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ON EXTREMAL PROBLEMS RELATED TO INVERSE BALAYAGE
�

MARIO GÖTZ
�

Dedicated to the memory of Professor Aurel Cornea
Abstract. Suppose � is a body in ��� , ���	� is compact, and 
 a unit measure on ��� . Inverse balayage

refers to the question of whether there exists a measure 
 supported inside � such that 
 and 
 produce the same
electrostatic field outside � . Establishing a duality principle between two extremal problems, it is shown that such
an inverse balayage exists if and only if������ ������������ � �"!$#�%'&)( �+*-,/.10325476
where the supremum is taken over all unit measures . on �8� and � � denotes the electrostatic potential of . .
A consequence is that pairs

! 
 6 � % admitting such an inverse balayage can be characterized by a 
 -mean-value
principle, namely, �9���:/�;�=< !?>@%BAC( < , 
 A �����:D��� < !?>@%
for all < harmonic in � and continuous up to the boundary.

In addition, two approaches for the construction of an inverse balayage related to extremal point methods are
presented, and the results are applied to problems concerning the determination of restricted Chebychev constants in
the theory of polynomial approximation.

Key words. Logarithmic potential, Newtonian potential, balayage, inverse balayage, linear optimization, dual-
ity, Chebychev constant, extremal problem.
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1. Introduction. In the classical physics interpretation, balayage refers to the process
of sweeping an electrical charge or gravitational mass distribution from the inside of a body
in Euclidean space to the surface or boundary of this body, such that the electrostatic or,
respectively, gravitational potential outside remains unchanged. Inverse balayage relates to
the inverse process posing the question which electrostatic charge or mass distribution inside
the body produces a given or measured potential outside.

To put this into mathematical terminology, denote by EGFIH?J@H�K the logarithmic FMLONQP8K or,
respectively, Newtonian kernel F�LSRUT8K

E	FMV-JXW"KZY[N \]]^ ]]_Q`$a8b
cd VfegW d J if L)NQPhJcd VSeiW d j�k1l J if LSRmTnJ

and, for each (finite Borel-) measure o , define the logarithmic or Newtonian potential byprq FMVBKsY[NutvE	FMV-JXW"K1L8owFxWyK FxV{z{| j K+}
Moreover, suppose ~��N�����| j , L�R�P , is a bounded open set, such that �B� is also
the boundary of the unbounded component of | j�� � . For simplicity of presentation and
formulation, assume that � is regular with respect to the Dirchlet problem. For the notion of�
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regularity and fundamental results from classical potential theory, we refer the reader to the
standard literature [5], [12], [14], [16].

Let ���;F�� K stand for the set of (say) unit Borel measures on ����| j , and suppose� z�����FM��K . The balayage of � to �B� is a unit measure �)N Bal F � JX�1��K on �1� such thatpr� FMVBK�N pr� FMVBK FxV�z�| j � ��K�}
Such a balayage always exists and can, for instance, be characterized in the following two
ways (for this and more, see [9, Sect.2], [14, IV � 1], [16, II.4]):

(i) Denote by �gFM��K the collection of all functions continuous on � and harmonic in
the interior � . Then ��N Bal F � JX�1��K is uniquely characterized by the fact that
integration leaves the class �iFM��K invariant:

t�� L8�)N t�� L � F � zC�gFM��KXK�}
In particular, it is necessary that�? "¡¢�£ supp ¤ �D¥ � FM¦§KZ¨ tv� L8�S¨ ©Xªy«¢@£ supp ¤ �D¥ � FM¦§K F � z5�gFM��KXK7}(1.1)

(ii) For (possibly signed) measures � � J � l define the (mixed) energy¬ � ��J � l�­ Y[N t p �¯® L � l(1.2)

(provided this quantity is well-defined). Then � is the unique unit measure on �1�
minimizing the energy ¬ o�e � JXoCe � ­
among all unit measures o on �1� .

Now, suppose to the contrary, that �uz°�±�;FM�1��K is given, and let ~²�N´³µ��� (or³�� � ). An inverse balayage to � on ³ is a unit measure � z¶�±��FM³fK such that �·N
Bal F � J¯�1��K . In other words, the potential of � can as well be produced by the more densely
concentrated charge or mass � . Clearly, the collection Bal

k � Fx�BJX³fK of such inverse balayages
is either empty or a convex set. However, the problem to find � z Bal

k � FM�¸J¯³fK is in general
ill-conditioned. Important questions are:

(i) For which pairs FM�¸J¯³fK is Bal
k � FM�¸J¯³fKh�N¹~ ?

(ii) Do there exist designated or canonical measures � z Bal
k � FM�¸J¯³fK which are in some

sense minimal (e.g., with respect to their support, i.e., mother bodies or materic
bodies; see [9], [10], [11], [13])?

The paper is organized as follows: In Section 2 we introduce two extremal problems re-
lated to inverse balayage and state their basic properties. Section 3 generalizes these extremal
problems and proves that their discrete versions are dual to one another. The key point is
an interpretation in terms of duality in classical linear optimization. Conclusions providing
characterizations for the existence of an inverse balayage on a given set to a given measure are
drawn in Section 4. In addition, two approaches for the construction of an inverse balayage
are presented. Finally, Section 5 is devoted to relating (restricted) Chebychev constants to
minimax problems from the theory of polynomial approximation.
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2. Extremal problems for potentials. Let �Sz{� � FM�1��K be fixed. In the following, we
will investigate the extremal problemº F p � JX�1��JX³fKZY[N ©Xªy«q £�» ® ¤?¼�½ ¥B¾ �? "¡¿;£�À p q FxWyK7eÁt p � L8osÂ(2.1)

and relate this to inverse balayage.
REMARK 2.1. Consider oÁN²o ¼�½ , the Robin equilibrium distribution of �1� [16] [12].

