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ORTHOGONAL LEAST SQUARES SOLUTIONS FOR LINEAR OPERATORS
�
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�

Abstract. This paper solves the problem of finding, in a least squares sense, the coefficients of a series expansion
of a function in terms of a chosen orthogonal basis from the knowledge not of the function itself but from the action
of a linear operator upon it. The coefficiens are evaluated by inner product with a set of functions related to the
orthogonal basis through the adjoint operator of the linear operator. Examples for both differential operators and
integral ones as well as related properties are given.
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1. Introduction. Orthogonal polynomials have properties that are very useful for solv-
ing mathematical and physical problems. They provide a convenient method for expanding a
function in a series of linearly independent terms. Moreover, in many physical problems the
expansion coefficients can be interpreted as physical magnitudes with a specific meaning and
that is why among all the sets of orthogonal basis in which a function can be expanded, only
one is usually chosen. For instance, the Zernike polynomials are a set of orthogonal poly-
nomials that arise in the expansion of a wavefront function for optical systems with circular
pupils [1]. Expansion coefficients in Zernike’s basis have concrete physical meaning related
to the shape of the distortion of a wavefront from an ideal spherical one. Some of them even
have proper name as astigmatism, coma, defocus etc.

On the other hand, in some physical experiments the information concerning the function
(the coefficients of which we want to determine) is not the function itself but an indirect
magnitude or magnitudes that can be represented as differential or integral operators acting
upon the function. For instance local slopes (gradient operator) or line integrals (Radon
transform) etc. The problem is how to evaluate the expansion coefficients in the chosen
orthogonal basis since the action of the linear operators upon the orthogonal polynomials
give rise to a new set of functions that, in general, are no longer orthogonal, and the least
square approximation for the function can not be directly performed in an orthogonal sense.

We will see that this problem is solved by using the generalized Green’s theorem and the
construction of the adjoint operator. Examples and related properties will be shown.

2. Statement of the problem. Let ������ �
	 be a function of n variables, �� ��� ���������������� �� 	 ,
and let �������� ��	 be an approximating polynomial given by

����� �� ��	�� � !#" �%$ !�&'! � �� �
	
where ( &�! ���� �)	+* represents a set of orthogonal polynomials in a n-dimensional volume ,
bounded by a surface - under the following inner product:.0/ & ! � �� ��	 & !#1 � �� �)	32546��7 !98 !#1:
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The fact that the polynomials &;! �3�� �
	 are orthogonal, allow to obtain the expansion coef-
ficients, $ ! , that minimize the following norm of the difference between ���<�� �
	 and �=�>�3��?��	@ ��� �� �)	 � � � � �� ��	 @ � .A/ �B��� �� �
	 � � � � �� �
	�	3C9254
by simply performing the inner product of ������ �)	 with the corresponding polynomial &D! �3��?�
	 :
(2.1) $ ! � .A/ & ! � �� ��	 ��� �� ��	3254

On the other hand, if E represents a linear operator (or a set of linear operators) the
expansion coefficients, $ ! , of the approximating function can not be obtained generally in
the orthogonal sense as defined in (2.1)1 since (9EF� & ! ���� ��	�	+* is no longer a set of orthogonal
functions.

To solve the problem in the orthogonal sense explained above, we will make use of the
generalization of the Green’s Theorem [2] and the adjoint operator of E , GE . Thus if � and H
are functions of �� � the Green’s Theorem establishes that:

(2.2) HAE��B� 	 � �'GEI��H 	D�KJML �� N �O�P�3HQ��R��P��R�HQ�S����� 	
where �� N is a generalized vector depending not only on � and H but also on their partial
derivatives for differential linear operators and it can be set to zero for integral operators[2].

