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Abstract. In this paper preconditioners for solving the linear systems of the Newton method in each nonlinear

iteration are studied. In particular, we define a sequence of preconditioners built by means of Broyden-type rank-one
updates. Optimality conditions are derived which guarantee that the preconditioned matrices are not far from the
identity in a matrix norm. Some notes on the implementation of the corresponding inexact Newton method are given
and some numerical results on two model problems illustrate the application of the proposed preconditioners.
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1. Introduction. Newton’s method for the solution of systems of nonlinear equations

(1.1) �����
	
��
with ������������� can be described as follows. If each component of � , ��� , is differentiable,
the Jacobian matrix �
���
	 is defined by:�
���
	������  � � "! � ���
	$#
Assuming that � is available, nonsingular, and “easy” to compute, Newton’s method can be
defined by the iteration

(1.2)
% �
���
&'	)(*&+� ,-�����
&'	/.�0&$132 � �
&546(7&*#

When � is large and sparse, e.g., for problems arising from the discretization of a nonlinear
PDE, preconditioned Krylov based iterative schemes can be employed for the solution of
the linear system, so that two nested iterative procedures need to be implemented. To avoid
oversolving, i.e., excessive and essentially useless iterations of the inner scheme, it is crucial
to employ an “inexact” technique [5]. This approach tries to control the number of linear
iterations by allowing the accuracy of the linear solver to vary across nonlinear iterations [7].

Another crucial issue for the reduction of total linear iterations is to use efficient precon-
ditioning techniques. In general, ILU-type preconditioners [14], [17] can be employed and
calculated at every nonlinear iteration. Techniques for selectively evaluating a preconditioner8

may be developed to save on the cost of the calculation of the preconditioner. Note that the
two phases where efficiency can be mostly improved are the cost of the linear system solution
(thus including the number of iterations) and the cost of preconditioner evaluation.9
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In this paper we are mainly concerned with the efficient preconditioning of the linear
system. The “optimal” preconditioner

8
would minimize the constant < of:

(1.3) =/>?, 8 �
���@&'	A=�BC<D#
Note that, ideally one would like < to be as small as possible or even to tend to zero asE �GF . This requires that information from the nonlinear iterative scheme be taken into
account in the evaluation of

8
.

Standard preconditioners, such as ILU, are completely unaware of the underlying lin-
earization process. Actually, often the Jacobian matrix tends to become more ill-conditioned
as
E

grows, giving rise to increased numerical inaccuracies in the calculation of
8

.
The approach proposed in this paper is to solve system (1.2) with an iterative Krylov

subspace method, starting with either ILU(0) [14] or AINV [2] preconditioners, computed
from the initial Jacobian, and to update this preconditioner using a rank one sum. A sequence
of preconditioners

8 & can thus be defined by imposing the secant condition, as used in the
implementation of quasi-Newton methods [6]. We choose to work with the Broyden update
as described for instance in [9], and analyze the theoretical properties of the preconditioner
and the numerical behavior of the resulting scheme.

Our approach is in the framework of the work of J. M. Martı́nez in [12], [13], where
computing the preconditioner of choice (possibly even the null matrix) at every Newton step
and then enriching it with a low-rank update is suggested. In these papers the author is mainly
concerned with convergence of the Inexact Newton method while we focus on the optimality
of the preconditioner at each nonlinear iteration. In addition we solve the Newtonian lin-
ear systems using an arbitrary iterative method with the stopping criterion of [5], while in
Martinez’s procedure this criterion is not used and the first iterate of the iterative linear solver
should be constructed using the preconditioner. Morales and Nocedal in [15] proposed a rank-
two update of the previously computed preconditioner in the acceleration of the Conjugate
Gradient (CG) method. The vectors involved in this update do not come from the Newton
iteration but they are generated using information from the CG iteration. Another study on
updating factorized preconditioners can be found in [19].

The paper is organized as follows: Section 2 defines the preconditioner
8 & . In Section 3,

we prove that we can make the quantity =/>-, 8 &*�
���
&H	A= as small as possible. Section 4 gives
the main lines of the implementation of the preconditioner application. Section 5 reports
some numerical results on two model problems. Finally, Section 6 gives some concluding
remarks.

