with respect to the �@0 and Ì60 axis. In Figure 4.2, these arcs are plotted
together with the zeros and poles of the rescaled Padé approximants U Æ ´ V�Æ ´ W and some of the
zeros of the rescaled remainder term ¸�Äu��æ Äu� from (4.6).

In the symmetric case êa	 S , the expressions in (4.8) and (4.10) become especially
simple. We have ó � �$�%��	>= S���� � , � ï� 	 ð�ñ .(4.15) ¡ � �$�%��	 �S�� ò S���� �  �? �"4#º ³ �(4.16)

Using (4.12), (4.13), and (4.14) as before, one gets the arcs
� � , ¸ � , and  � from (4.15) and

(4.16) instead of (4.8) and (4.10).
The expressions in (4.15) and (4.16) show in a transparent way that the asymptotic rela-

tions for the Padé polynomials ë !5! and ì !p! contain as a main element an algebraic functions
of a second degree, which is in the symmetric case ê1	RS the rather simply constructed func-
tion ó � �$�%��	 ò S���� � . In the next section we will see that in case of quadratic Hermite-Padé
polynomials the asymptotic relations are again associated with an algebraic functions, but
there it is a function of third degree.

5. Quadratic Hermite-Padé Polynomials, the Diagonal Case. We now come to the
third stage of our considerations: the asymptotic behavior of quadratic Hermite-Padé poly-
nomials. In Section 2.3 it has been shown that Hermite-Padé polynomials of both types can
be seen as generalizations of Padé polynomials like the Padé polynomials are generalizations
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of Taylor polynomials. Quadratic Hermite-Padé polynomials, which are defined by choosing<�	 ´ in Definition 2.1 and 2.2, are the first step in this process. In [37] and [38] the asymp-
totic behavior of quadratic Hermite-Padé polynomials of type I has been studied for diagonal
sequences of indices. Parts of these results are direct generalizations of the case ê�	iS in
[35].

Let > ! , F ! , and @ ! denote the three quadratic Hermite-Padé polynomials > ��æ q® ! , > ��æ q® ! ,> Ä�æ q® ! �DC !%qj� of type I associated with the diagonal multi-index 07 �X	a�Z���{S . �n�TS . �n�{S,���� Ä and the exponential system `)	 �LS .  �Ìt> .  �Ìt> � � as introduced in Definition 2.1. Thus, all
three polynomials > ! , F ! , @ ! are of degree at most � , and from the defining relation (2.7) in
Definition 2.1 we know that they satisfy the relation

(5.1) > ! �$¡��#��F ! �$¡��-  £ �"@ ! �$¡��-  � £ 	 O �Z¡ Äu!54N� � as ¡�7:9H�
The investigations in [37] and [38] are based on the rescaling method, and

(5.2) �O	 ¡Æ��
is used as new rescaled independent variable, which then leads to the rescaled Hermite-Padé
polynomials

(5.3) ë ! �$�%�)&¹	T> ! ��Æ5����� , ì ! ������&(	+F ! �$Æ5���%� , and A ! ������&(	*@ ! �$Æp�������
Note that the three polynomials > ! , F ! , @ ! have together Æ5�h��Æ free parameters. Together
with a multiplication by   qmÄu!#º , relation (5.1) transform into

(5.4) ¸*!j�$�%�)&¹	�  qmÄu!#º ë6!N�����N�^ì�!j�����N�'A�!j�����L  Äz!6º 	 O ��� Äu!54N� � as �87_9
in the new variable � .

In Figure 5.2 the zeros of the rescaled polynomials ë�! , ì�! , Ak! are shown for �Ï	ÉÆpÆ
together with those zeros of the remainder term ¸kÄzÄ from (5.4) that lie within the window of
Figure 5.2. In a certain sense the configuration in Figure 5.2 is a doubling of the configuration
shown in Figure 4.2 for diagonal Padé polynomials. In Figure 5.2 also the arcs are plotted on
which the zeros cluster as �Ï7 ¥ . The description of these arcs has been one of the main
aims of the research in [37].

While the definitions (4.12), (4.13), and (4.14) of the asymptotic arcs for the zeros of
the Padé polynomials have been formulated in analogy to Szegö’s approach in (3.6) of The-
orem 3.1, a different approach had to be chosen in [37]. There, the analysis relies strongly
on the geometry of a Riemann surface that is associated with an algebraic function of third
degree. Details will be given in Subsection 5.1.

The research in [37] and [38] was initiated by investigations of Hermite-Padé polyno-
mials > ! , F ! , @ ! in [3], [7], and [8]. In [3] among other things a 4-term recurrence relation
and a very precise asymptotic estimate for the polynomials >N! , F�! , @�! and for the remainder
term  ,! has been proved. While in [3], like in [37], only the diagonal case has been studied,
extensions to the non-diagonal case are contained in [7] and [8]. There, also interesting con-
nections with the theory of special functions have played a prominent role. In both papers
great interest has been put on the location of the zeros of the polynomials >N! , F�! , and @J! .
Especially, these last aspect has triggered the research in [37] and [38].

Recently, in [14] (cf. also [15]) the asymptotic analysis of quadratic Hermite-Padé
polynomials of type I has been incorporated into the Riemann-Hilbert approach for prov-
ing strong asymptotic relations for orthogonal polynomials, which is based on Deift’s and
Zhou’s method of steepest descent from [6]. Further, we mention that in [41] and [42] steps
of an extension of the analysis to Hermite-Padé polynomials of type I for <B� ´ have been
done.



ETNA
Kent State University 
etna@mcs.kent.edu

FROM TAYLOR TO QUADRATIC HERMITE-PADÉ POLYNOMIALS 491

5.1. The Riemann Surface ö and the Functions C and D . In the present subsection
we define an algebraic functions C of third degree together with its associated Riemann sur-
face ö in a first step, which then is followed by the definition of an harmonic function D ,
which will be an important element of the asymptotic relations for the rescaled Hermite-Padé
polynomials ë ! , ì ! , A ! and the remainder term ¸ ! . In a comparison with the results re-
viewed in Section 4, the algebraic function C and the Riemann surface ö are the pendants of
the algebraic function ó í from (4.8) with ê1	RS and the Riemann surface introduced in (4.9).

DEFINITION 5.1. The Riemann surface ö together with the bijective mapping C}&öä0m7 ¤
and the canonical projection µ�&'öä0/7 ¤

is defined by the property that the
two functions C and

(5.5) �m�FE-��&¹	 SÆ � SEn�+S � SE � SEO0^S � 	 E � 0�S,V5ÆE@�FE � 0ÏSJ� . ED� ¤ .
satisfy the relation

(5.6) �HGIC��KJp�'	+µ��LJt� for all J��1ö
�
Relation (5.6) shows that locally the function C is the inverse of the rational function

(5.5), and therefore CMG�µ qj� is an algebraic function of third degree. The surface ö has three
sheets and four simple branch points J d , eO	RS . ����� . � , over the four base points

(5.7) ��d�	�µ��KJzdJ�A&(	
N= S,V5ÆÐ �OQP åMR ªTSVUXW#d�	 ËS ´ µ . ÊS ´ µ . S,ÊS ´ µ . S(YS ´ µ . e�	RS .[Z[Z(Zj. � �
Indeed, the derivative

(5.8) �/�\E%�0]B	 0 E / ��S�V�ÆE � �\E � 0^S,� �
has four simple zeros at the roots E,dk	 N= 0�S,V5Æ , eO	fS . ����� . � , and it then is easy to check that
the four points � � . ����� . � / in (5.7) are defined by ��d�	�µ�G�C qj� �FEJd,�k	É�/�\EJdJ� , e=	 S . ����� . � .
The Riemann surface ö is of genus 9 .