By Frostman’s theorem [6], which describes the Faraday cage effect in mathematical terms,
the potential

p q�ÃÅÄ
is constant on � . The corresponding value Æ ¼�½ is called Robin constant.

Then �? "¡¿;£�À p q�ÃÅÄ FxWyKwNÇÆ ¼�½ N t Æ ¼�½ L8�)N t p � L�o ¼�½ }
Consequently,

º F p � J¯�B��J¯³fKZRUÈ . On the other hand, if an inverse balayage to � on ³ exists,
then º F p � JX�1��J¯³fKZ¨mÈn}(2.2)

In fact, if � z Bal
k � Fx�BJX³fK , then for each unit measure oiz��±�;F��B��K ,t p � L�o�Nut p � L8o{Nut p q L � R¹t �? "¡¿;£�À p q FMWyKÉL � N �? "¡¿�£�À p q FxWyK7}

One result of this paper is that, under decent assumptions on ³ and � , (2.2) actually
characterizes those measures �Sz{���;F��1��K , which admit an inverse balayage on ³ (Theorem
4.1).

NOTATION 2.2. A sequence FMo-ÊyK of measures on | j is said to converge to a measure o
in the weak-star sense (symbol: oËÊ �Ì o ), if

` �?ÍÊ�Î�Ï t�Ð L8o�Ê�N t�Ð L�o
for all continuous functions Ð with compact support.

REMARK 2.3. If ³ is compact, then Bal
k � FM�¸J¯³fK is weak-star sequentially compact.

PROPOSITION 2.4. Suppose
p �

is continuous and let ³Ñ��� . There exists o � z���;F��1��K such that º F pn� JX�1��JX³fKwN �? "¡¿�£�À pnq�Ò FxWyK+eÁt pn� L�o � }
Indeed, every weak-star point of accumulation of any sequence Fxo+Ê¸KZ�m����FM�1��K withº F p � JX�1��JX³CKwN ` �$ÍÊ�Î�Ï ¾ �$ "¡¿�£�À p q;Ó FMWyK+e t p � L8o�Ê Â(2.3)

is such an extremal measure.
Proof. Let FMo Ê Kh�Ç� � FM�1��K with (2.3) and suppose o Ê Ê £�Ôe Ì o � in the weak-star sense

along some subsequence ÕÖ�Ø× . Note that by Helly’s selection theorem, such weak-star
points of accumulation do always exist. Then o � z�� � FM�1��K and, since

p �
is continuous,

` �?ÍÔSÙ Ê�Î�Ï t p � L8o�Ê�N t p � L8o � }(2.4)
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Moreover,

` �?Ím�$ "¡ÔOÙ Ê�Î�Ï �? "¡¿�£�À p q;Ó FxWyKs¨ �? "¡¿�£�À p q Ò FxWyK7}(2.5)

In fact, if (2.5) was not true, then for some ÚÛ�CÜ�È , some W�Ý�zU³ and ÞÇzßÕ sufficiently
large, p q�Ò FxW Ý K�àßÚ ��á P)â �? "¡¿;£�À p q�Ò FxWyK�àßÚ � â �? "¡¿�£�À p q Ó FxWyKs¨ p q Ó FxW Ý K7J
contradicting the fact that by weak-star convergencep q;Ó FxWyKwNÇt�E	FãH$JXW"K1L8o Ê Ê £�Ôe Ì tvEGFIH?JãWyK1L8o � N p q�Ò FMWyK
pointwise for W outside �1� . It follows from (2.3), (2.4), and (2.5) as well as from the defini-
tion of

º F p � JX�1��JX³fK thatº F p � JX�1��JX³fKZ¨ �? "¡¿�£�À p q�Ò FxWyK7eÁt p � L�o � ¨ º F p � J¯�B��J¯³fK7}
REMARK 2.5. o � is, in general, not unique. For example, consider ³ØN²ä�¦ Ý�å �¹� and��N²æ ¢Xç , the so-called harmonic measure of ¦�Ý . Note that æ ¢Xç N Bal F�è ¢Xç JX�1��K , where here

and in what follows, è ¢ãç denotes the unit point mass in ¦�Ý . Then, for all ogz{���;F��B��K ,�? "¡¢�£�À p q FM¦§KwN p q F�¦�Ý�K�N t p q L8è ¢ãç N t p q L���}
The approach to relate the inverse balayage problem with (2.1) is to consider a second

extremal problem è"F pn� JX�1��J¯³fKZY�N �$ y¡� £�» ® ¤ À ¥ ©Xªy«é�£ ¼�½ ä pr� FxVBK�e pn� FMVBK å }(2.6)

We will establish that the quantities (2.1) and (2.6) are dual perspectives of the same thing.
REMARK 2.6. By the domination principle [16] [12], it is clear that è"F p � J¯�1��JX³fKêRUÈ .

Moreover, è"F p � JX�1��J¯³fK�N�È if there exists an inverse balayage to � on ³ . Conversely, if�1� is also the boundary of the unbounded component of | j � � and if there is a � z�����FM³fK
such that ©Xªy«é�£ ¼�½ ä p � FMVBK7e p � FxV1K å NQÈnJ
then by the maximium principle, � is an inverse balayage to � . On the other hand, there are
simple examples when è"F p � J¯�B��J¯³fK=N¶È although an inverse balayage to � on ³ does not
exist. For instance, this is the case when � is the balayage to �B� of some Dirac measure è ¢
in ¦5z � � ³ , where ¦ is a point of accumulation of ³ and ³ is not ”vast” enough to carry
an inverse balayage to � . This is the reason why, henceforth, additional assumptions need to
be imposed on the set ³ .