2. Preconditioning by Broyden update. The idea is to start with a preconditioner8 �JI�K 2L for � L . If the preconditioner is in the form of a sparse approximate inverse, thenI K 2L is known explicitly. Otherwise, if I L �NMO MP is an incomplete LU factorization, we only
can compute I K 2L times a vector by solving two triangular sparse linear systems.

The proposed approach tries to evaluate
8 &/132Q��I�K 2&$1R2 at every Newton iteration by

adding to the previous preconditioner a rank one update. Let us write

(2.1) I &$1R2 �SI & 4UTWVYX
#
As in the Broyden scheme, I &$132 must satisfy the secant condition

(2.2) IZ&$132[(*&?�]\ & .
where \ & �^��&$132Z,S��& . To uniquely determine T_.`V , we also impose that I?&/132 be the
closest matrix to IZ& in the Frobenius norm among all the matrices satisfying (2.2),

(2.3) I &$132 � argmina0b adcfeAgYh$e =/Ii,QI & =�#
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Combining the secant condition (2.2) with (2.1), since I & ( & 4T@V X ( & �j\ & , we readily
obtain: Tk� \ & ,lI & ( &V X (�& #
Condition (2.3) is satisfied by choosing Vm� (*&=[(*&n= #
Using T and V thus defined, for every matrix I satisfying the secant equation we can writeI &$132 �I & 4 Io( & ,QI & ( &( X & ( & (�X&
from which, taking Frobenius norms, we have that=/IZ&$132p,QIZ&n=5�rqqqq Is( & ,lI & ( &( X & ( & ( X & qqqq Bt=/Ii,QID&n=puvqqqq ( & ( X &( X & ( & qqqq �w=AIi,lIZ&n='.
and thus (2.3) holds. The expression for I &$1R2 is then written as

(2.4) I &$132 �I & 4 �x\ & ,lIZ&'(7&�	v( X&( X & (*& #
The final preconditioner

8 &$132 ��I�K 2&$132 can be obtained by inversion using the Sherman-
Morrison formula to yield:

(2.5) IyK 2&/132 �CIyK 2& ,Nz I K 2& \ & ,{(*&'|3( X& I K 2&( X & I�K 2& \ & #
In the next section we will prove that =/>?,UI�K 2& �
��� & 	}= can be made as small as possible by
suitable choices of the initial guess � L and the initial preconditioner I L . Note that this makes
our preconditioner almost ideal in the sense of (1.3).

REMARK 2.1. The definition of our preconditioner and the convergence analysis that
follows is similar to the corresponding developments of Broyden’s method, as reported in [9].
The main difference is that in our case the new update is calculated by Newton iteration using
the real and not the approximate Jacobian matrix. Thus in all the following steps we need to
take into account that \ & ,lIZ&H(*&�~���&$1R2 .

3. Convergence analysis. We will make the standard assumptions on � .

1. Equation (1.1) has a solution � � .
2. �
���
	p���C��� �"��� is Lipschitz continuous with Lipschitz constant � .
3. �
��� � 	 is nonsingular.

We will now bound the norm of the difference between I�&$1R2 and �
���
&/132A	 in terms of the
errors in the current and new iterates. It is convenient to indicate with the subscript � every
vector or matrix referring to the current iterate and with 4 every quantity referring to the new
iterate

E 4S� . Following this notation Newton’s method can be stated as�7�)(o�i,-���}.
(3.1) �d1{�C� � 46(v#
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We define the error vectors � 1U� ! � , ! 1�. � � � ! � , ! �
and the error matrices � 1 �CI 1 ,6�
��� � 	$. � �p�SIZ�0,6�
��� � 	$#

The next lemma is the analog of Theorem 7.2.2 in [9]. It states that the sequence ��IZ&��
remains close to �
��� � 	 as �
& approaches � � .