In the sequel, points on ö will be denoted by J , while the associated base points µ��LJt�E�¤
will be denoted by � . For shortness we call the four points J�d . e{	cS . ����� . � . as well as

their base points � d 	fµ��LJ d � in (5.7) as branch points of ö . From (5.5) and (5.6) one easily
deduces that

(5.9) C^G�µ qN� �\I,9-KJ��	`_l0 = S,V�Æ . ¥ . = S,V�ÆHÁ and C�G�µ qj� �"I�¥�KJ�'	RIt0�S . 9 . S5K��
In the sequel, we assume that the defining relation (5.4) of the Hermite-Padé polyno-

mials ë6! , ì�! , Ak! is lifted to ö so that a neighborhood of the origin in
¤

corresponds to a
neighborhood of the point J� on ö defined by

(5.10) J�°&(	*C qj� � ¥^���
From the definition of the Riemann surface ö in (5.5) and (5.6) it follows that ö can be

constructed by gluing together three sheets a»lqj� , a»j , a»#� ! ö in the following way: Let ab�qj�
and ab � ! ¤ be two disjoint Jordan arcs with the property that ab � connects the two branch
points � � and � / , and ab qj� connects the two branch points � � and � Ä . Let then the three sheetsa» qj� , a»  , and a» � be copies of

¤ G ab qN� , ¤ GE� ab qj�  ab � � , and
¤ G ab � , respectively, assume that

the two sheets a» � and a»  are glued together along the arc ab � in the usual cross-wise fashion,
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and in the same way assume that the two sheets a»lqj� and a»@ are glued together along the arcab qN� . The boundary points of îca»/d . e
	20�S . 9 . S , are attributed to the neighboring sheets in
such a way that all three restrictions µ'�Fde å . e^	:0�S . 9 . S , of the canonical projection µ are

univalent. At the present moment the two arcs ab qj� and ab � are still variable and will be fixed
later.

Having defined ö , which will serve as domain of definition, we are now ready to define
the function D .

DEFINITION 5.2. Let the functions Dh&kö 0/7 Î
be defined by

(5.11) D6�LJt�A&¹	&���+f�GICk�LJt� for J��Bö with

(5.12) f��FE-�A&(	 ´ E �E � 0ÏS �T©ÑpÒ ´ÆgE��\E � 0ÏSJ� �
It follows from (5.9), (5.10), (5.11), and (5.12) that the function D is harmonic in ö�h��\I�J�5K µ qj� �\I5¥�K,�L� and subharmonic at J� .
5.2. The Definition of Jordan Arcs and a First Result. With the help of the functionD from Definition 5.2 we define Jordan arcs that will turn out to be core pieces of the cluster

sets of the zeros of the rescaled Hermite-Padé polynomials ë ! , ì ! , A ! and the remainder
terms ¸ ! if �=7§¥ .

Starting point for our definition is the function

(5.13) DjigkVl%�����)&(	�¬õ��m*InD6�LJt���0J��1ö . µ��LJt�'	��[K for �õ� ¤ �
From Definition 5.2 we know that D is harmonic in ö�hpoLI�JwpK  µ qN� �"I�¥�KJ�0q and subhar-
monic in a neighborhood of J  . From standard knowledge in potential theory (cf. [27],
Chapter 2) it then follows that the function DrigkVl , as the maximum of subharmonic functions,
is again subharmonic in

¤
. Further, we know from the same background that D�igk0l is har-

monic everywhere in
¤

except for those loci � where at least two different branches of the
multi-valued function D�GAµ qj� coincide and are at the same time identical with the maximal
value DjigkVl-�$�%� .

As a consequence of the subharmonicity of Dsigk0l it follows from the Poisson-Jensen
formula of potential theory (cf. [27], Theorem 4.5.1) that in any bounded domain in

¤
the

function D igk0l can be represented as the sum of a harmonic function and a Green potential.
These details and some of its immediate consequences are put together in the next lemma.

LEMMA 5.3. (cf. [37], Lemma 2.6) The function D igkVl is subharmonic in
¤

. There exists
a system b of analytic Jordan arcs such that D igk0l is harmonic in

¤ h,b , but not harmonic in
any neighborhood of a point �õ��b . There exists a positive measure t on b such that for anyA>�Ï9 we have

(5.14) Djigk0l-�$�%��	&DruA�$�%�N�wv ~ x"~ y u ©«ÑtÒ ¼¼¼¼ A[����0� L�A � 0  -� ¼¼¼¼0z tj�Z L� for � �m��%wA
with D u a function that is harmonic in I%� �@�{��AOK and satisfies

(5.15) D u �$�%��	&D igk0l �$�%� for � �@�p	*A��
Since A|�+9 is arbitrary, the measure t in Lemma 5.3 is well defined throughout

¤
and

we have �V}�~�~°�LtH�'	�b .
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FIG. 5.1. The picture contains all arcs of the set �� from (5.16). The arcs of the set
�

fom Lemma 5.3 are
represented by full lines, while those of ��c�r� are plotted by dashed ones. Explanations of the labels are given in the
text after (5.16) and in Definition 5.4

The main topic in the present subsection is the description of the system b of arcs. In
Definition 5.4, Lemma 5.5, and Theorem 5.6, below, we will see that b consists of four
subsets » d , e1	 0�S . 9 . S . ¥ , that are the asymptotic cluster sets of the zeros of the rescaled
Hermite-Padé polynomials ë ! , ì ! , A ! and the remainder term ¸ ! .

It is immediate from what has been said so far that the system b of analytic Jordan arcs
is contained in the larger system of intersection arcs

(5.16) ab{&(	>�n�[� ¤ ¼¼ �����4�ÐI	D°�KJp�B��J��hµ qj� �"IJ�HK,�(���^Æs�E�
Since the Riemann surface ö has three sheets over

¤
, and since D is not identically constant

on any open set, it follows that the set I)D°�KJp�D�8J[�1µ qj� �"IJ�HK,�(� contains three different points
for almost all �[� ¤ ; the only exceptions are the analytic arcs in ab . These arcs are the totality
of all intersection arcs of the multi-valued function D�G�µ qj� .

Studying the behavior of the functions D and D igkVl in neighborhoods of the four branch
points J�� . ����� . J4/õ�Pö and �5� . ����� . ��/õ� ¤ , respectively, shows that each branch point is the
end point of exactly three different subarcs from ab . Three of these arcs connect the two pointsIJ� � , � / K , and three other ones connect the two points I,� � , � Ä K . A formal proof of this last
assertion is part of the proof of Lemma 2.6 in [37].

Let now b �wæ d , e3	20�S . S . ¥ , denote the three arcs that connect � � with � / , and b qj��æ d ,eO	X0�S . S . ¥ , the three other arcs that connect � � with � Ä . It turns out that two arcs, which are
denoted by b ��æ ¯ and b qj��æ ¯ , pass through infinity, while the other four arcs b O d , ñ . eO	X0�S . S ,are contained in Ã . All six arcs are shown in Figure 5.1. The unbounded arcs b ��æ ¯ and
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FIG. 5.2. The zeros of the rescaled quadratic Hermite-Padé polynomials �HÚ\Ú (stars), ��Ú\Ú (boxes), �6Ú\Ú
(diamonds), and some of the zeros of the remainder term â�Ú\Ú (triangles) together with the arcs on which the zeros
cluster. Note that the scales of the 5#6 and 786 axes differ by a factor 9;: < .
b�qN�wæ ¯ are represented only in part, and the two arcs b��wæ¹qN� and b�qj��æ � are partly represented
by dashed lines; the reason for this is that along the dashed lines the values of the intersecting
branches of D�GÐµ qj� are no longer maximal, and therefore these dashed parts of b ��æ¹qj� andb qN�wæ � do not belong to the set b of Lemma 5.3, but they belong to ab .

The angles under which the six arcs b O æ d�e�	�0�S . S . ¥ , ñ 	 0�S . S , end at the four
branch points �5� . ����� . �(/ can be calculated from local developments of the functions D and C .
Having calculated these initial directions, the arcs themselves can then be calculated by using
the property that along each of them two branches of the function D�G�µ qj� coincide.

