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ON THE EXACT ESTIMATES OF THE BEST SPLINE APPROXIMATIONS OF
FUNCTIONS*
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Abstract. In the paper the exact (in the sense of the order of smallness) estimates of the best spline approx-
imations of functions of one variable from different functional classes on a finite segment in uniform and integral
metrics are obtained.
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1. Introduction. For the functions with singularities or with non-great smoothness the
splines are a more natural apparatus of approximation than polynomials and rational func-
tions. It is also confirmed by comparison of the results of spline approximations of this pa-
per, with well-known polynomial and rational approximations of functions, from considering
functional classes. The paper is devoted to the exact (in the sense of the order of smallness)
estimates of the best approximations by polynomial splines of the minimal defect with free
knots on a finite segment in uniform and integral metrics of functions from the following
functional classes:

a) the class of all convex functions, satisfying the Lipschitz-Holder condition;

b) the class of all functions with convex derivatives;

c) the class of all functions with generalized finite variation.

In order to expound the results of the paper we need in some definitions and notations.

2. Definitions and notations. Let N be the set of all natural numbers, Z; = N U
{0}, f(z) be a measurable with respect to Lebesgues measure on a finite segment A =
[a, b] real-valued function, |A| = b—a, L, (A) be the space of all measurable with respect to
Lebesgues measure real-valued functions on A, integrable with pth-power by Lebesgue and
possessing with the quasi-norm

1/p

11l = / f@Pdz)  (0<p<oo),lflln = esssup{lf (@)]:z € A}.
A

For continuous function f on A and any real number § > 0 we define the modulus of
continuity of function f as follows:

w (8, f) :==sup{|f(z") — f(a")|:2",2" € A,|z' — 2"| < d}.

Ifw (4, f) < K6 forall § > 0and some o € (0,1], K = const > 0, then we say that f
satisfies a Lipschitz-Holder condition of the order o with constant K and write f € Lip g a.
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Let a function ® (u) be continuous, increasing, convex to down on (0, 00],® (0) = 0.
For a function f(z) defined and finite on a segment A the value

Vo (f) =Va (f,A) = sup {Z @ (|f (wh41) — f (a:k)l)} ;

k=0

where the upper bound is taken over all possible partitions a = 29 < 1 < -+ < T, =
b (n=1,2,...) of the segment A, is called ®-variation of the function f on the segment A
[1].

For M > 0 we set Vo (M,A) = {f : Vo (f,A) < M}. By definition for ®(u) = u we
have the ordinary bounded variation V'(f, A) of the function f on a segment A. The value

n—1
X(f,n)=Sup{2|f($k+1)—f($k)| ra<mo < S"'S%Sb}

k=0

is called the modulus of variation of the function f on a segment A [2], [3].
We denote by Conv® (M, A) the set of all functions f, having Ith-order convex deriva-
tive on A with the norm || /) ||C(A) < M = const > 0, by Conv® H*(K, A) the set of all

functions f, having Ith-order convex derivative f) € Lipga for some a,0 < a < 1, and
K = const > 0.

A function s is called a polynomial spline (or shorter spline) of degree m of minimal
defect with free N + 1 knotsa = 29 < 21 < 23 < --- < £y = b on a segment A if

1) s is polynomial of the degree non-exceeding m on each segment [z;,%;y1],7 =
0,1,...,N —1;

2) the (m — 1)th-order derivative of the function s is continuous on the segment A.

We denote by S (m, N,A) the set of all splines of degree m of minimal defect with
arbitrary N + 1 knots on a segment A and by S% (f, A) , — the least deviation of a function
f with finite ®-variation from the splines s € S (m, N, A) with respect to the quasi-norm of
the space L, (A) i.e.,

SN (f,A)p = inf {||f — sl[p,a : s € S(m, N, A)}.
By analogy we can define the same value with respect to the uniform norm which we
denote by S¥ (f, A).

We set S§ (X)), = sup {S}{} (f,A),:f€ X}, where X is some set of functions f.