LEMMA 3.1. Let the standard assumptions hold. Then= � 1_=-Bt= � � =
4U� �)= � ��=
4�= � 1 =}	� #
Proof. Since ��IZ�
,6�*��	`(�,U���W�ID��(��t�
��� � 	`(D4 � �$(v.

we have � � (��w��I � ,k� � 	)(?,6�
��� � 	`(�,Q� ��w��I � ,k� � 	)(?,U�s1m4S����1�,Q� � ,k�
��� � 	)(7	�w��I � ,k� � 	)(?,U�s1m46� 2L �f�0� ! � 4U�`(*	d,6�
��� � 	�	v�H��w��I � ,k� � 	)(?,U�s1m4k� � (v.(3.2)

where �s��� � 2L ���0� ! �d4U�`(*	R,6�
��� � 	�	���� . From (2.4) we can write

(3.3)

� 1 �I 1 ,k�
��� � 	@�SID�@,6�0��� � 	34 ���s1�,U� � ,lI � (7	�( X( X ( #
Then, setting

8 c � (*( X( X ( and substituting (3.2) into (3.3) we obtain� 1 � � �d4S��ID�
,k�7�)	 8 c , � � 8 c 46�s� 8 c ,]���y�R4{IZ�$(�	 ( X( X (� � � ��>�, 8 c 	�4��I � ,6� � 	 8 c 4k� � 8 c ,]��� � 4{I � (*	 ( X( X (� � � ��>�, 8 c 	�46� � 8 c #(3.4)

Using the standard assumptions and taking norms, since = 8 c =_�i� we have= � 1 =-Bt= � �}=
4�=A�s��=Bt= � � =
4U� �)= � � =
4�= � 1_=}	� #(3.5)

The next Lemma 3.2 and Theorem 3.3 prove that if the initial Newton point � L is sufficiently
near the solution, and I L sufficiently near �
��� � 	 , then the sequence ��I K 2& � is well defined.
The proof of Lemma 3.2 is not given since it is analogous to that of Theorem 7.2.3 in [9].
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LEMMA 3.2. Let the standard assumptions hold. Fix � 2Z� � . Then there are � , � a such
that if = � L =��]� and = � L =���� a then = � & =D�6� 2 .Y  E � �v#

THEOREM 3.3. Let the standard assumptions hold. Define ¡��¢=��
��� � 	 K 2 = . Fix�i�£�[2�� �¡ . Then there exist � and � a such that if = � L =��£� and = � L =���� a then

(3.6) =/I K 21 =�� ¡�5,Q� 2 ¡ #
Proof. From Lemma 3.2=/I K 21 =_�¤=/I K 21 ,6�0��� � 	 K 2 4C�
��� � 	 K 2 =Bi=/I�K 21 ,6�0��� � 	 K 2 =
4=��0��� � 	 K 2 =�¤=/I�K 21 ��I 1 ,k�
��� � 	`	"�
��� � 	 K 2 =
4�=��
��� � 	 K 2 =�¤=/I K 21 � 15�0��� � 	 K 2 =
4=��0��� � 	 K 2 =�i=/I K 21 =A�[2$¡�4{¡W#(3.7)

Rewriting (3.7) we have =AI K 21 =0�f�5,Q� 2 ¡R	5�6¡
from which the thesis, by the hypothesis ��2/¡{���H#
We now prove that we can make =/>?,QI�K 2& �0���
&'	A= as small as possible. To this end we need
the following two Lemmas which bound the difference between I�& and �
���@&'	 .

LEMMA 3.4. Let the standard assumptions hold. Then setting��¥1 �SID1�,6�*1�. and

��¥� �SI � ,6� � .
we have = � ¥1 =DB¦= � ¥� =
4Q�5§�s�`= � � =
4�= � 1_=A	¨#

Proof. Since

� ¥1 � � 1l4�
��� � 	@,C��1S� � 1�4]����1 and

� ¥� � � � 4��
��� � 	
,]� � �� � 4k��� � , eq. (3.4) becomes��¥1 �S����1m4� ��¥� ,Q��� � 	A��>�, 8 c 	�46� � 8 c� � ¥� ��>�, 8 c 	0,Q��� � ��>�, 8 c 	�46����1m4k� � 8 c #(3.8)

Now taking norms, and using the standard assumptions,= ��¥1 =DB¦= ��¥� =
4Q�
= � � =
4U�0= � 1_=
4Q� = � ��=
4�= � 1 =�
and the thesis holds.