Next, we come to the definition of the four sets » d , eO	X0�S . 9 . S . ¥ , that will turn out to
be the asymptotic cluster sets of the zeros of the rescaled Hermite-Padé polynomials ë�! , ì�! ,Ak! and the remainder term ¸�! .

DEFINITION 5.4. Let the point � � � ñ Î be defined by � � &¹	&b ��æ¹qj��Â b qN�wæ ��Â I6�*� � ¬R���%�I�9AK . Then we set»#��&¹	&bl��æ � .(5.17) »lqj��&(	�b�qj��æ¹qj� .(5.18) »@�&¹	a�\b��wæ¹qN� Â I6�*�#���'� �%�'b�9AK��  �Lb�qj��æ � Â I6�Ð���	�'�$�%�I%Ï9AK��  UQ0E��� . ���wW .(5.19) »N¯�&(	&bl��æ ¯  b�qN�wæ ¯1�(5.20)

The sets »/d , e^	_0�S . 9 . S . ¥ , are plotted in Figure 5.1. For the point � � one gets as
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numerical value �%��È	�9;� Ç ´ S�Æ8YHS ñ .LEMMA 5.5. The set b form Lemma 5.2 is given by

(5.21) b3	�» qj�  »   » �  » ¯ �
If the four branch points � � . ����� . � / are removed from b ! ¤ , then b�hTIJ� � . ����� . � / K consists of
four components and the closure of each of them is one of the four sets »Nd , eO	X0�S . 9 . S . ¥ .

In many respects the next theorem is the analogue to Theorem 4.1 for diagonal quadratic
Hermite-Padé polynomials. It is also the main result of the present subsection.

THEOREM 5.6. For the zeros of the rescaled diagonal Hermite-Padé polynomials ë ! ,ì�! , Ak! and the remainder term ¸*! introduced in (5.4) the following assertions hold true:
(i) All zeros of the polynomial ë�! cluster on »lqN� for �h7�¥ .
(ii) All zeros of the polynomial ì°! cluster on »@ for �
7�¥ .
(iii) All zeros of the polynomial An! cluster on »#� for �
7�¥ .
(iv) All zeros of the remainder term ¸*! cluster on »#¯ for �
7�¥ .
In Figure 5.2 all zeros of the rescaled Hermite-Padé polynomials ë ÄzÄ , ì ÄzÄ , A ÄuÄ and some

zeros of the remainder term ¸ ÄzÄ are plotted together with the arcs of » qN� , »  , » � , and parts
of the arcs of » ¯ on which the zeros cluster. The picture shows that already for the degree�=	+ÆpÆ there is a very good accordance between the zeros and their asymptotic cluster sets.

A proof of Theorem 5.6 follows rather immediately from a result about strong asymp-
totics for the ë ! , ì ! , A ! and ¸ ! in Theorem 2.9 in [37]. In the present review we will not
concentrate on details of the proof, instead we shall discuss some other types of asymptotic
relations in the next subsection.

5.3. Further Asymptotic Results. In [37] not only the asymptotic cluster sets of the
zeros of the rescaled diagonal quadratic Hermite-Padé polynomials ë ! , ì ! , A ! and the re-
mainder term ¸ ! have been studied. Also their asymptotic distributions, and besides of that
also asymptotic relations for the polynomials and the remainder term themselves have been
addressed. Again, the functions D and DrigkVl are the basic input for the asymptotic relations.

We start our review with results concerning the asymptotic distributions of zeros, and for
this purpose we introduce four measures �jd , eO	X0�S . 9 . S . ¥ .

DEFINITION 5.7. Let t be the measure introduced in Lemma 5.3 and » d , eO	X0�S . 9 . S . ¥ ,
the sets from Definition 5.2. Based on these objects we define

(5.22) � d &(	&t#� e å . e�	R0�S . 9 . S . ¥ .

Let ¶°�Q>m� be the (multi-) set of all zeros of a polynomial > with multiplicities taken ac-
count of by repetition, let further t�� be the zero counting measure of the polynomial > , which
puts weight S at each zero of > taking account of multiplicities, i.e., t��;�L�O��	&���8���j��¶°�Q>m� Â �O�
for every Borel set � ! ¤ . Let further

�0m7 denote the weak convergence of measures. The
next result has been proved in [37].

THEOREM 5.8. (cf. [37], Theorem 2.1) For the zeros of the rescaled diagonal Hermite-
Padé polynomials ë ! , ì ! , A ! and the remainder terms ¸ ! we have the following asymptotic
relations S� t�� ± �0m7���qj� as �
7�¥ .(5.23) S� t�� ± �0m7��j as �=7§¥ .(5.24) S� t u ± �0/7��6� as �
7�¥ .(5.25) S� t�� ± �0m7��#¯f��Æ��� as �
7�¥ .(5.26)



ETNA
Kent State University 
etna@mcs.kent.edu

496 H. STAHL

where �� is the Dirac measure at �O	+9 .
Theorem 5.8 complements Theorem 5.6 in the sense that we now not only know where

the zeros of ë ! , ì ! , A ! and of ¸ ! cluster but also how these zeros are asymptotically
distributed.

Via Lemma 5.3 and Definition 5.7 the asymptotic distributions � d , eõ	a0�S . 9 . S . ¥ , can
be traced back to the function DrigkVl , for which we have a constructive and a numerically
efficient definition. More about this can be found in [37], Theorem 2.10 and .2.11. The
next proposition is a rather immediate consequence of Lemma 5.3, and it sheds light on the
analytic background of the definition of the asymptotic distributions �Nd , e�	R0�S . 9 . S . ¥ .

PROPOSITION 5.9. (cf. [37], Theorem 2.8) The measures � d , e[	a0�S . 9 . S . ¥ , in (5.22)
are absolutely continuous, their supports �0}�~j~°�F� d �k	�» d , eh	 0�S . 9 . S . ¥ , consist of ana-
lytic arcs, and for their densities we have the representation

(5.27) z �mdz{� �$�%��	 Sµ � îîm� 4 D igk0l �$�%��0 îî/� q D igkVl ����� �
for ���Ï»md , e
	�0�S . 9 . S . ¥ , where îNV5î/� 4 and îjV5îm� q are the normal derivatives to both
sides of the arcs in »md , z#� is the line element on »md , and orientations have to be chosen in
(5.27) in such a way that all measures �@d , e�	f0�S . 9 . S . ¥ . are positive.

In [38], Theorem 2.8, results about the asymptotic distributions of the zeros of ë'! , ì�! ,Ak! and ¸Ð! have been proved that are a full degree more precise than those given in (5.23)
- (5.26) of Theorem 5.8. These stronger relations in [38] are precise enough to distinguish
asymptotically individual positions of zeros. Naturally, their formulation is more complicated
and involved, and besides of the two functions D and D igkVl there are also branches of the
function C�G�µ qj� needed.

In the second part of the present subsection, we come to the asymptotic relations for
the polynomials ë ! , ì ! , A ! and the remainder term ¸ ! themselves. We started with some
auxiliary definitions.

Near infinity the multi-valued function D�G�µ qN� has three branches, which we denote byD qj� , D  , and D � , and which have the local developmentsD qj� �$�%��	f0ÐÆ����'�����N��©ÑpÒ�� �m��� O �LS,V��%� .(5.28) D  �$�%��	�©ÑpÒ�� �@���T©ÑpÒm� ´ �#� O �LS,V5��� .(5.29) D � �$�%��	+Æ����'�����N��©ÑpÒ�� �m��� O �LS,V��%� .(5.30)

as �87�¥ . The expressions in (5.28) - (5.30) follow rather directly from the defining relations
(5.5) and (5.6) in Definition 5.1. In a neighborhood of the origin ��	�9 the function D�G)µ qN�
has again three branches; here we are only interested in the branch that has a logarithmic
term. We denote this branch by D ¯ , and remark that it corresponds to the function D near the
point J  �Bö that has been introduced in (5.10). For D ¯ we have the local development

(5.31) D ¯ �$�%��	�Æ[©ÑpÒk� �@��� O �"SJ� as �O7_9;�
DEFINITION 5.10. In the four domains

(5.32)
� dk&(	 ¤ GA»/d . e�	f0�S . 9 . S . ¥ ,

we define four functions D;d , e+	 0�S . 9 . S . ¥ , by harmonic continuations. In case of the
first three functions D qj� , D  , D � we start the continuation with the three function elements
(5.28), (5.29), (5.30) at infinity and continue the process throughout the domains

� qj� , �  ,
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initial function element.

