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UNIFORMLY CONVERGENT DIFFERENCE SCHEME FOR SINGULARLY
PERTURBED PROBLEM OF MIXED TYPE*

ILIYA A. BRAYANOV'

Abstract. A one dimensional singularly perturbed elliptic problem with discontinuous coefficients is consid-
ered. The domain under consideration is partitioned into two subdomains. In the first subdomain a convection-
diffusion-reaction equation is posed. In the second one we have a pure reaction-diffusion equation. The prob-
lem is discretized using an inverse-monotone finite volume method on Shishkin meshes. We establish an almost
second-order global pointwise convergence that is uniform with respect to the perturbation parameter. Numerical
experiments that support the theoretical results are given.
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1. Introduction. Let us consider the following one dimensional elliptic problem

(1.1) L u=—eu" +r(@) +qlz)u= f(z), z€ Q =(0,9),
(1.2) Ltu=—eu" +q(z)u = f(z), z € QF = (£,1),

(1.3) [u],—e =u(§ +0) —u((-0)=0, [u]=¢ =0,

(1.4) u(0) = o, u(l) =1,

where 0 < € << 1 and
(1.5) 0<ro<r(@)<r, 0<q<aq@) <a.

The functions ¢ and f could be discontinuous at the interface point £. Note that the sign
pattern of the convection coefficients is essential for the behavior of the solution; see [7, 8]
for more detailed discussion for convection-diffusion problem with discontinuous convection
coefficient. The solution of this problem has a boundary layer at x = 1 and interior layers
with different widths at z = £. In Q~, where convection-diffusion problems are present, the
width of the layer is O(g). Since the convection coefficient is positive, the characteristics of
the reduced problem point toward the interface point and an interior layer appears on the right
part of the boundary of Q~. In O, we have a reaction-diffusion problem. Now the reduced
problem is of zero order and boundary layers of width O(+/€) appear on both boundaries of
QF. The character of the layers can be readily seen on Fig. 6.1 below.

There is a vast literature dealing with convection-diffusion and reaction-diffusion prob-
lems with smooth coefficients and smooth right hand side (see [10, 11, 13, 17] for surveys),
but there are only a handful of papers dealing with problems with discontinuous coeffi-
cients. Such problems usually present interior layers. The one dimensional convection-
diffusion problem with discontinuous input data is discussed recently by several authors;
see [4,7, 8,9, 10, 15] and references there. The one dimensional reaction-diffusion problem
with discontinuous input data and concentrated source is discussed in [6, 12, 14].

Our objective in this paper is to derive global pointwise convergence of almost second
order that is uniform with respect to the small parameter . We construct partially uniform
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Shishkin meshes in each subdomain Q= and QF. The resulting global mesh is condensed
closely to the boundary and interior layers. To derive a uniform difference scheme we use an
inverse-monotone finite volume discretization on layer adapted meshes. To obtain a second
order scheme in 2~ we use a modification of the monotone Samarski’s scheme analogous
to [4] . In QF, where a reaction-diffusion problem is present, we modify the scheme at the
interface point, similarly to [5]. To prove e-uniform convergence we use two types of tech-
niques. The first one uses the discrete Green function to obtain a hybrid stability inequality
that shows that the maximal nodal error is bounded by a discrete L; norm of its truncation
error. A result like this is proved by Andreev in [1, 2] and used later in [3] to prove second
order e-uniform convergence in maximum norm for convection-diffusion problem. The sec-
ond one uses the embedding inequality and estimates in negative norm to prove second order
uniform convergence for reaction-diffusion problem on non-uniform meshes; see [16]. This
technique is used in [3, 5] to prove almost second order e-uniform convergence in maximum
norm, for the corresponding problems.

An outline of the paper is as follows. In Section 2, we describe some properties of the
differential solution, construct Shishkin decomposition of the solution, and derive € uniform
bounds for their derivatives. In Section 3, we construct Shishkin mesh condensed near the
boundary and interface layers and obtain a finite volume difference scheme. Some a priori
bounds of the discrete problem are given in Section 4. The uniform convergence of the
constructed scheme is proved in Section 5. In Section 6 we give some numerical experiments
that support the theoretical results.

2. Properties of analytical solution. In this section we establish some properties of
solution to problem (1.1)-(1.4) to be used in the analysis of difference scheme. We begin
with the existence of a solution of a problem (1.1)-(1.4).

LEMMA 2.1. Suppose that

2.1 re C*2(Q7), ¢, f € C* Q- UQt), k> 2 — integer.

Then, problem (1.1)-(1.4) has a solutionu € C*(Q) N C*(Q~ U Q™).
Proof. The construction of a solution is similar to that described in [4] for a convection-
diffusion equation. Let y; and y» be particular solutions to the differential problems

L yy=f,zeQ, Lty,=,z€Q".
Consider the function

y(z) = { y1(z) + (Yo — y1(0))p1(z) + (A — y1(£))p2(
y2(2) + (Y1 — y2(1))pa(z) + (4 — y2(§))ps(2), 2 € QF,

where the functions ¢;, (i = 1,2, 3, 4) satisfy the problems

L7¢;=0,i=12, ¢1(0) =1, p1(§) = 0, o2
L+S0i = 0) i= 354a @3(5) = 07 (P3(1) = 07 (P4(£) = 05 (104(1) =

&
S
m
=

From (2.1) follows that the functions ¢; (i = 1,2, 3, 4) exist and have derivatives up to order
k within their domains. By the maximum principle, 0 < ¢; <1 (i = 1,2,3,4) and

(2.2 V3 <0, @y, 05 >0.