LEMMA 3.5. Let the standard assumptions hold. Fix � ¥2 � � . Then there are � , � a such
that if = � L =��]� and = � ¥L =���� ¥a then = � ¥& =D�6� ¥2 .Y  E � �v#

Proof. Analogous to that of Lemma 3.2.

The next theorem will establish a bound of =A>?,QI K 21 ��1_= in terms of =��0��� � 	 K 2 = .



ETNA
Kent State University 
etna@mcs.kent.edu

QUASI-NEWTON PRECONDITIONERS FOR THE INEXACT NEWTON METHOD 81

THEOREM 3.6. Let the standard assumptions hold. Fix �o�]�'2�� �¡ , � ¥2 � � . Then there

are � , � a , � ¥a such that if = � L =D�]� , = � L =D��� a and = � ¥L =���� ¥a then=A>?,QI�K 21 ��1_=D� � ¥2 ¡�5,Q� 2 ¡ #
Proof. Let � , � a , � ¥a be as in Lemmas 3.2 and 3.5. From Lemma 3.5 and Theorem 3.3 we

have

(3.9) =/>?,QIyK 21 ��1_=5�¤=AI�K 21 ��ID1�,6��1
	Y=�Bt=/IyK 21 =�= � ¥1 =D� � ¥2 ¡�5,l� 2 ¡ #
4. Notes on implementation. In this section we give the main lines of the implemen-

tation of the product of our preconditioner times a vector, which is needed when using a
preconditioned Krylov method.

At a certain nonlinear iteration level,
E

, and given a vector ©dª¬«®& , we want to compute

(4.1) ¯��I K 2& ©Rª®«¬& #
Here with superscript ° we indicate the linear iteration index. For

Ei± � , I�&/132 is given
inductively by (2.5):

(4.2) I K 2&$1R2 �CI K 2& ,Nz IyK 2& \ & ,{( & |�( X& IyK 2&( X & IyK 2& \ & #
If we set V3&?� (*&=[( & = , Tp&?� \ & ,UIZ&'(*&=}( & = and ²³&Z� I�K 2& T &�W4{V X& I K 2& Tp& , thenI�K 2& � z >?,�²³& K 2/V X & K 2 |YIyK 2& K 2� z >?,�²³& K 2/V X & K 2 | z >�,l²�& K¨´ V X & K"´ |0uAu}u z >�,l² L V XL |YI K 2L #(4.3)

At the initial nonlinear iteration
E �µ� , under the hypothesis that I K 2L (or I L ) is explicitly

known, we simply have ¯��I K 2L © ª®«¬L #
If
E �i� , ¯o�CI�K 22 © ª®«¬2 � z >�,�² L V XL | I�K 2L © ª®«®2 #

Before doing this we have to compute ² L � I K 2L T L�W4{V XL I K 2L T L .

If
E � � , let us suppose that T � .`V � .�² � are known, ¶m�·�n.A#}#A#/. E , � . Then to be able

to compute ¯��¸I K 2& © ª®«®& , before starting the linear system solution we have to evaluateV & K 2 .�T & K 2 and ² & K 2 � T ¥ & K 2�W4{V X& K 2 T ¥ & K 2 where T ¥ & K 2 ��I K 2& K 2 T & K 2 can be evaluated using

(4.3) at the price of an application of I�K 2L ,
E ,C� dot products and

E ,C� daxpy operations.
Now we are ready to compute¯�� z >?,l²³& K 2$V X & K 2 | z >�,�²�& K"´ V X & K"´ | u}uAu z >?,l² L V XL | IyK 2L © ª®«®&
at the price of an application of I�K 2L ,

E
dot products and

E
daxpy operations.