PROPOSITION 2.7. Suppose ³ë� � is compact. There exists � � z����;F�³fK such thatè"F p � J¯�1��JX³fKwNì©Xªy«é�£ ¼�½fí p ��Ò FMVBKwe p � FxV1K�îQ}
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Indeed, every weak-star point of accumulation of any sequences F � Ê Ks�m� � F�³fK withè"F p � JX�1��JX³fKwN ` �?ÍÊ�Î�Ï ©Xªy«é�£ ¼�½ ä p �XÓ FxV1K7e p � FMVBK å(2.7)

is such a measure.
Proof. Suppose F � ÊyK{�ï���;F�³fK satisfies (2.7), and let � � be any weak-star point of

accumulation, say � Ê �Ì � � along Õ��·× . Then � � zð���;F�³fK , since ³ is compact. By the
classical Principle of Descent [16] [12],

` �?ÍG�? "¡ÔSÙ Ê�Î�Ï p��ãÓ FxV1KsR pr��Ò FxV1KÑFxVðz5| j K7}
Therefore,

` �$Ím�? "¡ÔSÙ Ê�Î�Ï ©Xªy«é�£ ¼�½ ä p �XÓ FxVBK�e p � FMVBK å Rñ©ãª'«é�£ ¼�½ í p ��Ò FxV1K7e p � FMVBK�î·}
Taking into account (2.7) and the definition of è"F p � J¯�1��JX³fK it follows thatè"F pn� J¯�1��JX³fKsR�©ãªy«é�£ ¼�½ í pr��Ò FxVBKwe pr� FMVBK î RUè"F pn� J¯�B��J¯³fK+}

REMARK 2.8. Again, � � is — in general — not unique. Note that any inverse balayage
to � on ³ (provided existence) is such an extremal measure.

3. Duality of the extremal problems. In order to derive a duality principle related to
inverse balayage, we start by formulating the previously introduced extremal problems (2.1)
and (2.6) in a slightly more general way.

Let ~��N·ò�J¯óv�m| j be (Borel-) sets, and let ôÉFIH?J@H�KõY8ò´ö�ó Ì |ø÷ðä;àrù å be a kernel,
which is continuous on ò�ö�ó as an extended real-valued function and, say, bounded from
below. For (finite Borel-) measures o on ò and � on ó , setú q FxWyKZY�NutvôÉFMV-JXW"K�L�owFMVBKûFMWfz�ó3K+J

ú � FMVBKsY[NQtüôÉFxVËJãWyKÉL � FxWyKÑFMV�z5ògK+}
If Ð is a measurable bounded real-valued function on ò , defineè"F Ð Jãò�J¯ó�KsY[N �? "¡� £�» ® ¤?ý ¥ ¾ ©Xªy«é�£�þ ä ú � FxV1K�e Ð FxVBK å Â F�ÿ�K
and º F Ð JãòðJXó�KsY[N ©ãªy«q £�» ® ¤ þ ¥B¾ �? "¡¿�£ ý ú q FxWyK+e t�Ð L�o Â } F�ÿ � K

NOTATION 3.1. We call FMÿ � K the dual problem associated with FMÿ�K .
REMARK 3.2. Note that in the subsequent statements one could assume Ð N�È by

considering �ôÉFxVËJãWyK)Y�NüôÉFxVËJãWyK e Ð FMVBK in FMÿ�K and FMÿ � K , respectively. We have chosen not
to do so, because the initial formulation is closer to the questions concerning the symmetric
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logarithmic or Newtonian kernel, and since F�ÿ�K has an interpretation as a problem of one-
sided approximation to a function Ð by potentials with respect to a general kernel. Moreover,
note that for ò � �mò and ó � �mó ,è"F Ð JXò � JXó�Ks¨mè"F Ð JXò�JXó � K7J º F Ð JXò � JXó�KZ¨ º F Ð Jãò�J¯ó � K7}

THEOREM 3.3. Suppose ò and ó are both finite sets. Thenº F Ð Jãò�J¯ó�K�N·è"F Ð Jãò�J¯ó3K7}
Proof. W.l.o.g. we may assume that at least one of the quantities in FMÿ�K or FMÿ � K is

finite. Write ò�N�ä�V � J@}�}@}�JãV ÊBå and óüNvä�W � J@}@}�}@JXW�� å . The extremal problem FMÿ�K can be
equivalently stated as the linear program Í��$ ���� H �
	�·H � R��� RGÈ FMÿ � K
with

�QN

������ e=ôÉFMV � JXW � K H�H@H e=ôÉFMV � JãW��hK c e c

...
...

...
...e=ôÉFMV Ê JXW � K H�H@H�e=ôÉFMV Ê JXW�� K c e cc H�H@H c È Èe c H�H@H e c È È
�������� J
�sN


������ e Ð FxV � K
...e Ð FxV Ê Kce c

�������� J � N

������ È

...Èà ce c
�������� }

Here, the first entries
� ��J@}�}@}DJ � � of the vector

� z{| ��� l are the masses that a unit measure� on ó associates with the points W"��J�}@}�}DJãW � , and the difference
� ��� �se � ��� l of two inter-

mediate variables is the maximum of ú � e Ð on ò . In linear optimization it is common to
associate with the linear program FMÿw��K the dual program F�ÿ �� K given byÍ���� � � H ú 	� � H ú ¨ �ú RUÈn} F�ÿ �� K
This is a reformulation of FMÿ � K with ú �;J@}@}�}DJ ú Ê being the masses that a measure o on ò
associates with the points V��;J�}@}@}@JãV¸Ê and ú Ê � � e ú Ê � l being the minimum of ú q on ó .