Let us remark that the four branch points �t� . ����� . ��/ belong to the two sets »j and »#¯ ,
and hence the two functions D  and D ¯ can be continued throughout the two domains

�  and� ¯ without any problem. In the cases of the two other functions D qj� and D � , an inspection
of the behavior of the function D on the Riemann surface ö shows that also here the process
of harmonic continuation can be carried out without hitting a branch point within one of the
domains

� qj� or
� � .

With the four functions D-d , e1	�0�S . 9 . S . ¥ , we can formulate the asymptotic relations
for the polynomials ë ! , ì ! , A ! and the remainder term ¸ ! .

THEOREM 5.11. (cf. [37], Theorem 2.2) For the rescaled diagonal Hermite-Padé poly-
nomials ë ! , ì ! , A ! and the remainder term ¸ ! we have the following asymptotic relations:©«ª¬!p®°¯ S� ©ÑpÒ�� ë6!j�������p	�DjqN���$�%�N��Æ��������%� for �õ� � qj� .(5.33) ©ª«¬!t®°¯ S� ©ÑpÒn� ì ! �������p	�D  �$�%� for �[� �  .(5.34) ©«ª¬!p®°¯ S� ©ÑpÒ�� A ! �������p	�D � �$�%�l0PÆ������ �%� for �õ� � � .(5.35) ©ª«¬!p®8¯ S� ©ÑpÒk� ¸ ! �������p	�D ¯ ����� for �[� � ¯ �(5.36)

In Theorem 2.2 of [37] a stronger version of asymptotic relations of the type (5.33) -
(5.36) has been proved, which however will not be discussed here.

In the next Section we extend all results that have been reviewed in the present section to
the non-diagonal case of quadratic Hermite-Padé polynomials.

6. Asymptotics for Non-Diagonal Quadratic Hermite-Padé Polynomials. The inves-
tigations by E.B. Saff and R.S. Varga in [35], which have been reviewed in Section 4, have
strongly motivated the research in the present section. In [35] not only diagonal sequences,
but the whole range of non-diagonal ray sequences of Padé polynomials has been studied,
and among other very interesting results it has been shown how the asymptotic cluster sets
of the zeros of non-diagonal Padé polynomials continuously change with the angle of the
ray sequences in the Padé table. As a consequence one can see how the typical situation of
diagonal Padé approximants transforms step by step into that of Taylor polynomials.

In the present section we study analogous questions for quadratic Hermite-Padé polyno-
mials of type I, i.e., we extend the asymptotic relations that have been presented in the last
section to non-diagonal ray sequences. Again, it is possible to see how the asymptotic rela-
tions of the diagonal case of quadratic Hermite-Padé polynomials transform step by step into
those of Padé approximants.

It turns out that the basic structure of the asymptotic relations is very similar in a topolog-
ical sense for all non-diagonal ray sequences. Therefore, we can use concepts and notations
from the last section, only that several formulae have to be changed, they become, of course,
somewhat more complicated and also dependent on parameters. On the other hand, the use
of the earlier terminology and that of conceptional analogies allow us to give a rather short
presentation of the new results.

In the next subsection we introduce general notations, which includes the introduction
of the two parameters ê and � , which specify ray sequences. In Subsection 6.2, a Riemann
surface ö and two functions C and D are introduced that generalize the corresponding objects
from Subsection 5.1. In close analogy to Subsection 5.2, we define two systems b and ab of
Jordan arcs with the help of the function D from Subsection 6.1. As before, arcs from b will be
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FIG. 6.1. The zeros of the rescaled non-diagonal quadratic Hermite-Padé polynomials �/Ú\Ú (stars), ��Ú\Ú
(boxes), � þ\þ (diamonds), and some of the zeros of the associated remainder term âI� Ú���  Ú���  þL¡�¢ (triangles) together

with the arcs of the set
�

(full lines) from Lemma 6.3 and the arc of ��£�¤� (dashed lines) for ¥+¦§9 and ¨+¦"9zú43 .
Note that the scales of the 5#6 and 786 axes differ by a factor 9;: < .
the building blocks for the asymptotic cluster sets of the zeros of the non-diagonal Hermite-
Padé polynomials and the associated remainder term. The description of these objects is done
in Subsection 6.3. In Subsection 6.4, additional asymptotic results are given. Here, we use
the analogy to results presented in Subsection 5.3 for the diagonal case of quadratic Hermite-
Padé polynomials. At last, in Subsection 6.5 we describe and discuss the changes that are
necessary in the proofs of [37] in order to adapt and transform them into proofs of the results
stated here for the non-diagonal situation.

6.1. Non-Diagonal Ray Sequences of Quadratic Hermite-Padé Polynomials. By >m? ,F(© , @(ª we denote the three quadratic Hermite-Padé polynomials of type I in the same way as
in Section 5 only that now their degrees < .4«@.V¬ ��� are no longer assumed to be equal. The
three polynomials >m?��^CE? , F�©���C�© , @[ª��ÏC)ª correspond to the three polynomials >N��æ ! ,>/��æ ! , >/Ä�æ ! in Definition 2.1 with multi-index �^&(	 �Z<���S .�« ��S .V¬ ��SJ�k�{� Ä . <i	 ´ , and
the exponential system `�	 �"S .  JÌp> .  JÌp> � � . Note that each of the three polynomials > ? , F © ,@ ª depends on all three indices < .�«@.�¬ . The three polynomials satisfy the relation

(6.1) >m?��Z¡��l��F�©-�Z¡��;  £ �"@[ªL�$¡��-  � £ 	 O �$¡ ~ ! ~ qN� � as ¡�7:9 .
which is a rewriting of the defining relation (2.7) in Definition 2.1. We have � �'�-	�<�� « �¬ ��Æ .
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FIG. 6.2. The zeros of the rescaled non-diagonal quadratic Hermite-Padé polynomials � Ú\Ú (stars), � Ú\Ú
(boxes), �� (diamonds), and some of the zeros of the associated remainder term âI� Ú���  Ú���  ® ¢ (triangles) together

with the arcs of the set
�

(full lines) from Lemma 6.3 and the arc of ��)��� (dashed lines) for ¥	¦^9;¯°¨	¦Bù�ú43;3 . Note
that the scales of the 5#6 and the 786 axes differ by a factor 9;: < .