Note that the updating of the preconditioner just described, being based on scalar prod-
ucts and daxpy operations, is well suited to parallelization.
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4.1. The Newton-Broyden algorithm. The implementation of the Inexact Newton meth-
od requires the definition of a stopping criterion for the linear solver (1.2) based on the non-
linear residual. Following [5], we stop the linear iteration as soon as the following test is
satisfied

(4.4) =��
��� & 	`( & 46����� & 	}=DB6¹ & =A����� & 	}=�#
Superlinear or even quadratic convergence of the Inexact Newton method can be achieved by
properly setting the sequence �}¹7&*� .

We can now write the Newton-Broyden Algorithm as follows:

NEWTON-BROYDEN (NB) ALGORITHM
Input: � L .���.�ºY°�»³¼ ! . tol½ WHILE =A�����
&'	A= � tol AND

E ��ºY°x»�¼ ! DO
1. Compute I L ��I K 2L 	 approximating � L �¾� K 2L 	 ; E �C�
2. IF

E � � THEN update I K 2& from I K 2& K 2 .3. Solve �
��� & 	)( & ��,-����� & 	 by a Krylov method with preconditionerI K 2& and tolerance ¹ & .
4. � &$132 �S� & 4�( &
5.
E � E 4C�½ END WHILE

Since the actual computation of the preconditioner is never performed explicitly, the
stated algorithm suffers from two main drawbacks, namely increasing costs of memory for¿ & and À & and of preconditioner application. These drawbacks are common to many itera-
tive schemes, such as for example sparse (Limited Memory) Broyden implementations [16],
GMRES [18] and Arnoldi method for eigenvalue problems [11]. Several options can be de-
vised to alleviate these difficulties, all based on variations of a restart procedure, by which the
scheme is reset after a chosen number of iterations. Our implementation is described in the
following section.

4.2. Restart. If the number of nonlinear iterations is high (e.g. more than ten itera-
tions), the application of Broyden preconditioner may be too expensive to be counterbalanced
by a reduction in the iteration number. To this aim we define

E7Á0Â�Ã
the maximum number

of rank one corrections we allow. After
E*Á0Â�Ã

nonlinear iterations the previous computed² � .�V � .�¶R�w�H.}#A#}#/. EHÁ0Â�Ã are discarded, and a new preconditioner I K 2L is computed.

RESTARTED NEWTON-BROYDEN (RNB) ALGORITHM
Input: � L .���. EHÁ0Â�Ã .�ºY°�»³¼ ! . tol½ Compute I L ��I�K 2L 	 approximating � L �¾�dK 2L 	 ; E �� , restart=TRUE½ WHILE =A�����
&'	A= � tol AND

E ��ºY°x»�¼ ! DO
1. IF (NOT restart) THEN update I K 2& from I K 2& K 2 ; restart = FALSE.
2. Solve �
���
&'	)(�&Q��,-�����
&'	 by a Krylov method with preconditionerI K 2& and tolerance ¹ & .
3. � &$132 �S� & 4�( &
4.
E � E 4C�

5. IF
E

MOD
E Á0Â�Ã

= 0 THEN
– restart = TRUE; compute I & ��IyK 2& 	 approximating � & �¾�dK 2& 	½ END WHILE
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REMARK 4.1. Our preconditioner can be viewed as a particular case of the one defined
in [12] as I & �<s��� & 	�4kÄ & , where we set<s���
&H	@�µÅ > O�P_Æ Ä�>�ÇÉÈy�¾�*&�	$. if

E
MOD

EHÁ0Â`Ã �S�n.�n. otherwise #
5. Numerical results. In this section we report the numerical performance of our pre-

conditioners in solving two nonlinear test problems of large size. As initial preconditioners
( I L ), we consider either the incomplete Cholesky factorization ILU(0) [14] or the approx-
imate inverse preconditioner AINV [2], [3]. Note that, in the first case, I L is known and
the application of I K 2L results in two triangular sparse linear system solutions. On the other
hand, I�K 2L is explicitly provided by AINV, as the product of two sparse triangular factors,
and hence its application needs two matrix-vector products. Our aim is to give experimental
evidence that the Broyden correction, implemented as explained in the previous sections, pro-
duces an acceleration of the convergence of the iterative solver, independently of the initial
preconditioner of choice.