It is well-known [4, � 5.2] that admissible vectors
�

for FMÿ � K and admissible ú for F�ÿ �� K
are related via � � H � R�� � H ú }
In addition, if a solution

� �
to F�ÿ � K (or ú � to FMÿ �� K ) exists, then there exists also a solution ú �

to FMÿ �� K (or
� �

to FMÿ � K ) and the respective objective functions are the same, i.e.,� � H � � N�� � H ú � }
Since FMÿ��@K and FMÿ �� K have admissible vectors, each problem has a solution, and Theorem 3.3
is proved.
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Our next goal is to extend Theorem 3.3 also to non-finite sets.
LEMMA 3.4 (Principle of Descent). Suppose ò and ó are compact sets. Let FMV Ê KZ�mò

be a sequence converging to V and F � Ê'Kn������FMó)K converging to � in the weak-star sense.
Then ú � FMVBKs¨ ` �?Ím�$ "¡Ê8Î�Ï ú �XÓ FxVBÊ'K+}

Proof. The proof is classical (see [16, p.71]). From the Montone Convergence Theorem
and by weak-star convergence,ú � FxV1K N ` �?Í� Î � Ï t Í��?  F��uJÅôÉFxVËJãWyKãK�L � FMWyKN ` �?Í� Î � Ï ` �?ÍÊ�Î�Ï t Í��$  F��uJ¯ôÉFMV¸ÊÉJXWyKãKÉL � ÊÉFxWyKs¨ ` �?Ím�$ "¡Ê�Î�Ï ú �XÓ FxVBÊ'K+}

LEMMA 3.5. Suppose ò and ó are compact sets and that Ð is continuous. Thenè"F Ð JXò�JXó3KwN ©Xªy« "!$#�  "!
finite

è"F Ð Jãò � JXó�K�J º F Ð Jãò�J¯ó�K�N ©ãªy« "!$#�  %!
finite

º F Ð JXò � JXó3K+}(3.1)

Proof. First, assume to the contrary that the left-hand side equality in (3.1) does not hold.
Then there exists Ú l ÜmÈ such that for all finite sets ò � �	ò ,�$ y¡� £�» ® ¤?ý ¥ ©Xªy«é�£�þ ä ú � FxVBK�e Ð FMVBK å Ü �? "¡� ! £�» ® ¤?ý ¥ ©Xªy«é ! £�þ ! ä ú � ! FMV � K7e Ð FxV � K å àßÚ l }
Now, choose a sequence Fxò �Ê K of finite subsets of ò such that, say, dist FxVËJãò �Ê KZ¨ c á Þ for allV�z5ò . There are � Êfz{���;F�ó3K with�? "¡� £�» ® ¤?ý ¥ ©ãªy«é�£�þ ä ú � FMVBK7e Ð FxV1K å Ü ©Xªy«é ! £�þ !Ó ä ú �XÓ FxV � K�e Ð FMV � K å àøÚ l }
By Helly’s Selection Theorem, there exists a weak-star limit � � N ` �?Í Ê £'& � ÊÇz ����FMó)K
along some subsequence (U�U× . Let V � z�ò be such thatú � Ò FMV � K7e Ð FxV � KZÜ ©Xªy«é ! £�þ !Ó ä ú �XÓ FxV � K�e Ð FMV � K å àøÚ l á P(3.2)

and choose V �Ê ziò �Ê converging to V � . By the Principle of Descent (Lemma 3.4) and sinceÐ is continuous on ò ,

` �$Ím�$ y¡&1Ù Ê�Î�Ï ä ú � Ó FxV �Ê K+e Ð FMV �Ê K å R ú � Ò FxV � K�e Ð FMV � K7}
This contradicts (3.2).

Now, assume that the second equality in (3.1) does not hold, sayº F Ð JXò�JXó)KZÜm©Xªy«þ ! º F Ð Jãò � JXó)K-àøÚ�)
with Ú')nÜUÈ . Let oiz�����FxògK be such that�$ y¡¿�£ ý ú q FxWyK+e tüÐ L8oßÜG©Xªy«þ ! ©ãªy«q ! £�» ® ¤ þ ! ¥ ¾ �$ y¡¿;£ ý ú q ! FxWyK+e t�Ð L�o � Â àøÚ')s}
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There exist finite sets ò �Ê �	ò and measures o �Ê z�� � Fxò �Ê K converging to o in the weak-star
sense. Take W Ê z�ó such that�? "¡¿�£ ý ú q FxWyK7e t�Ð L8ogÜ ú q !Ó FMW�ÊyK7e t�Ð L�o �Ê àøÚ�)ê}(3.3)

Since ó is compact, we may w.l.o.g. assume that WQN ` �$Í W �Ê z¶ó exists. Then by the
Principle of Descent, weak-star convergence and (3.3),ú q FxWyK+eÁt Ð L�oi¨ ` �?ÍG�? "¡Ê�Î�Ï ú q !Ó FxW �Ê K�eøt Ð L8o �Ê ¨ �? "¡¿�£ ý ú q FxWyK7eÁt Ð L�o�egÚ ) J
giving again a contradiction.

LEMMA 3.6. Suppose that ò and ó are compact sets and that Ð is continuous. Assume
that ôÉFIH?J@H�K is finite on ò±ö�ó . Thenè"F Ð JXò�JXó)KwN �? "¡*+!$#�** !

finite

è"F Ð JXò�JXó � K7J º F Ð JXò�JXó3K�N �? "¡*,!-#�** !
finite

º F Ð Jãò�J¯ó � K+}(3.4)

Proof. Assume contrary to the first equality in (3.4) that for some Ú�.rÜUÈ ,è"F Ð JãòðJXó�Ksâ �$ "¡* ! #�**/!
finite

è"F Ð Jãò�J¯ó � K+eðÚ . }
Then there exists � z�� � FMó)K such that for each finite set ó � �mó and every � � z�� � FMó � K ,©ãªy«é�£�þ ä ú � FMVBK7e Ð FxV1K å â¶©Xªy«é�£�þ ä ú � ! FMVBK7e Ð FxV1K å egÚ . }(3.5)