For the rescaling method we now use as new rescaled independent variable

(6.2) �O	 ¡� �'� �
Note that the three polynomials >@? , F�© , @(ª together possess < � « � ¬ ��Æ free coefficient.
The transformation (6.2) leads to the rescaled Hermite-Padé polynomials

(6.3) ë ? �$�%�)&(	{> ? �z� �'�"�%� , ì © �$�%�)&(	�F © �z� �'�"�%� , and A ª �����)&(	*@ ª �z� �'�"�%���
Together with a multiplication by   q ~ ! ~ º , relation (6.1) transform into

(6.4) ¸ ! �$�%�)&(	+  q ~ ! ~ º ë ? �$�%�N��ì © �$�%�N�"A ª �$�%�"  ~ ! ~ º 	 O ��� ~ ! ~ qN� � as �87:9
in the new variable � . Since the two relations (6.1) and (6.4) are homogeneous, we can assume
that ë ? is monic, and since we also know that the exponential system `'	��LS .  �Ìt> .  �Ìt> � � is
perfect (cf. [18]), we can make the further going assumption that

(6.5) ël?��$�%��	�� ? �+�����
In the five Figures 6.1 - 6.5 the zeros of the rescaled polynomials ë ? , ì © , A ª , and some

of the zeros of the remainder term ¸ ! are plotted for different choices of degrees. Besides of



ETNA
Kent State University 
etna@mcs.kent.edu

500 H. STAHL

FIG. 6.3. The zeros of the rescaled non-diagonal quadratic Hermite-Padé polynomials �r± (stars), �g�²® (boxes),�± (diamonds), and some of the zeros of the associated remainder term âI� þ Ô�  �\Û�  þ Ô ¢ (triangles) together with the

arcs of the set
�

(full lines) from Lemma 6.3 and the arc of ��	�s� (dashed lines) for ¥H¦�< and ¨	¦^9 . Note that the
scales of the 5#6 and 7�6 axes differ by a factor 9;: < .
the zeros, there are also lines, which, however, will only be explained further below. The two
first Figures 6.1 and 6.2 should be seen together with the two earlier Figures 5.2 and 4.2. The
whole sequence of the Figures 5.2, 6.1, 6.2, and 4.2 illustrates how the configuration of the
diagonal case of Hermite-Padé polynomials in Figure 5.2 step by step transforms into that of
the diagonal case of Padé polynomials in Figure 4.2.

The three Figures 6.3 - 6.5 illustrate how the asymptotic relations change when the de-
gree « of the middle polynomial ì�© is varied, while the degrees < and ¬ of the two outer
polynomial ël? and A£ª are kept fixed.

For the asymptotic analysis it is necessary that the three indices < .4«@.V¬ �h� tend to infin-
ity along ray sequences I���< d .4« d .�¬ d �wK d´³.µ . In a ray sequences I%�Z< d .�« d .V¬ d ��K d´³.µ we assume
that by definition the following limits hold true:

(6.6) < d 7§¥ ,
« d<Íd 7_ê ,

¬ d<Íd 7¶� as e�7�¥ with ê . �h�{� 9 . ¥^�m�
In the case of the diagonal sequence we have ê�	·�Ï	iS . If the parameters ê and � vary
through �$9 . ¥^� � , we cover all possible ray sequences in the table of quadratic Hermite-Padé
polynomials of type I.

6.2. The Riemann Surface ö and two Functions C and D . In analogy to Subsec-
tion 5.1, a Riemann surface ö and two functions C and D are introduced, which all three are
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immediate generalizations of the corresponding objects in the Definitions 5.1 and 5.2.
DEFINITION 6.1. For ê . �=�{� 9 . ¥^� . the Riemann surface ö and the bijective mappingC�&�ö 0/7 ¤

are defined by the property that the two functions C and

�m�FE-��&¹	 SS��^êO�w� � SEk��S � ê E � �E80ÏS �(6.7)

	 �"S��^êO�w�m�#E � �+�K�[0^S,�#En�^ê�LS���ê��'�m�#E@�FE � 0ÏSJ� . EÍ� ¤ .
satisfy the relation

(6.8) �£GIC��KJp�'	+µ��LJt� for J[�Dö
with µP&�ö 0/7 ¤

the canonical projection of the Riemann surface ö .
The surface ö as well as the function C depend on the two parameters ê . � . It is immedi-

ate that Definition 5.1 is a special case of Definition 6.1 (one has only to choose êD	&�B	XS ).
Again, C'GÐµ qj� is an algebraic function of 3rd degree. For any combination of the two pa-
rameters ê . �����$9 . ¥�� , the Riemann surface ö has four branch points over the base points�5� . ����� . ��/D� ¤ . The dependence of the points �p� . ����� . �(/ on the two parameters ê , � is too
complicated for making it worthwhile to give an explicit formula for the points. This is a re-
markable difference to formula (5.7). The four branch points � � . ����� . � / form two conjugated
pairs I,� � , � / K and IJ� � , � Ä K , and they can be calculated in each concrete situation by solving
the equation �/�\E%� ] 	�9 in the Em0 plane and using then the mapping C . The procedure has
been described after (5.7).

As before, the Riemann surface ö can be broken down in three sheets a» qj� , a»  , a» � ,
which are glued together along two Jordan arcs ab�� and a b�qj� in the same way as this has been
described after (5.10). As in (5.10) the point Jw8�Bö is defined by

(6.9) J�°&(	*C qj� � ¥^� .
and the defining relation (6.4) of the Hermite-Padé polynomials ë�? , ì¸© , A£ª is lifted from

¤
to a neighborhood of J  on ö .

After the Riemann surface ö and the function C have been defined for the new situation,
we come to the introduction of the function D on ö , which is done in the same way as in
Definition 5.2.

DEFINITION 6.2. For ê . �h�T�$9 . ¥^� . the functions Dh&Jö20m7 Î
is defined by

(6.10) D#�KJp�A&(	*�	�+f�GIC��KJp� for J��1ö
and the function f in (6.10) is now given by
(6.11) fl�\E%�E&¹	 ��ê��'�m�#E � �+�K�[0ÏSJ�#Ek���"S*0{êm�E � 0ÏS ��©«ÑtÒ ´8¹�"S��^êO�w�/���FE���S,��E í �\E80ÏSJ� ¹ �

Again, it is immediate that the earlier Definition 5.2 is a special case of Definition 6.2.
As the Riemann surface ö and the function C , so also the function D depends on the two
parameters ê and � in an essential way. As before in Subsection 5.1, it follows from (6.7),
(6.8), (6.10), and (6.11) that for all ê . ����� 9 . ¥�� the function D is harmonic in ö�h��"I�J  K µ qj� �\I�¥�K,�z� and subharmonic at J  .
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FIG. 6.4. The zeros of the rescaled non-diagonal quadratic Hermite-Padé polynomials �/Ú\Ô (stars), � þ ®
(boxes), �6Ú\Ô (diamonds), and some of the zeros of the associated remainder term âI� Ú þ   þ Û�  Ú þL¢ (triangles) together

with the arcs of the set
�

(full lines) from Lemma 6.3 and the arc of ��£�¤� (dashed lines) for ¥+¦§9zúwø and ¨+¦"9 .
Note that the scales of the 5#6 and 786 axes differ by a factor 9;: < .

6.3. The Definition of Jordan Arcs and a First Result. The definition of the asymp-
totic cluster sets »�qj� . »@ . »#� . and »N¯ for the zeros of the polynomials ë�? , ì¸© , A£ª , and the
remainder term ¸*! , respectively, is central for all other asymptotic relations in the present
investigation. Starting point for a definition is the function

(6.12) D igkVl �����)&(	�¬õ��m*InD6�LJt���0J��1ö . µ��LJt�'	��[K for �õ� ¤ .
which now depends on the two parameters ê and � . With the same arguments from potential
theory as those mentioned after (5.13) in Subsection 5.2, it follows that D igk0l is subharmonic
in
¤

and harmonic outside of a system b of analytic Jordan arcs. The consequences of this
observation have been formulated in Lemma 5.3, and this lemma holds also true in the new
situation.

LEMMA 6.3. The conclusions of Lemma 5.3 hold true for any combination of parametersê . �h�T�$9 . ¥^� . The system b of analytic Jordan arcs in
¤

and a measure t with �0}�~j~°�Lt;��	&b
depend now on the two parameters ê and � .