All the numerical experiments were performed on a Compaq ES40 equipped with an
alpha-processor “ev6.8” at 833Mhz, 4.5 GB of core memory, and 16 MB of secondary cache.
The CPU times are measured in seconds. The solution of systems (2) is performed by the
BiCGstab iterative method [20] because in our examples the Jacobian is symmetric but is
not guaranteed to be positive definite. We stop the iteration whenever the exit test (4.4) with
constant ¹�&?�w�}� K�Ê is fulfilled.

5.1. Example 1: the Bratu problem. We consider a generalization of the classical
discrete Bratu problem [8]:Ä-T6�Ë�Ìm��Í¨	/. ÌÎ�Ï�ÐÒÑHÓ���Ô/Õ�Ö��xÍY2/	/.A#}#A#A.`Ô/Õ�Ö���Í � 	`	
where Ä is a symmetric positive definite matrix arising from a 2d or 3d discretization of the
diffusion equation on the unitary domain:

(5.1) ,-×��xØl×�ÍÙ	
���
with variable diffusion coefficient Ø , and Ë is a real parameter. We used Ëk�Ú� and � L ����v#¬��.A#A#}#/.`�v#¬��	 X . We consider matrices arising from discretization employing Finite Elements
(FE) and Mixed Finite Elements (MFE).

5.1.1. 2d MFE discretization. Matrix Ä has 28600 rows and 142204 nonzero elements.
It arises from a Mixed Finite Element discretization of the diffusion operator (with constantØjÛt� ) in two spatial dimensions on triangles of uniform sizes.

Tables 5.1 and 5.2 report the results of the nonlinear convergence, giving the number of
nonlinear iterations, the cumulative number of linear iterations, the total CPU time and the
CPU time needed to evaluate the preconditioner (computation of I�K 2L when needed plus all
the updates). When the Broyden acceleration is used, we also provide the values of

E Á0Â`Ã
.

With ILU(0) �¾� L 	 we mean that the preconditioner is computed once and for all at the begin-
ning of the nonlinear iteration, while ILU(0) �¾� & 	 indicates that the incomplete factorization
is accomplished at each nonlinear iteration.

In both cases ( I L = ILU(0)/AINV) the RNB algorithm produces an acceleration in terms
of both number of iterations and CPU time. The simple NB algorithm (without restart) ap-
pears to be less efficient. This is not surprising since the results of Theorem 3 only hold when! L is near the solution. In the NB algorithm, I L is computed only once, when the iterate is
still far from

! �
, while in the RNB approach, the “initial” preconditioner is computed everyE'Á0Â`Ã

iterations, thus taking advance from the nonlinear convergence.
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TABLE 5.1
Results on MFE matrix with ÜRÝ
Þ ILU(0).

preconditioner
E Á0Â�Ã

nlit iter CPU
tot precond

ILU(0) �¾� L 	 – 7 851 11.59 0.01
ILU(0) �¾�7&�	 – 7 754 8.65 0.04

RNB-ILU(0) 1 7 442 6.51 0.08
RNB-ILU(0) 2 7 470 6.56 0.06
RNB-ILU(0) 3 7 501 6.93 0.06
RNB-ILU(0) 5 7 529 7.09 0.06

NB-ILU(0) F 6 515 9.67 0.06

TABLE 5.2
Results on MFE matrix with Ü Ý Þ AINV(0.1).

preconditioner
E�Á0Â�Ã

nlit iter CPU
tot precond

AINV(0.1) �¾� L 	 – 7 882 18.35 0.17
AINV(0.1) �f� & 	 – 7 908 19.70 1.27

RNB-AINV(0.1) 1 8 574 14.62 1.57
RNB-AINV(0.1) 2 7 517 13.07 0.81
RNB-AINV(0.1) 3 7 647 16.10 0.63
RNB-AINV(0.1) 4 7 502 12.61 0.44
RNB-AINV(0.1) 5 7 561 14.08 0.44

NB-AINV(0.1) F 7 655 17.15 0.26

5.2. Example 2. We consider here a slight modification of the Bratu problem which
leads to an increasingly ill-conditioned Jacobian matrix. This is easily accomplished by tak-
ing a negative value for the parameter Ë . We choose to work with Ë��,?� and the same
initial vector as in the previous example.