Now, choose a sequence of finite sets ó �Ê �Gó and measures � �Ê z����;F�ó �Ê K such that � �Ê Ì �
in the weak-star topology. By (3.5) there exist V �Ê z�ò with the property that©Xªy«é�£�þ ä ú � FMVBKwe Ð FMVBK å â ú � !Ó FxV �Ê K7e Ð FxV �Ê K+eðÚ . }(3.6)

Since ò is compact, we may w.l.o.g. assume that V � N ` �?Í V �Ê zÇò exists. Taking into
account that ú � !Ó Ì ú � uniformly on ò (recall that ôÉFãH$J�H K is assumed finite and continuous
on ò±ö�ó ) as well as the continuity of Ð , we deduce

` �?ÍÊ�Î�Ï10 ú � !Ó FxV �Ê K7e Ð FxV �Ê K323N ú � FMV � K7e Ð FxV � K7J
which contradicts (3.6). Thus, the first equality in (3.4) holds.

Now, assume that the second equality in (3.4) does not hold, say, there exists Ú�4nÜGÈ such
that ©Xªy«q £�» ® ¤ þ ¥ ¾ �? "¡¿�£ ý ú q FxWyK7e t�Ð L�o Â â ©Xªy«q ! £�» ® ¤ þ ¥ ¾ �$ y¡¿ ! £ ý ! ú q ! FMW � K7e t�Ð L8o � Â egÚ 4
for all finite sets ó � �uó . Choose a sequence ó �Ê �uó of finite sets such that dist FxW1JXó �Ê Kh¨c á Þ for all Wfz�ó . Then there are measures o Ê z{� � FMògK with

©Xªy«q £�» ® ¤ þ ¥ ¾ �$ "¡¿;£ ý ú q FMWyK+e tüÐ L8o Â â �$ "¡¿ ! £ ý !Ó ú q Ó FMW � K7e t�Ð L8o�Ê3egÚ 4 }(3.7)
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By Helly’s Theorem, there exists a weak-star limit o � N ` �?Í &1Ù Ê�Î�Ï o Ê along some subse-
quence (Ç�Q× . Since ú q;Ó Ì ú q Ò along ( uniformly on ó and because ú q Ò is continuous onó , we deduce that

` �?Í&1Ù Ê8Î�Ï ¾ �$ "¡¿ ! £ ý !Ó ú q;Ó FMW � K+e t�Ð L�o�Ê�ÂÁ¨ �? "¡¿�£ ý ú q�Ò FxWyK7e t�Ð L8o � J
contradicting (3.7). This completes the proof of Lemma 3.6.

THEOREM 3.7. Suppose that ò and ó are compact sets and that Ð is continuous.
Assume that ôÉFãH$J�H K is finite on ò´ö5ó . Thenº F Ð Jãò�J¯ó3KwNQè"F Ð JXò�JXó�K�}

Proof. By Lemma 3.5, Lemma 3.6, and Theorem 3.3,º F Ð JãòðJXó�K N �$ "¡* ! #�**/!
finite

º F Ð JXò�JXó � KwN �$ y¡* ! #�**/!
finite

©ãªy« ! #�  "!
finite

º F Ð JXò � JXó � K
N �$ "¡*,!5#�**/!

finite

©ãªy« ! #�  "!
finite

è"F Ð Jãò � JXó � KwN �$ "¡*,!$#�**/!
finite

è"F Ð Jãò�J¯ó � KwN¹è"F Ð Jãò�J¯ó�K7}
COROLLARY 3.8. Suppose ³�N ³ �m� and that

p �
is continuous on �B� . Thenº F pr� J¯�1��JX³fKwNQè"F pn� JX�1��J¯³fK7}

Proof. Since �1�165³üNQ~ , the kernel ô�FIH?J@H�K�NÇE	FIH?J@H�K is finite on ò´ö5ó¶NÇ�1�°ö5³ so
that Theorem 3.7 can be applied to Ð N p � .

It is natural to consider also a corresponding problem where the infimum and supremum
in the definition of è"F Ð JãòðJXó�K are exchanged. With the same approach one can deduce

THEOREM 3.9. Suppose ò and ó are both finite sets. Then�? "¡q £�» ® ¤ þ ¥ ¾ ©ãª'«¿�£ ý ú q FxWyK7eÁt Ð L�osÂiN ©Xªy«� £�» ® ¤ ý ¥�¾ �? "¡é�£�þ ä ú � FxVBK�e Ð FMVBK å Â²}(3.8)

Outline of a proof of Theorem 3.9. Multiply both sides of (3.8) by e c . Writing ò Nä�V � J�}@}@}�JãV ÊBå and ó�N°ä�W � J�}@}@}�JãW�� å , the linear program associated with the negative right-
hand side of (3.8) is Í��$ ���� H �
	�·H � R7�� RGÈ FMÿ �� K
with

�ÇN

������ ô�FxV � JãW � K H@H�H�ôÉFxV � JXW��hK e c c

...
...

...
...ôÉFxVBÊÉJãWÛ�@K H@H�H�ôÉFxVBÊÉJãW � K e c cc H@H�H c È Èe c H@H�H e c È È
� ������ J��sN


������ Ð FxV � K
...Ð FxVBÊyKce c

� ������ J � N 
������ È
...Èà ce c
� ������ }
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The corresponding dual program is a reformulation of the negative left-hand side of (3.8).
Everything else works as in the proof of Theorem 3.3.

THEOREM 3.10. Suppose that ò and ó are compact sets and that Ð is continuous.
Assume that ôÉFãH$J�H K is finite on ò´ö5ó . Then�? "¡q £�» ® ¤ þ ¥ ¾ ©Xªy«¿�£ ý ú q FMW"K�eøt Ð L8osÂiN ©ãªy«� £�» ® ¤?ý ¥ ¾ �$ y¡é�£�þ ä ú � FxV1K7e Ð FxVBK å Â²}

Theorem 3.10 follows from Theorem 3.9 in much the same way as Theorem 3.7 follows
from Theorem 3.3. We do not dwell on the proof.