Integrating both sides of (2.2) over , and making use of the divergence theorem[3] in
the right side, we get. / � GEI��H 	�2T4U� . / HAE��B� 	�2T4 �WV0X �� N �O�P�3HQ��R��P��R�HQ�S����� 	32 ��?Y2 ��ZY being the outward drawn vector element of area. From this expression and (2.1) it can
be deduced that if there exists a set of functions ([H ! � �� ��	#* such that GE��\H ! � �� �
	�	D� &�! � �� ��	 then
the expansion coefficient $ ! can be evaluated by inner product of EF�B���<�� ��	�	 and H ! ���� �
	 plus
a surface integral containing boundary conditions for some cases of differential operators:

$ ! � . / H ! � �� �
	 EF�O��� �� �)	�	3254 � V]X �� N �B�P��H ! ��R��P�<R%H ! ������� 	�2 �� Y
3. Examples. In what follows the problem will be illustrated with two different kind of

linear operators: A differential one, the gradient of a function, and an integral one, the Radon
transform.

3.1. The gradient operator. If the linear operator represents the gradient of the function

^ ��� �� ��	D�`_ R���� �� �
	RP�� ��������� R���� �� �
	RPP�ba
1Unless we wanted the approximating function to be defined in terms of the eigenfunctions of the linear operator.
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the above result allow us to deduce that if there exists a set of vector functions (]�� H ! �3��?��	+*
such that

(3.1)

JML ��H ! �3��?��	�� � &'! ���� ��	 in �� �Mc ,��H ! �3�� �)	�L �� de��f
in ��?�Mc -

being �� d an unitary outward drawn vector to - , then the expansion coefficients can be evalu-
ated independently, in the orthogonal sense, as

$ ! � . / ��H ! �3��?�
	�L9J ������ ��	�2T4
Examples of vector functions orthogonal to the gradient of Zernike polynomials are ob-

tained in a different mathematical context in references [6] and [7].

3.1.1. Properties of vector functions. In general, the set of partial differential equa-
tions given in (3.1) has not an unique solution for the set of vector function ��H ! � �� ��	 . The
choice of the set of functions, is, in principle, irrelevant, and therefore ”the easier to solve
the better” is a criterium to find the vector functions. Nevertheless if

J ���<�� �)	 represents a
physical magnitude the choice of the vector functions can improve the results. For instance
let us see what happen if

J ������?��	 is affected by uncorrelated noise vector, �� g , with zero mean,
and covariance h C 7 �3��?� � ��?�Fi�	

Let us denote by j $ ! the estimate of the coefficients when evaluated by

j $ ! � . / ��H ! � �� ��	�L � J ��� �� �
	lk �� g�	�2T4
Then by taking the ensemble-averaged mean square error, the variance associated to the

estimated coefficient is given by

(3.2) h C ! � . / ��j $ ! � $ ! 	3C92T4U� h C . /nm ��H ! ���� ��	po C 2T4
Thus, those vector functions minimizing (3.2) yield to a better estimate of ������?��	 . This

can be get by demanding that ��H ! �3�� �)	 satisfy not only (3.1) but also to be irrotational [8], i.e.,
there exists an scalar function q ! � �� ��	 such that

��H ! �3��?��	���J q ! �3�� �)	
Thus the vector functions can be found by solving the following Poisson equation with

Neumann boundary condition

(3.3)

J C q ! �3�� �)	D� � &�! �3�� �
	 in �� �rc ,J q ! ���� ��	;L �� ds�tf
in ��?�uc -

As an example, the Zernike Polynomials formula as well as the related q ! � �� �
	 functions
obeying (3.3) is presented
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v � 8 w � � ��x 	D�ty � 8 zt{�|%} ~;}��� "�� ��� ���\� � � � � �B� � {�� � �� � � {�|�~� � � �B� � {T�5~� � � �B�B��� z��q � 8 w � � ��x 	��ty � 8 z {�|%} ~;}��� "�� ��� �3�\� � � � � �O� � � {T� � � | � ��� � �P�<�3� ~ � {T� � � | �~ � ~ �� � � {�|�~� � � �O� � {��5~� � � �B� � � z��
(the usual complex and two index notation has been used,

y � 8 z are normalization constants

[1] and
7 �S8 z ��� f

if m ��tf�
if m

�tf )

It must be stressed the fact that depending on the set of chosen functions, ( &�! �3��?��	+* , and
the characteristics of the integration domain , , it is not always possible to obtain minimum
norm solution for all the set vector functions as well as polynomic solutions as for the previous
case. For instance, for orthogonal polynomials in an annulus, as - represents inner and
outer circumferences, then