TABLE 5.3
Results on MFE matrix with Ü Ý Þ ILU(0).

preconditioner
E�Á0Â�Ã

nlit iter CPU
tot precond

ILU(0) �f� L 	 – 14 849 15.61 0.01
ILU(0) �¾�*&�	 – 14 597 7.04 0.08

RNB-ILU(0) 1 14 436 6.51 0.15
RNB-ILU(0) 2 14 415 6.56 0.12
RNB-ILU(0) 3 14 419 6.93 0.11
RNB-ILU(0) 4 14 407 7.09 0.11

NB-ILU(0) F 15 595 14.86 0.17

5.2.1. 2d MFE discretization. We report in Table 5.3 the results of the various algo-
rithms described in Section 4, compared with the Inexact Newton method preconditioned
with the simple ILU(0) computed at the initial iteration. Table 5.4 provides the same out-
come as Table 5.3 but employing the AINV preconditioner. In the latter case we also provide
the value of the drop tolerance used in the test.

Analyzing Table 5.3 we notice that the Broyden acceleration produces a mild reduction
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of the CPU time as compared with the computation of ILU(0) at every iteration. The opti-
mal

E Á0Â`Ã
value is 1. The simple Newton-Broyden algorithm (i.e. with no restart) does not

give any improvement in terms of CPU time and iteration number. In Table 5.4 the results
relative to the AINV preconditioner with drop tolerance of 0.05 enhances the efficiency of
the proposed preconditioner. Here the optimal

E*Á0Â�Ã
value is larger than 1. Using

E�Á0Â`Ã � �
produces a saving in the CPU time needed for computing the costly AINV preconditioner.

TABLE 5.4
Results on MFE matrix with Ü Ý Þ AINV(0.05).

preconditioner
E�Á0Â�Ã

nlit iter CPU
tot precond

AINV(0.05) �¾� L 	 – 14 852 18.99 0.19
AINV(0.05) �f�*&�	 – 14 545 29.96 5.42

RNB-AINV(0.05) 1 14 332 18.34 5.06
RNB-AINV(0.05) 2 14 347 17.72 2.91
RNB-AINV(0.05) 3 14 348 16.13 2.06
RNB-AINV(0.05) 4 14 333 15.57 1.67
RNB-AINV(0.05) 5 14 353 16.27 1.26

NB-AINV(0.05) F 14 630 18.73 0.34

5.2.2. 3d FE discretization. Matrix Ä is the result of a 3D Finite Element discretization
of (5.1) with coefficient Ø varying in space and using tetrahedral elements. It has 268 515
rows and §
ß �Hà
á�� § nonzero elements.

For this test case we also compare the Broyden acceleration with the result obtained by
selectively computing the preconditioner (both ILU(0) and AINV) every

E Á0Â`Ã
iterations; see

Tables 5.5 and 5.6. In Figure 5.1 we report the linear iterations employed at each nonlinear

TABLE 5.5
Results on the 3DFE matrix with ÜRÝ0Þ ILU(0).

preconditioner
E Á0Â`Ã

nlit iter CPU
tot precond

ILU(0) �¾� L 	 – 17 1880 1125.4 0.4
ILU(0) �f�*&'	 – 16 354 193.4 6.4
ILU(0) �f�*&'	 2 16 353 194.1 6.2

RNB-ILU(0) 1 16 230 137.7 9.4
RNB-ILU(0) 2 16 232 137.8 6.3
RNB-ILU(0) 3 16 250 149.7 5.5
RNB-ILU(0) 4 16 251 150.8 4.8

NB-ILU(0) F 17 1132 826.4 4.7

iteration for the ILU(0) and AINV( �n# � § ) preconditioners computed at each nonlinear iteration
and using the Broyden acceleration for a couple of