Everywhere below C (a, 83, ...),C1 (a, 3, -...), ... denote positive variables depending
from the parameters indicated in parenthesis and from the subscripts only.

3. The main results of the paper. One of the first important results in theory of spline
approximation was obtained by G. Freud and V. A. Popov [4]. They showed thatifl > 0 a
function f € ConvY H' (K, A), then for all N € N we have estimates

(3.1) S (f,A) < C () K |AIT N2
The main results of the present paper are the following theorems.
THEOREM 3.1. Let A be a finite segment, K = const > 0,0 < a < 1,0 < p < o0.

Then as N — oo the relation

Sk (ConvH® (K, A)), == N2
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holds.
THEOREM 3.2. If A is a finite segment, M = const > 0,l € Z,,0 < p < oo (at
=0 p# ), thenas N — 0o we have

ShH (C’om}(l) (M, A))p < N2,

The lower estimates of this relation are valid also atl = 0, p = 0.
THEOREM 3.3. For any measurable to respect of Lebesgue’s measure and bounded on
a segment A function f and any p, 0 < p < 00, N € N the estimates

Sk (£,4), <5|AY? X (f,N) /N

hold.
On the other hand, for each N € N there is a measurable (with respect to Lebesgue
measure) function f = fn bounded on a segment A such that for any p, 0 < p < oo,

-1
Sk (f,A), > (12¢6741) " x (f,N) /N.

THEOREM 3.4. For all positive numbers p and N € N the estimates
-1
(12¢6/7) A" @71 (M/N) < S (Vo (M, A)), < 5|A]'Y7 &1 (M/N)

are valid. The lower estimates hold for p = oo too.

REMARK 3.5. Theorems 3.1 and 3.2 are proved in the articles [5], [6].

The proofs of the upper estimates of Theorems 3.1 and 3.2 are based on an application
of the corresponding iterative lemmas, allowing to improve a rate of convergence to zero
of the best spline approximations step by step. This method can be generalized to rational
approximations of functions in one and many variables with convex derivatives too (see [7],
[8]). Also we emphasize that we can simplify many of the problems. For example, for the
proof of the upper estimates of Theorem 3.1 at p = oo, it is enough to prove it for p = oo
for functions ¢ € Lipg (), giving on the segment [0, 1], convex to up, non-decreasing,
continuously differentiable and such that ¢ (0) = 0,¢ (1) = 1. So denoting the set of all
such functions by ConvH®* (K) we note that for any function p € ConvH® (K)and N € N
estimates

(32) Sk (9,[0,1]) <1 < K () N72F20-0°
hold, since 1 = ¢ (1) — ¢ (0) < K (¢) (1 = 0)* = K (o).
In this case this is accomplished with the following iterative lemma.

LEMMA 3.6. Suppose that there exists a value C () > 1 such that for any function
p € ConvH® (K), any N € N and some k € Z the inequality

SL (,]0,1]) < C (a) K (p) N~2+20-)*
holds. Then there is a constant C > 1 such that for any N € N inequality
Sk (,[0,1]) < C(C () K (p) N 2+2(1-e)""

holds.
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Proof. Let
(33) p=1/C(a)N20-)"
and ¢ be any function from the set ConvH*(K'). We consider the function

(3.4) V() = o(py)/ (), y € [0,1].

Obviously that ¢ € ConvH*(u*K (¢)/¢(p)). Therefore by condition of Lemma 3.6 we
have inequality at N = 1,2,. ..

(3.5) SN, [0,1]) < Cla)u® (K (g) /p(u)) N=320-)",
According to (3.3), (3.4) the inequality (3.5) we write in view
Sk, [0, u]) < (C())'~ K (p)N=2+201-)" ",
Consequently, there exists a function s € S(1, N, [0, u]) such that s(p) = ¢(p)and
(3.6) lp = sllego,g < 2(C(@) K (p)N =220,

Obviously that ¢ € ConvH(K1(p),[u,1]) with K1(¢) < p(u)/u < K(p)p®~t. So
using inequality (3.1) of G. Freud and V. A. Popov we obtain existence for each N € N of a
function s; € S(1, N, [u, 1]) such that s; (1) = ¢(u) and