The analytic Jordan arcs in b belong to the larger set

(6.13) ab{&¹	º�k�[� ¤ ¼¼ ���8����I�D°�LJt�D�8J[�Dµ qN� �"IJ�HK,�(���ÏÆs�
of intersection arcs of the branches of the function D�GÐµ qj� . The arcs in b are the building
blocks of the asymptotic cluster sets » qN� . »  . » � . and » ¯ , and it follows from Lemma 6.3
and (6.13) that the set b consists of those subarcs of ab on which the intersecting branches of
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FIG. 6.5. The zeros of the rescaled non-diagonal quadratic Hermite-Padé polynomials � Ú\Ú (stars), � ± (boxes),�#Ú\Ú (diamonds), and some of the zeros of the associated remainder term âI� Ú���  þ Ô�  Ú�� ¢ (triangles) together with the

arcs of the set
�

(full lines) from Lemma 6.3 and the arc of ��c�r� (dashed lines) for ¥H¦�3�ú(9;9 and ¨	¦^9 . Note that
the scales of the 5#6 and 7�6 axes differ by a factor 9;: < .
D�G�µ qN� have the same value as that of the function D igkVl . Like the functions D and D igkVl , so
also the sets b and ab depend on the two parameters ê and � .

A good way of calculating the arcs of b is to start from the four branch points ��� . ����� . ��/ .
There exist six Jordan arcs in ab that end at these four points. They are denoted by b O æ d ,ñ 	 0�S . S , e�	 0�S . S . ¥ as before. Three of them connect the two points � � and � / , we
denote them by b ��æ d , eO	X0�S . S . ¥ , and the other three connect the two points � � and � Ä , and
we denote them by b qj��æ d , eõ	�0�S . S . ¥ . In each of the two groups, there exists one arc that
passes through infinity, another one that has an intersection with �z0�¥ . 9t� . and a third one
that has an intersection with ��9 . ¥^� . According to these three property we denote the three
arcs by b O æ ¯ . b O æ¹qN� . b O æ � in each group ñ 	�0�S . S , respectively. For a better orientation one
may consult Figure 5.1.

The angle with which the six arcs b O æ d , ñ 	�0�S . S , e1	É0�S . S . ¥ , end at the four points�5� . ����� . ��/ can be calculated from local developments of the branches of the function D£Glµ qj�
near the four points �5� . ����� . �(/ .

The two Jordan arcs b �wæ¹qN� and b qj��æ � intersect in exactly two points � � . � � � ¤ , and
we have � � 	 � � . In the symmetric situation of Section 5, these two intersection points � �
and � � had to lie on the imaginary axis, this is no longer the case in the general situation.
The intersection points � � and � � are important for the definition of the cluster set »  in
Definition 6.4. The set »  is constructed in the following way: Starting from the four points� � . ����� . � / , one follows the arcs b �wæ¹qN� and b qN�wæ � up to the two intersection points � � and � � .
Then one stops following the arcs b �wæ¹qN� and b qN�wæ � , and instead one follows an intersection
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arc from abBGk�\b��wæ¹qN�  b�qj��æ ��� that connects the two intersection points �-� and �t� . Details are
given in the next definition.

The two arcs b ��æ ¯ and b qN�wæ ¯ are essential for the definition of the cluster set » ¯ ,
but contrary to the symmetric situation in Subsection 5.2, now the two arcs may have two
intersection points in

¤
, which has consequences for the construction of the set » ¯ . If such

intersection points exist, then the procedure is analogous to that applied in the definition of
the set »  .

After these preparations we can define the four asymptotic cluster sets »jdD	�»/dt� ê . �/� ,eO	X0�S . 9 . S . ¥ , for the zeros of non-diagonal sequences of the rescaled Hermite-Padé poly-
nomials ë ? , ì ª , A © and the associated remainder term ¸ ! . The definition is a generalization
of Definition 5.4.

DEFINITION 6.4. For ê . �P���$9 . ¥^� , let the point �-�8� ¤ be defined by �%�O&(	»b��wæ¹qN� Âb�qN�wæ � Â I6��� � ¬�� ���I��9AK and set �p�*	 � � . Then we set» � 	�» � � ê . �/�A&(	&b ��æ � .(6.14) » qj� 	�» qN� ��ê . �m�A&(	*b qj��æ¹qj� �(6.15)

Let U � � . � � W denote the section of the arc b �wæ¹qN� that connects the two points � � and � � , and
let the three sections U � / . � � W ! b �wæ¹qN� , U � � . � � W ! b qj��æ � , U � Ä . � � W ! b qN�wæ � be define in an
analogous way. Let, further, U �-� . �p��W be the shortest section of the arc or curve in ab°G'�\bl��æ¹qj� b�qN�wæ ��� that connects the two points �%� and �p� . With these definitions we set

(6.16) »  	�»  � ê . �/�A&(	fU � � . � � W  U � � . � � W  U � Ä . � � W  U � / . � � W  U � � . � � Wt�
If the two arcs b���æ ¯ and b�qj��æ ¯ are disjoint in

¤
, then we set

(6.17) » ¯ 	�» ¯ � ê . �/�E&¹	�b ��æ ¯  b qj��æ ¯ .
otherwise, the set » ¯ is put together from sections of the arcs b �wæ ¯ and b qj��æ ¯ that connect
the points �5� . ����� . ��/ with the intersection points, and in addition two sections from ab�G;�Lbl��æ ¯ b�qN�wæ ¯õ� that connect the two intersection points with infinity. The situation is analogous to
the definition of »j , and Figure 6.4 is an illustrative example for this construction.

The next lemma can be helpful for the understanding of the definition of the sets »'qj� ,»@ , »#� , and »N¯ .
LEMMA 6.5. For every pair of parameters ��ê . �m�A�{�$9 . ¥^� the following three assertions

hold true:
(i) If from the set b of Lemma 6.2 the four branch points � � . ����� . � / are removed, thenb�hTI,� � . ����� . � / K consists of four components, and the closure of each of these components is

one of the four sets »md*	�»/d'��ê . �m� , eO	X0�S . 9 . S . ¥ . from Definition 6.4.
(ii) The system b consists of those arcs in ab on which the values of the intersecting

branches of D�G�µ qj� are identical with the value of D igk0l .
(iii) We have

(6.18) b
	�» qN�  »   » �  » ¯ �
Examples of the union bR	 » qj�  »   » �  » ¯ are shown (full lines) for different

constellations of the parameters ê and � in the five Figures 6.1 - 6.5. Since in these figures the
whole set b has been represented by the same type of lines, the four cluster sets » qj� . »  . » � .» ¯ have to be identified and distinguished by the type of zeros that are lying close to them.
The set b is contained in a b , and the arcs in ab1G�b are represented by dashed lines in the five
Figures 6.1 - 6.5.
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The next theorem generalizes Theorem 5.6, and it is the analogue to Theorem 4.1, which
is concerned with non-diagonal Padé polynomials.

THEOREM 6.6. Let the ray sequence of multi-indices I��Z<1d���S .�« d)��S .V¬ d��+SJ��K satisfy
conditions (6.6) with parameters ê . �M�2�$9 . ¥^� , then the zeros of the rescaled quadratic
Hermite-Padé polynomials ë ?)å , ì ©uå , A ªQå and the associated remainder terms ¸ !�å , �md=	�Z<Bd'��S .�« d'�+S .�¬ d��+SJ� , as introduced in (6.4) satisfy the following asymptotic relations:

(i) All zeros of the polynomials ël? å cluster on »�qj��� ê . �/� for e�7§¥ .
(ii) All zeros of the polynomials ì ©uå cluster on »  ��ê . �/� for eO7�¥ .
(iii) All zeros of the polynomials A ª(å cluster on » � � ê . �/� for e�7�¥ .
(iv) All zeros of the remainder terms ¸�! å cluster on »N¯�� ê . �/� for e�7�¥ .

The sets »�qj� , »@ , »#� , and »N¯ have been introduced in Definition 6.4.
In the five Figures 6.1 - 6.5, zeros of the rescaled non-diagonal Hermite-Padé polyno-

mials and their associated remainder terms are plotted together with the union b of their
asymptotic cluster sets » qj� , »  , » � , and parts of » ¯ for various constellations of degrees< , « , ¬ , and consequently parameters ê . �T����9 . ¥�� . The pictures show that there is a very
good accordance between the zeros and their asymptotic cluster sets already for the chosen
moderate degrees. These pictures also show how the configuration of the asymptotic cluster
sets »lqj� , »@ , »#� , and »N¯ varies with the parameters ê . �h�T�$9 . ¥^� .