J q ! ���� ��	DL �� d��uf
in �� �ec - represents two boundary conditions

and it is not possible to find polynomic solutions for all the basis elements since terms
in the shape ���5� � , � � z��� �¡ �£¢¤x 	 , � � z¦¥ � � �£¢¤x 	 are needed to fullfill both conditions. For a
square or rectangular domain and a orthogonal basis made by Cartesian product of orthogonal
polynomials in one dimension it is not possible to get minimum norm solution for all the basis
elements due to the need of four boundary conditions.

3.2. The Radon transform in two variables. It is well-known that Radon transform
can be considered as linear operator which in polar coordinates can be written as§ ���©¨l��x 	D� . C�ª� .¬«� ��� � �< 	�® � � �+�¯£¨l��x 	p��2���2 
being $ c � f �+° 	 and® � � �<�¯£¨���x 	D��7 �Z¨ � � ¥ � �  ¥ � � x � � �� �¡  �� �¡ x 	
thus representing the integral of the function ��� � �< 	 over the line defined in normal form by¨ and x [4] ¨ �  ¥ � � x ��± �� �¡ x �tf

For integral operators, �� N can be set to zero [2] and thus, with some algebra, it can be
easily shown that the adjoint operator G§ H��Z¨l��x 	 is given by

G§ ���©¨l��x 	D� . C�ª� .¬«� ��� � �< 	 G® � � �+�¯£¨l��x 	p��2���2 
with G® � � �<�¯B¨l��x 	�� ¨ � ® �Z¨���x]¯ � �< 	D� ¨ � 7 � � � ¨ ¥ � �  ¥ � � x � ¨ �� �¡  �� �¡ x 	

representing the integral over the circumference that is tangent to the line defined by ¨
and x and passes through the origin of coordinates ( the tangency point and the origin define
the extremes of a diameter).
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In this way if there exist a set of functions ² ! ���� �
	 such that

G§ ² ! �Z¨���x 	D� ¨ & ! �©¨l��x 	
then

$ ! � . C<ª� .U«� ² ! �Z¨���x 	 § ���©¨l��x 	32 ¨ 2 x
For $ � �

and choosing as orthogonal basis the Zernike polynomials, the ² ! ���� �)	 func-
tions are related to Chebyshev polynomials of second kind[4]2

As an example the first six orthogonal polynomials of Appell and Kampé de Fériet[5] for
the unit circle and the corresponding ² ! �3�� �)	 functions are shown³ ! �©¨l��x 	 ² ! �Z¨���x 	� �ª¨ ¥ � � x Cª ¨ ¥ � � x¨ �� �¡ x Cª ¨ �� �¡ x´ ¨ C ¥ � � C x k ¨ C �� �¡ C x � � µª ¨ C ¥ � � C x � �ª¨ C �� �¡ x ¥ � � x ¶ª ¨ �� �¡ x ¥ � � x´ ¨ C �� �¡ C x k ¥ � � C x � � µª ¨ C �� �¡ C x � �ª

4. Conclusions. By the use of the generalized Green’s theorem it is possible to find set
of functions that are orthogonal to the action of linear operators upon a set of orthogonal
polynomials. This is equivalent to solve linear equations, both differential equations and
integral equations, in an orthogonal least squares sense without solving an eigenfunctions
problem.

For the gradient operator the set of functions orthogonal to the gradient of the elements
of the chosen basis is not unique, and it has been shown that in some cases it is possible to find
only one set obeying additional conditions, that minimize the norm of the difference between
the function and its approximating polynomial if the gradient of the function is affected by
gaussian noise of zero mean and spatially uncorrelated.

For linear operators, as Radon transform, since no boundary conditions are needed, the
set is unique and depends only on the chosen basis and the chosen integration domain

The method can be extended to inner products with weights different than unity as well
as to orthogonal functions in general.
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2The orthogonality between Radon transform of Zernike polynomials and Chebyshev polynomials need inte-
gration in the radial coordinate between -1 and 1
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