Reformulating the extremal problem by taking the absolute value in the definition ofè"F Ð JXò�JXó�K one can apply the same method to obtain
THEOREM 3.11. Suppose ò and ó are both finite sets. Then

©Xªy«8 ®:9 8�;�<>= ®@?  BA8 ®@C 8�;�D ç ¾ �$ y¡¿�£ ý ú q ® FxWyK7e ú q�; FxWyK7eÁt Ð L¸FMo � ero l K�Â
N �? "¡� £�» ® ¤?ý ¥ ¾ ©ãªy«é�£�þ d ú � FMVBKwe Ð FMVBK d Â²}(3.9)

Outline of a proof of Theorem 3.11. Writing ò�N�ä�VÉ��J�}@}@}@JãV¸Ê å and ó¶N�ä�WÛ��J@}@}�}@JXW � å ,
(3.9) follows from a consideration of the linear programÍ��$ ���� H �
	�·H � R��� RGÈ F�ÿ � �� K
with

�QN

�������������
e=ôÉFMV1��JXWÛ�DK H�H@H e=ôÉFMV1��JãW � K c e c

...
...

...
...e=ôÉFMV¸Ê1JXWÛ�DK H�H@H�e=ôÉFMV¸ÊÉJXW � K c e cànôÉFMV � JXW � K H�H@H�ànôÉFMV � JãW��hK c e c

...
...

...
...ànôÉFMV Ê JXW � K H�H@H±ànôÉFMV Ê JXW�� K c e cc H�H@H c È Èe c H�H@H e c È È

� ������������� J
�sN

�������������
e Ð FxVÉ�DK

...e Ð FxVBÊyKà Ð FxV � K

...à Ð FxV Ê Kce c

� ������������� J � N

������ È

...Èà ce c
� ������ }

Considering the corresponding dual program, the proof of Theorem 3.11 follows the same
lines as the proof of Theorem 3.3.

THEOREM 3.12. Suppose that ò and ó are compact sets and that Ð is continuous.
Assume that ôÉFãH$J�H K is finite on ò´ö5ó . Then

©Xªy«8@® 9 8 ; <>=�® ?  BA8@® C 8 ; D ç ¾ �? "¡¿�£ ý ú q�® FMW"K�e ú q ; FxWyK7e t�Ð LBFxoË�§ero l K�ÂiN �? "¡� £�» ® ¤?ý ¥ ¾ ©Xªy«é�£�þ d ú � FxV1K7e Ð FxVBK d Âf}
Since Theorem 3.12 follows from Theorem 3.11 just as Theorem 3.7 follows from The-

orem 3.3, we omit the proof and leave the details to the reader.
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4. Characterization for the existence of an inverse balayage. Recall that, for simpli-
fication, �B� is assumed to be also the boundary of the unbounded component of | j � � . For
the same reason, we will impose the natural assumption that

p �
is continuous on �B� , and

thus in all | j .
THEOREM 4.1. Suppose ³ N ³ �ë� and that

p �
is continuous on �1� . Then the

following statements are equivalent:
(i) Bal

k � Fx�BJX³fKh�NQ~ .
(ii) è"F p � JX�1��J¯³fK�N·È .

(iii)
º F p � JX�1��JX³fKwNQÈ .

Proof. It remains to prove (ii) E (i). By Proposition 2.7, there exists � � z����;F�³fK such
that ©Xªy«é�£ ¼�½fí p � FxVBK�e p ��Ò FxVBK�î�N¹Èn}
In particular,

p � ¨ p ��Ò on �1� . Now, � Y[N p ��Ò e p � is harmonic in | j � � , continuous on| j � � with non-negative boundary values on �1� . Moreover,\^ _ � F9ùGK�N·ÈnJ if L3NÇPhJ
` �?ÍF é F Î�Ï d V d j�kBl � FxV1K�N·ÈnJ if LORUTn}

By the Minimum Principle, � N�È in | j � � . Consequently, � � is an inverse balayage to � .
A reformulation of (i) G (iii) is
COROLLARY 4.2. The measure � with continuous potential does admit an inverse bal-

ayage on ³vN ³ �m� if and only if the mean-value inequality�? "¡¿;£�À prq FxWyKZ¨ t pnq L8�
holds for every measure o on �1� .

Similarly, one can deduce the following consequence of Theorem 3.10.
COROLLARY 4.3. The measure � with continuous potential does admit an inverse bal-

ayage on ³vN ³ �m� if and only if the mean-value inequality©ãªy«¿;£�À p q FxWyKZR t p q L8�
holds for every measure o on �1� .

The following corollary shows that the existence of an inverse balayage is equivalent to
a mean-value inequality in the space of harmonic functions.

COROLLARY 4.4 (Mean-Value Inequality Property). The measure � with continuous
potential does admit an inverse balayage on ³ N ³�� � if and only if the mean-value
inequality �? "¡¿�£�À � FMW"KZ¨ t�� L��S¨�©Xªy«¿�£�À � FxWyK(4.1)

holds for every function � harmonic in � and continuous on � .
Proof. First, suppose � � z Bal

k � Fx�BJX³fK . Then, for every � zf�iFM��K (see (1.1)),t�� L��)N t�� L � � zIH �$ y¡¿�£�À � FxWyK/J�©Xªy«¿�£�À � FxWyKKJ	}
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Conversely, suppose that (4.1) holds, and let o·zG� � FM�1��K be arbitrary. Since
p q

is lower
semi-continuous, there exists a sequence F � Ê K��²�gFM��K such that � ÊML p q on �1� . By the
Monotone Convergence Theorem,