Figure 6.5 deserves a special remark. In this figure the two branch points ���E	+9H� 9t9 ´t´ Ë/�9;�¹Ë�-�-tË5Ç ñ and �,�8	�0Ð9;� 9p9 ´t´ ËE�Ï9;�¹Ë�-�-tËpÇ ñ as well as two branch points ��Ä8	�0Ð9H� 9t9 ´t´ Ë�09;�¹Ë�-�-tË5Ç ñ and � / 	29H� 9t9 ´t´ Ë80Ï9H� Ë8-8-tËpÇ ñ are laying so close together that they cannot be
distinguished in Figure 6.5.Near to these points lie also the intersection points � � . � � of b ��æ¹qj�
with b qN�wæ � and the two intersection points of b ��æ ¯ and b qN�wæ ¯ . These points can also not
be distinguished from their neighbors. As a consequence, the sets »  and » ¯ appear in
Figure 6.5 as straight lines, but in reality there are bifurcations at both ends.

6.4. Further Asymptotic Results. In the present Subsection the results from [37] that
have been reviewed in Subsection 5.3 are extended to non-diagonal ray sequences. The struc-
ture of presentation is practically identical with that of Subsection 5.3, and remarks from there
remain valid in the new circumstances. Changes and adaptations have become necessary only
because of peculiarities connected with non-diagonal ray sequences, which are characterized,
as before, by the two parameters ê . �h�{��9 . ¥^� from (6.6).

Like in Definition 5.7, we introduce four measures �@d , e
	 0�S . 9 . S . ¥ , which will be
the asymptotic distributions of the zeros of the rescaled non-diagonal quadratic Hermite-Padé
polynomials ë ? , ì ª , A © and the associated remainder terms ¸ ! .

DEFINITION 6.7. From Lemma 5.3 and Lemma 6.3 we know that there exists a mea-
sure t for very parameter constellation ê . � � �$9 . ¥^� . With the sets » d 	�» d ��ê . �m� ,eO	X0�S . 9 . S . ¥ , from Definition 6.2 we define

(6.19) � d &(	&t#� e å . e�	R0�S . 9 . S . ¥ .

The next theorem can be seen as a completion of Theorem 6.6 since now we have not only
the cluster sets of the zeros of ë�? , ì¼ª , A¼© , and ¸*! , but also their asymptotic distributions.

THEOREM 6.8. Let the ray sequence of multi-indices I��Z<1d���S .�« d)��S .V¬ d��+SJ��K satisfy
conditions (6.6) with parameters ê . �+�X�$9 . ¥�� , let �@d , e{	c0�S . 9 . S . ¥ , be the four mea-
sures introduced in (6.19), and let further �  be the Dirac measure at �3	�9 . Then for the
zeros of the rescaled non-diagonal Hermite-Padé polynomials ë ?)å , ì ©uå , A ª(å and the asso-
ciated remainder terms ¸ !�å , �md*	a�Z<Bd'�+S .4« d��+S .V¬ d��+SJ� from (6.4) we have the following
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asymptotic relations: S< d t � v å �0m7½� qj� as eO7§¥ .(6.20) S« d t.�n¾ å �0@7 Sê �j as e�7�¥ .(6.21) S¬ d t uÀ¿ å �0m7 S� �6� as eO7�¥ .(6.22) S< d t � ± å �0/7�� ¯ �+�LS���ê��'�m���  as eO7�¥+�(6.23)

The measures ��qj� , �í �j , and �¹ �6� are probability measures, while �l¯ is a measure with
infinite mass.

Proposition 5.9 of Subsection 5.3 holds also in the new situation, and it provides means
to calculate the density of the asymptotic distributions � d , e�	f0�S . 9 . S . ¥ .

In the second part of the present subsection, we present asymptotic relations for the
rescaled non-diagonal polynomials ë ?)å , ì ©uå , A ªQå and the associated remainder terms ¸ !�å .
As in (5.28) - (5.29) we first consider the three branches of the multi-valued function D£Glµ qN�
near infinity. They are denoted by D qN� , D  , and D � , and we haveD qN� �$�%��	X0°�"S��^êO�w�/���	�����%�N�T©ÑpÒk� �@��� O �"S,V5��� .(6.24) D  �$�%��	�êh©«ÑtÒ�� �m������êÍ0^S,�N�T©ÑpÒ@� �LS���ê��'�m� í ´�¹�"S��^êO�w�/�;ê í �#� O �"S�V��%� .(6.25) D@���$�%��	a�"S��^êO�w�/���	�'�$�%�N�'�=©«ÑtÒ�� �@�����L�[0ÏSJ�(6.26) ��©ÑpÒ/� �"S)�^êO�w�m� ¹�´8¹ qj��"S)�^ê8�w�/��� ¹ �6� O �LS,V��%� .
as �=7 ¥ . The expressions in (6.24 - 6.26) follow from the defining relations (6.7), (6.8),
(6.10) and (6.11) in Definitions 6.1 and 6.2 in the same way as their forerunners (5.28 - 5.30)
followed from the analogous relations. In a neighborhood of the origin �=	�9 we need the
branch of the function DHG�µ qj� , which possesses a logarithmic term. It is denoted by Dj¯ , and
we have

(6.27) D ¯ �$�%��	f�LS)�^êO�w�/�%©ÑpÒk� �@��� O �LSJ� as �O7_9;�
DEFINITION 6.9. In the four domains

(6.28)
� dk&(	 ¤ GA»/d . e�	f0�S . 9 . S . ¥ ,

we defined four functions D d , eO	X0�S . 9 . S . ¥ , by harmonic continuations. In the cases of the
first three functions D#qj� , DH , D@� we start the continuation at infinity with the three function
elements (6.24), (6.25), (6.26) and continue this process throughout the domains

� qN� , �  ,� � , respectively. In the case of the function D@¯ , we start from the origin and use as initial
function element (6.27).

With the four functions D d , eD	�0�S . 9 . S . ¥ , we can formulate the asymptotic relations
for the polynomials ë�? , ì¸© , A£ª and the remainder term ¸*! .

THEOREM 6.10. Let the ray sequence of multi-indices I��$<1d'�+S .4« d���S .V¬ d���S,�uK satisfy
conditions (6.6) with parameters ê . �h�{� 9 . ¥^� , then for the rescaled quadratic Hermite-Padé
polynomials ë ?)å , ì ©uå , A ª(å and the associated remainder terms ¸ !�å , �md�	X�$<Íd)�+S .4« d���S .
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FROM TAYLOR TO QUADRATIC HERMITE-PADÉ POLYNOMIALS 507¬ d �+SJ� from (6.4) we have the following asymptotic relations:©«ª¬d ®°¯ S<Bd ©«ÑtÒ�� ë6? å �$�%���t	&DNqj�5�$�%�N�+�LS���ê��'�m�����'����� for �[� � qN� .(6.29)

©ª«¬d ®°¯ S< d ©ÑpÒ�� ì ©uå �$�%���t	&D  ����� for �õ� �  .(6.30)

©ª¬d ®°¯ S<Bd ©ÑpÒk� A ª(å �$�%���t	&D � �����l0��"S��^êO�w�/�����'�$�%� for �[� � � .(6.31)

©«ª¬d ®°¯ S<Bd ©«ÑtÒ�� ¸*! å �$�%���t	&Dm¯h�$�%� for �[� � ¯1�(6.32)

The objects on the right-hand side of (6.29) - (6.32) can be calculated efficiently. The
most difficult part is perhaps the selection of the right branch of the function D�G'µ qN� in each
concrete situation.