(3.7 lle = s1llog, 1 < C1E(@)p* *N~2,C1 = const > 1.
Substituting the expression (3.3) of y into (3.7) for any N € N we obtain the inequality
(3.8) = s1llgg < C1(C(@) =K (p) N~2+20-0",

From inequalities (3.6) and (3.8) it follows that for function

_f s(x) for 0<z<p _
82(:17)—{ si(x) for p<z<i € S(1,2N,[0,1])) (N =1,2,...)

the estimate

(3.9) le = s2llego, < 2C1(C(@) ~ K (p)N 207"

is valid. In inequality (3.9) we take N = [m/3] + 1, then for all m > 6 we have
2N <2(m/3+1)<m

and so the inequality

(3.10) Sh(1,0,1]) < 18C1 (C(0))! K (p)m~2H20-)"™

holds. Since K(p) > 1 and C(a) > 1,Cy > 1 (see (3.2), Lemma 3.6 and (3.7)), then for
1 < m < 5 we have the estimate

3.11) S (,]0,1]) < 12,5C1(C(a))' K (p)m~+20-a)"

Inequalities (3.10) and (3.11) show that Lemma 3.6 is proved. 0
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Obviously by consecutively using Lemma 3.6 (at first to (3.2), then to subsequent in-
equalities step by step) we easily obtain the upper estimates of Theorem 3.1 for the considered
case.

The upper estimates of Theorem 3.2 for I = 0 can be proved analogously by using the
following iterative lemma.

LEMMA 3.7. Let @ be an arbitrary convex upwards, non-decreasing, continuously differ-
entiable, function on [0, 1] and such that ¢ (0) = 0, ¢ (1) = 1. Suppose that S (p, N,[0,1])
is the set of all splines s € S (1, N, A) interpolating of function  in its knots. If for some
k€ Z, andeach N € N, p > 1 there exists s1 € S (p, N, [0,1]) such that

Il — 31”1;,[0,1] <C(p) N_2+2(p/(p+1))k,
where C(p) > 1, then for each N € N there exists such function sy € S (¢, N, [0, 1]) that
I = s2ll, 017 < CC (p)P/ D) N 24200/ (1)

where C' = const > 1.

Lemma 3.7 can be established similarly to Lemma 3.6.

The proof of the upper estimates of Theorem 3.2 for [ > 1 are based on using the
inequality

S, [0,1]) < CON2, N =12, ..
for functions ¢(z),z € [0, 1], having Ith-order convex derivatives ¢ (z),z € [0,1], such
that o®)(0) = 0, (1) = 1. The last inequality can be easily established using the

following lemma proved in the article of G. Freud and V. A. Popov [4].
LEMMA 3.8. Let ¢ € L1([0,1]), m € N, s € S(m, N, [0,1]) and

1

[ 19() - stz)dz <

0

Then there exists a function s1 € S(m + 1,3N, 0, 1)) such that

T

max / D@)dt — 51(2)| : 3 € [0,1] b < C(m)n/N.

For proof of the upper estimate of Theorem 3.3 we use the following lemma.
LEMMA 3.9. Forallp, 0 < p < o0, andn € N, M = const > 0 we have

SL(V(M,A)), < 2|A["? M/n.

Proof. Since
SL(V(M,A)), = M |A]"P SL(V(1,[0,1]),,

for the proof of Lemma 3.9 it is enough to establish for A = [0,1], M = 1. Besides, for
Lemma 3.9 it is enough to prove for 1 < p < oo, since if it is valid at p = 1, then for
0 < p < 1 using the Holder’s integral inequality we obtain

SLV(M,A)), < |A[F 7 SL(V(M,A)) < 2|A[Y? M/n.
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Let f be any continuous function with variation V(f,[0,1]) = 1 on the segment I =
[0, 1]. Take a partition of the I into n parts by points 0 = g < 23 < Z2 < -+- < zp =1
such that on each segment I}, = [z, Zx+1], £ = 0,n — 1 the inequality V(f, I;) < 1/n shall
be accomplished. Then, obviously that there exists a function s € S(1,n,I) satisfying the
inequality

Nf=sllgay <1/n. O

In the general case of any Lebesgue measurable function f with bounded variation M >
0 the inequality of Lemma 3.9 is valid too, since changing its value on the set of arbitrary
small measure, we get a continuous function f; with variation bounded by M.