` �$ÍÊ�Î�Ï t�� ÊhL8�)N t p q L��(4.2)

and in the same way, for all ¦Sz5� ,� ÊÉFM¦§KwN tü� ÊnL�æ ¢ Ì t p q L�æ ¢ N p q FM¦§K+J
where æ ¢ denotes the harmonic measure. Since ³ is compact, the latter implies that

` �$Ím�$ y¡Ê�Î�Ï �? "¡¿�£�À � Ê FMWyKsR �$ y¡¿�£�À p q FMWyK7}(4.3)

The assertion follows from (4.1), (4.2), (4.3) and Corollary 4.2.
REMARK 4.5. Independently, Sjödin [15] has applied operator theory to the inverse bal-

ayage problem, from which an alternative proof for Corollary 4.4 can be obtained: Suppose
first that the compact set ³ is so large that every function � z��gF���K is uniquely determined
by its values on ³ , e.g., if the interior of the intersection of ³ with every component of �
is non-empty. Despite slight modifications, the following reasoning is essentially due to [15,
p.252]. If (4.1) holds, then the linear functionalN F � KwN tü� L�� F � zC�gFM��KXK
satisfies d N F � K d ¨²©Xªy«é�£�À d � FMVBK d F � zC�gF���KãK7}
Considering �gFM��K a subspace of O�FM³CK , by the Hahn-Banach Theorem one may extend

N
to

a linear functional on O�F�³fK such thatd N F Ð K d ¨²©Xªy«é�£�À d Ð FxVBK d F Ð zPO�F�³fKãKw}
By the Riesz Theorem, there exists o on ³ withN F Ð K�NÇt Ð L8o F Ð zQO�FM³fKXK�}
In particular, o is the desired inverse balayage of � to ³ . Finally, in the situation of general
compact ³ one may apply the previous reasoning to ³fÊON²ä�V�z���Y dist FxVËJX³fKê¨ c á Þ å , letÞ tend to ù and apply an argument involving weak-star compactness (Remark 2.3), treating
separately the case when some component of � does not intersect with ³ .

EXAMPLE 4.6. Let ¦ßzm� and take ³´Nïä�¦ å . By Corollary 4.4, a measure � on �1�
admits an inverse balayage on ä�¦ å if and only if� F�¦ÛKwN t�� L��
for all � z��gFM��K . This is the well-known characterization of the harmonic measure �fNÇæ ¢
by the mean-value principle.

REMARK 4.7. Corollary 4.2 states that an inverse balayage to �øzU�±�;F��1��K on ³�N³��Ç� exists if and only if for all unit measures o on �1� there exists W�zg³ such that (see
(1.2)) ¬ o�Jã��egæ ¿ ­ RUÈn}
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REMARK 4.8. (Construction of an inverse balayage). Suppose ~��N�³ � � . The
considerations in Section 3 suggest to use the following approach in order to construct an
inverse balayage to given �fz5�±�;FM�1��K :
Step 0. Choose discretizations ò±NÇò Ê �¹�1�Çó�NuóR�°�Q³ consisting of Þ , respectivelyS points, such that they are asymptotically dense in the respective sets.
Step 1. Solve the corresponding problem F�ÿ � K (or FMÿ �� K or FMÿ � �� K ) of linear optimization for

the coefficients
� � J@}�}@}@J � � . Note that

�+T N �UT FMò Ê JXó%�hK .
Step 2. Consider the measures � � N �VTXW � � T è ¿XY z����;FM³CK

and let Þ�J S Ì ù . If ³ is compact and if Bal
k � Fx�BJX³CKO�N�~ , then each weak-star

point of accumulation will be an inverse balayage to � on ³ .
If the problem FMÿ � K is chosen for the optimization process, then the discrete masses

�RT è ¿ Y
will rather tend to stay away from �1� as the sets ò Ê get more dense, while the continuous for-
mulation of the extremal problem cannot distinguish between any two inverse balayages. One
may therefore be led to conjecture that the corresponding weak-star points of accumulation
of the � Ê are in some sense minimal inverse balayages. This should be compared to results of
Gustafsson [11] who has shown that for convex polyhedra �1� in | j and � being the surface
measure on �B� , there does exist an inverse balayage in the interior � with minimal support
(a so-called mother body), and it is supported by hyperplanes consisting of those points in-
side having at least two closest neighbours on �1� . The numerical behavior of the proposed
algorithm is not considered in this paper, it will be the topic of future research. As pointed out
by one of the referees, it may also be useful to incorporate a priori information of the inverse
balayage measure in order to obtain good approximations in practical applications.

REMARK 4.9. A similar approach is not to associate optimal masses with given points,
but given (equal) masses with optimal points:
Step 1’. Let S R c and choose W§��J�}@}�}@JãW � z�³ such that

©Xªy«é�£ ¼�½
\^ _ cS �VTXW � EGFxW T JXVBK7e p � FxV1K'Z [\(4.4)

is minimal with respect to all (not necessarily distinct) possible points on ³ .
Step 2’. Consider the measures � Ê N cÞ ÊVTXW � è ¿ Y z5� � FM³fK7}

If ³ is compact and if Bal
k � Fx�BJX³CK �NQ~ , then each weak-star point of accumulation

will be an inverse balayage to � on ³ .
Again, the extremal problem defining the points W T is such that they tend to stay away from�1� . Examples of Borodin [3] give further evidence for the above conjecture: Let ³�Nuä d ¦ d ¨c å �¶| l and suppose � is the equilibrium distribution of ³ . For �1�ëNv�1³ , the points W T
coincide with the origin, a phenomenon that, by the maximum principle, can be generalized
to arbitrary lemniscatic regions. For �1�¶Nu�1³²÷gä�È å the points W T are dilated (and possibly
rotated) roots of unity. Moreover, if �B���ü| l is a smooth Jordan curve, then the quality
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of approximation of an inverse balayage to � by � Ê can be quantified in relating (4.4) to the
discrepancy ³M] �¸JU^� ÊU_-Y[N·©Xªy«Éä d �1Fa`-K7eb^� ÊÉFc`�K d Yd` any subarc of �1� å J
where ^� Ê stands for the balayage of � Ê to �1� (cf. [1],[2],[8]).