6.5. Basic Ideas of the Proofs. The new results of the present subsection are natural
extensions of those reviewed in Section 5. The basic structure has remained very much the
same, and so the proofs of the earlier results from [37] can be transplanted without principle
difficulties. Having this in mind and also the limitation and readability of the present con-
tribution, it seems to be appropriate not to repeat too many details from [37], and instead to
concentrate on the basic ideas of the proofs, which then will make plausible the necessary
changes in procedure of [37].

The basic tool for the proofs in [37] is a saddle point method for the evaluation of certain
integrals. The analysis starts from explicit representations for the rescaled Hermite-Padé
polynomials ë ? , ì © , A ª and the associated remainder term ¸ ! , �T	��$<É��S .�« �+S .V¬ �+SJ� ,
which are given for the diagonal case in Section 1.3 of [37]. For arbitrarily degrees < .�«@.�¬ �� we have ë6?��$�%�P	 �"0�S,� ªQ4© ´ ª <�¢ñ µ[�Z<�� « � ¬ � ?   ¿«?A4¤©�4ÀªQÀZºgÁ#Â é s   ¿?)4©�4�ªQÀZºjÃ z E�\En�+SJ� ?)4l� E ©�46� �FE80ÏSJ� ªQ46� .(6.33)

ì¸©%�$�%�P	 �"0�S,� ªQ4© ´ ª <�¢ñ µ[�Z<�� « � ¬ � ? Á#Â o   ¿«?A4¤©�4�ª«ÀZº�Ã z E�FE���S,� ?A46� E ©�46� �FEO0^S,� ªQ4l� .(6.34)

A ª �$�%�P	 �"0�S,� ªQ4© ´ ª <�¢ñ µ[�Z<�� « � ¬ � ?   q#¿?)4©�4�ªQÀZºÄÁ Â é s   ¿«?A4¤©�4�ª«ÀZº�Ã z E�FE���S,� ?A46� E ©�46� �FEO0^S,� ªQ4l� .(6.35)

¸Ð!j�$�%�P	 �"0�S,� ªQ4© ´ ª <�¢ñ µ[�Z<�� « � ¬ � ? Á#Â�Å   ¿«?A4¤©�4�ªQÀ$º�Ã z E�\En�+SJ� ?)4l� E ©�46� �FE80ÏSJ� ªQ46� .(6.36)

where the integration paths Æ qj� , Æ  , Æ � , Æ ¯ are closed curves encircling the point 0�S , 9 , S ,
or ¥ , respectively. In (6.33) - (6.36) normalization (6.5) has been taken into account.

If we assume that the three degrees <§	É<1d .�« 	 « d .�¬ 	 ¬ d belong to a ray sequenceI��$< d ��S .�« d �+S .�¬ d �+SJ��K d´³.µ that satisfies (6.6) with parameters ê . ���a�$9 . ¥^� , then it is
rather immediate from (6.33) - (6.36) that the asymptotic analysis boils down to an asymptotic
evaluation of integrals of the form

(6.37) Ç d �LÆ�Èz�%�)&(	 ´ ª å <Bdp¢ñ µõ�Z<Bd'� « d�� ¬ dJ� ?)å Á#Â   ¿«? å 4© å 4�ª å À$º�Ã z E�\E80ÏSJ� ?)å"46� E ©uåL46� �\E80ÏSJ� ª(åL46� . eÍ�1�)�
In order to apply the saddle point method, we have to rewrite (6.37) in the form

(6.38) Çudt�KÆ�Èz�%��	��NS�� O � S< d �"� Á Â ó@�\E%�0Éõ�FE . �%� ?)å z E



ETNA
Kent State University 
etna@mcs.kent.edu

508 H. STAHL

with O �"S,V�< d � a Landau symbol for e[7�¥ that holds uniformly for � belonging to a compact
set in

¤
. Comparing (6.38) with (6.37) and using the limits in (6.6) together with Stirling’s

formula one arrives after some calculations (for details see [37, Sections 4.1 and 4.2]) to the
conclusion that the functions ó and É in (6.38) are necessary of the formÉõ�FE . �%��	��´m�~#�L�LS���ê��'�m�"��E80P©«ÑtÒ/�FE���S,�l0{êÐ©«ÑtÒm�\E%��0$�Ð©«ÑtÒ/�FEO0^S,�(6.39) 0ÏSE0�©ÑpÒm�"S)�^êO�w�/�N�w�E©ÑpÒm� ´ �L� .ój�FE-��	 Sñ µÊE@�FE � 0ÏSJ� �(6.40)

Let now �3� ¤ be fixed. From the saddle point method (cf. [20], [40], or [37], Section
4.1) it follows that for <Ddn�=� large the value of the integral (6.38) is dominated by the valueój�FE-�²Éõ�FE . �%� ?)å with EÍ� ¤ one of the critical points that are defined by the condition

(6.41)
îîrE Éõ�FE . �%��	�9;�

Since ËË Ã Éõ�FE . �%�{	ÌÉõ�FE . �%��ËË Ã ©ÑpÒÍÉõ�\E . ��� , it follows from (6.39) that equation (6.41) is
equivalent to the equation

(6.42)
îîsE ©«ÑtÒÍÉõ�FE . �%�'	X�"S)�^êO�w�/�L�n0 SE���S 0 ê E 0 �E°0�S 	+9H�

From (6.42) we deduce that for every �R� ¤ there exist exactly three critical pointsEJdõ	|E º�æ dD� ¤ , e
	�S . ´ . Æ . As long as ��V�'b , with b introduced in Lemma 6.3, the value
of each of the four integrals in (6.33) - (6.36) depends only on one of the three critical pointsE º�æ d , eõ	�S . ´ . Æ , and the interaction between the integration paths Æ qj� , Æ  , Æ � , Æ ¯ and the
location of the critical points E º�æ d , eT	iS . ´ . Æ , decides which of the three critical points is
relevant for each of the four integrals.

If the three critical points Epº�æ d , e�	 S . ´ . Æ . in the Em0 plane are pulled back over the�/0 plane, then this defines the Riemann surface ö of Definition 6.1. Indeed, the function�m�FE-� in (6.7) is an immediate consequence of (6.42), and its inverse defines the functionC . The role of the critical points in the saddle point method is then also the reason for the
specific definition of the function f in (6.11) of Definition 6.2. Indeed, the value of f is©ÑpÒ�� Éõ�FE5º�æ d . ����� with eh�ÏItS . ´ . Æ-K , and the index e indicates on which sheet of the Riemann
surface ö the function D lives.

Zeros of the polynomials ë ? , ì © , A ª , and the remainder term ¸ ! in (6.33) - (6.36) can
only appear when more than one critical point E�d becomes effective in the evaluation of the
integral in question. Because of this reason the zeros of the polynomials and the remainder
term cluster on intersection arcs of branches of the multi-valued function D�G�µ qN� .

In [37] the whole analysis is given in full detail, but of course limited to the diagonal caseêB	��B	XS . In the review of results in Section5 a detailed account has been given with respect
to the correspondence between the lemmas, theorems, and the proposition in Section 5 and
the relevant proofs in [37]. Because of the structural identity between the Sections 5 and 6,
this correspondence is also valid for the extended results in the present section, and we will
not go into further details here.

REFERENCES

[1] A. I. APTEKAREV AND H. STAHL, Asymptotics of Hermite-Padé polynomials, in Progress in Approximation
Theory, A. A. Gonchar and E. B. Saff, eds., Springer-Verlag, 1992, pp. 127–167.



ETNA
Kent State University 
etna@mcs.kent.edu

FROM TAYLOR TO QUADRATIC HERMITE-PADÉ POLYNOMIALS 509
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[36] H. STAHL, Spurious poles in Padé approximation, J. Comp. Appl. Math., 99 (1998), pp. 511–527.
[37] H. STAHL, Quadratic Hermite-Padé polynomials associated with the exponential function, J. Approx. Theory,

125 (2003), pp. 238-294.
[38] H. STAHL, Asymptotic distributions of zeros of quadratic Hermite-Padé polynomials associated with the
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