Proof of the upper estimate of Theorem 3.3. We note that as in the case of the proof of
Lemma 3.9 for Theorem 3.3 it is enough to establish for continuous function f with bounded
by 1 variation on the segment Jand 1 < p < oo. Let f be an arbitrary such function and
S(0,n, I) be the set of all piecewise constant functions with n 4+ 1 knots on I. Let

Sp(f,I)= _inf qsup{|f(z) - s(2)[}

s€S(0,n,I) zel

and sg € S(0,n,I) be a piecewise constant function of the best approximation of function f
on the segment [in uniform metric:

f-= 30”0(1) = Sa(f. ).
If0 < 21 < 22 < --- < x4 < 1 are the knots of the function s¢ (¢ < n — 1), then

q
(3.12) V(so, 1) = |so(xi + 0) — so(zi — 0)| < 2¢S0(f, ) < 2nSy(f, ).

i=1

So according to inequality (3.12) from Lemma 3.9 we get the existence of function s; €
S(1,n, I) such that

(3.13) llso — s1ll,.; < 4Sp(f, ).
By definition of sg

(3.14) I = so0ll,,r < Sp(f, 1)
Using (3.13) and (3.14) we have

(3.15) If = s1ll,; < 5Sp(f, D).

But SS(f,I) < x(f,n)/n (see [3], Theorem 3.1).

Therefore in view of inequality (3.15) we obtain the upper estimate of Theorem 3.3.
O

As in the case of Theorems 3.1-3.3 for Theorem 3.4 it is enough to prove for A = I =
[0,1]. The upper estimate of Theorem 3.4 follows from the upper estimate of Theorem 3.3
and the inequality

x(f,n) <n®~H(M/n),
which is valid for any f € Vg (M, I).
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Really, for arbitrary points 0 < ¢ < 21 < 22 < --- < z, < 1 using the properties of
function & we obtain

S 1) = )] = n@ 7t |23 frken) — )
k=0 k=0

<007 |23 8(1 (o) - S| <net (BUED).
k=0

The proof of the lower estimates of Theorems 3.1 and 3.2 at 1 < p < oo is based
on application of Chebishev’s polynomials of the first and second kinds. To obtaining such
estimates for 0 < p < 1 we prove the special estimates

Cp A <int {[[a =g )], 5 9 € P} < CLOIAIT,

where P is the set of all polynomials of the degree non-exceeding [ + 1.

To obtain the lower estimates of Theorems 3.3 and 3.4, we use a simple idea ([9], [10])
concluding in the following: if an approximatible function has enough oscillation, then any
spline from the class S (m, N, A) is not able to approximate them and lag on a significant
part of the segment A. For example, we can take the functions

f(x) =A(N)sinaNz, f (£) = A(N)cosaNz,

where A(N) is some monotone decreasing to zero variable and « is a sufficiently large posi-
tive constant.

We note that under the conditions of Theorems 3.1-3.4 the approximations by rational
functions of the order < N give the same rate of approximations that give the Theorems 3.1—
3.4 ([7], [8], [10]). Analogously, if consider an approximation by polynomials of the degree
< N, then for all we know the following rates N~ ¢~ =S , N~1=2/p N—1/P correspond to
Theorems 3.1-3.3 ([11], [12]).

These comparisons of the results of spline approximation of the paper with correspond-
ing polynomial and rational approximations show that the splines with N + 1 knots give
essentially better rates of approximations than polynomials of the degree < IV and the same
rates of approximations that give the rational functions of the order < N. But since splines
have more simple structure, then we conclude that they confirm their status as a more natural
apparatus of approximation.
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