5. Application to polynomial approximation. Denote by e Ê FM� K the set of monic
(complex) polynomials of exact degree Þ	R c having all zeros in ���gf . For h Ê zie Ê F�� K ,
let �kj Ó z�� � F�� K stand for the corresponding normalized zero counting measure associating
equal mass

c á Þ with each zero of h Ê (taking into account multiple zeros). Then polynomials
are related to potentials by the simple identityp �cl Ó FM¦§KwN `?a�b cd h Ê FM¦§K d �:m¯Ê FM¦�zQf�Ks}

Let ~C�N·òðJXó°�nf and suppose o is a function positive and (say) continuous on ò .
DEFINITION 5.1. The numberpcq Fxò�J¯ó3KZY[N ` �?Í ©Xªy«Ê8Î�Ï Ór �? "¡s Ó £'t Ó ¤?ý ¥ ©Xªy«é�£�þ d u ÊÉFxV1KUo Ê FMVBK d(5.1)

is called restricted (weighted) Chebychev constant for the pair Fxò�J¯ó3K .S q FMò�JXó)KZY�N ` �?Í ©ãªy«Ê�Î�Ï Ór ©Xªy«j Ó £'t Ó ¤?ý ¥ �? "¡é�£�þ d h¸ÊÉFxV1KUo Ê FxVBK d(5.2)

is referred to as restricted (weighted) Maximin constant for the pair FxòðJXó3K .
REMARK 5.2. Note that (5.2) can be interpreted as a Chebychev problem for recipro-

cals of monic polynomials. In fact, denoting by vCÝ3w ÊÉFMó3K the set of reciprocals of monic
polynomials of degree Þ with all poles in ó ,cS q Fxò�J¯ó3K N ` �?ÍG�? "¡Ê�Î�Ï Ór �? "¡x Ó £'y ç C Ó ¤?ý ¥ ©Xªy«é�£�þ d z Ê�FxV1K+o k Ê FxV1K d }

The restricted Chebychev and Maximin constant, respectively, can be related to corre-
sponding dual extremal problemsp �q Fxò�J¯ó3KZY[N ` �$Í ©Xªy«Ê�Î�Ï Ó{ �? "¡s Ó £'t Ó ¤ þ ¥}| ©ãª'«¿�£ ý d u Ê-FxWyK dc~ � « | Þ t `?a�b oÁL � s Ó+���(5.3)

and S �q Fxò�J¯ó�KZY[N ` �$Í ©Xªy«Ê8Î�Ï Ó{ ©Xªy«j Ó £'t Ó ¤ þ ¥ | �? "¡¿�£ ý d h Ê FMWyK da~ � « | Þ�t `$a8b oÁL �3j Ó ���(5.4)

by means of
PROPOSITION 5.3. Suppose ò and ó are compact and disjoint. Then the limits in

(5.1)-(5.4) exist andp q FxòðJXó3KwN S �q FMò�JXó)K+J S q Fxò�J¯ó�K�N p �q FMò�JXó)K+}
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Proof. Let Ð Y�N `?a�b o . By simple calculation,�? "¡j Ó £'t Ó ¤?ý ¥ ©Xªy«é�£�þ ä p �cl Ó FxVBKwe Ð FMVBK å N�e `?a�b�� ©Xªy«j Ó £'t Ó ¤?ý ¥ �$ "¡é�£�þ d h Ê FxVBK+o Ê FxV1K d � �Xm¯Ê(5.5)

and ©Xªy«s Ó £'t Ó ¤ þ ¥B¾ �? "¡¿�£ ý pr�X� Ó FxWyK7e tvÐ L � s Ó Â
N e `$a8b | �$ "¡s Ó £'t Ó ¤ þ ¥}| ©Xªy«¿�£ ý d u ÊÉFxWyK dc~ � « | Þ t `?a�b oÁL � s Ó ����� �XmXÊ }(5.6)

Now, it is not hard to see that the left-hand side in (5.5) converges to è"F Ð JXò�JXó�K , and the
left-hand side in (5.6) converges to

º F Ð JXò�JXó�K . By Theorem 3.7, the limits coincide, and the
second assertion of Proposition 5.3 is proved. The same way, the first assertion of Proposi-
tion 5.3 follows from Theorem 3.10.

COROLLARY 5.4. Suppose ò and ó are compact and disjoint. In the unweighted caseo�� c the restricted Chebychev- and Maximin-problems are asymptotically dual in the sense
that p �;FMò�JXó�K N S �;FMó JãòiK+}

REMARK 5.5. Suppose ò �°ó . Then S � F�ó�JXògKrN�È , while
p � FMò�JXó3KS�N�È providedò is sufficiently large, i.e., of positive logarithmic capacity. Therefore, in Proposition 5.3

the condition that ò and ó are disjoint cannot be dropped without further assumptions. On
the other hand, it can be deduced from [3] and [16, Theorem III.3.1] that if ò is the closure
of a simply connected bounded domain and ó�N��Bò , then

p � Fxò�J¯ó3KfN S � FMó JãògK . The
corresponding relation between inverse balayage and the asymptotics of (weighted) Maximin
polynomials from polynomial approximation is described in [7].
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[15] T. SJÖDIN, Quadrature identities and deformation of quadrature domains, Oper. Theory Adv. Appl., 156

(2005), pp. 239–255.
[16] E. B. SAFF AND V. TOTIK, Logarithmic Potentials with External Fields, Springer, Heidelberg, 1997.