E Á0Â`Ã
values. As is clear from figure

5.1, in this problem the Jacobian matrix becomes more ill-conditioned during the nonlinear
iteration. For this reason, using the AINV preconditioner with a fixed drop tolerance value
( �w�n# � § ), yields a sequence of preconditioners with increasing number of nonzero elements
and consequent increasing evaluation cost. This explains the CPU times for preconditioner
evaluation in Table 5.6. The RNB preconditioner provides a substantial reduction of the linear
iterations especially near the solution of the nonlinear problem, as expected by the findings
of the theory in Section 2.
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TABLE 5.6
Results on the 3DFE matrix with ÜRÝ
Þ AINV(0.03).

preconditioner
E Á0Â�Ã

nlit iter CPU
tot precond

AINV(0.03)( � L ) – 17 1991 755.3 3.5
AINV(0.03)( �7& ) – 16 682 470.4 151.9
AINV(0.03)( � & ) 4 16 705 355.6 34.0

RNB-AINV(0.03) 1 16 418 356.7 154.5
RNB-AINV(0.03) 4 16 448 262.1 37.4
RNB-AINV(0.03) 7 16 508 281.9 29.1
RNB-AINV(0.03) 10 16 556 289.9 17.7

NB-AINV(0.03) F 17 1186 591.0 5.2
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FIG. 5.1. Number of linear iterations vs nonlinear iteration index in the solution of Example 2 discretized by
3D FE. The initial preconditioner is ILU(0) (left) and AINV(0.03) (right).

The initial preconditioner does not remain a good preconditioner for the subsequent iter-
ations as confirmed by the first row in Tables 5.5 and 5.6. The Broyden correction produces
a reduction in the number of linear iterations and CPU time with respect to the ILU (AINV)
preconditioner for small values of

E�Á0Â`Ã
. Also, the proposed preconditioner is more efficient

than simply computing selectively ILU or AINV. Comparing for example the results in the
third and fifth rows of Table 5.6 we see that the Broyden acceleration reduces the linear iter-
ation from 705 to 448 (35% reduction) and the CPU time from 355.6 to 262.1 seconds (26%
reduction). Comparable reductions hold for the ILU(0) preconditioner.

6. Conclusions. We have proposed a family of preconditioners based on the Broy-
den secant update formula, with the aim of accelerating the convergence properties of a
given preconditioner during the nonlinear process. During the Newton iteration, starting
from a preconditioner I�K 2L approximating the inverse of the initial Jacobian matrix, a se-
quence of preconditioners I K 2& is defined, by taking into account information of the previous
nonlinear iterations. The developed theoretical analysis proves that the sequence satisfiesâÒâ >5,�I�K 2& �*&n� ! &H	 âÒâ BC< , with < that can be made arbitrarily small, depending on � L and I L .

The application of the proposed preconditioner may be memory and time consuming,
especially when

E
is large. However, compared with the standard procedure of computing the

preconditioner of choice at every Newton iteration, a limited memory variant of the proposed
approach provides an improvement of the performance. Experimental results on a number of
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large test problems, show substantial savings in terms of both iteration number and computing
time.

The algorithm described in this paper seems to be particularly appropriate for parallel im-
plementation. First, the improvement of the proposed preconditioner is important especially
when the computation of the initial preconditioner is costly, which is a common situation
when solving systems in a parallel framework. Second, the implementation of the Quasi-
Newton corrections as described in Section 4, being made up of a number of daxpys and
scalar products, can be parallelized in a straightforward manner. If the computation and ap-
plication of the initial preconditioner can be efficiently parallelized (which is the case for
approximate inverse preconditioners; see [1] for AINV or [4], [10] for other approaches), the
overall algorithm is completely parallel.

Acknowledgements. We would like to thank the referees and J. M. Martı́nez for their
suggestions that have improved the presentation of this paper.
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