The second conjugation condition in (1.3) yields the following condition for A:
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Alp5(8) = @5 ()] = y2(§) —y1(8) + [t — y2 (D] (&)
= [0 — 51 (0)]1 (&) +51(&)¥(&) — y2(&) w5 (6)-

By virtue of (2.2), A is uniquely defined. O

The uniqueness of the solution follows from Lemma 2.2 below.

LEMMA 2.2. (the maximum principle). Suppose that a functionw € C°(Q)NC?(Q~ U
OF) satisfies

L w(z) <0,2€Q", Ltw(x) <0, zeQr,
[wl]zZE Z 05 U}(O) S 05 U}(].) S 0;

thenw < 0 forall z € Q.

Proof. Let xo be a point at which w attains its maximal value in Q. If w(zg) < 0,
there is nothing to prove. Suppose therefore that w(zg) > 0, the proof is completed by
showing that this leads to contradiction. With the above assumption on the boundary value,
either zg € O~ U QT orzg = £ If 39 € QF then w'(z) < 0, w'(x9) = 0. Therefore
L*w(zg) > 0, which is a contradiction.

The only possibility remaining is that zo = £. There are two possible cases.

1. The function w(z) is not differentiable at . Since z is a point at which w attains
its maximal value, then w'(zo — 0) > 0, w'(zo + 0) < 0 and [w'];—2, < 0, which is the
required contradiction.

2. The function w(z) is differentiable at z9. Then w'(zg) = 0 and there exists a
subinterval o5 = {z € (29,20 + 6),6 > 0} such that

w(z) > 0, and w(x) < w(xg), Vz € 05.
Let z1 € os. There exists s € o, such that

’UJI(.TQ) — ’LU(.’L'l) - UJ(IL'()) <0,
1 — Xo

and z3 € o}, satisfying

w'(22) — w'(20)
2 — Xo

w'(z3) = <0.
Then z3 € QF and Ltw(x3) > 0, which is the required contradiction. O
Denote by ||.[|,__ g, the maximum norm in €. An immediate consequence of the maxi-

mum principle is the following stability result.
LEMMA 2.3. Letu € C°(Q) N C%(Q~ U Q) be a solution of problem (1.1)-(1.4), then

Wl @
(2.3) lull; ) < max {|¢o|, ol === 0
and
(2.4) lu®(z)| < C(14+e* e (z,8)), 2€Q,
2.5) u® (z)] < C (1 + E_k/26+(w,s)) L zeq’,
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where
_ (€ — 2)ro
e e e (~EET0) et o0) = el (09) + e ),

eH(a,e) = exp (__&z;%§%;£§§>, et (@,e) = exp (-_§1:}§%31§§>,

and C' is independent of € positive constant.
Proof. Put ¥y (z) = —M =+ u, where M = max{||zp0||,||w1||,”f”f17;“5)}. Clearly
Ty e CHQ), ¥ (0) <0,¥,(1) <0 and for each x € QF,

LY (z) <0.

It follows from the maximum principle that ¥ (z) > 0 for all z € Q, which leads to the
desired bound (2.3) on u. Now we consider the solution independently in each subdomain
Q* and using the arguments in [4, 11], to obtain the remaining bounds in (2.4) and (2.5). O

But for the numerical analysis below we shall need a decomposition of the solution into
regular and singular part. Using the results in Lemma 2.2 and Lemma 2.3 we obtain the
following estimates.

THEOREM 2.4. Let the functions r,q and f be sufficiently smooth in each subdomain
O~ and QF. Then the solution u of problem (1.1)-(1.4) admits the representation

u(z) = v(z) + w(z),

where the regular part v(x) and the singular part w(z) satisfy for all natural k, 0 < k < 4
the estimates

2.6) v, @ <C,

and

2.7 lw® (z)| < Ce *+12e (z,e), 2 € O,
(2.8) |w(k) (z)] < Ce %%t (z,¢), z € o'

for some positive constant C' independent of the small parameter €.
Proof. The regular part v(z) is sought in the form

3
v(z) = Zsivi(x) + &*Ry(x), vi(z) = { Z
=0

Sl
g

5

m

)
3

where the functions v; () are solutions to the problems

r(@)(v;) +q(@)v; =F (), z€ Q, v; (0)=¥,,i=0,1,2,3,

Fy (z) = f(=), ¥y = o, Fj (z) = (v;_4)", ¥5 =0, j=1,2,3.

+

and the functions v;" () satisfy

L _f@) o ()"
4=

0= ) q(z)

,i=0,1,2,3.
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From the presentation it is clear that the regular component has e-uniformly bounded deriva-
tives.

(2.9) ||(vz.i)<’“>||Lm@i) <M, 0<k<4,i=0,1,2,3.

The singular part is represented as w(z) = E?:o gi(ws,; + wa,;), where the functions
w4, % = 0,1,2, 3 are solutions to the problems

Ltw; =0, ze€Qf,
wii(€) = —[vilo—e, wi,0(1) = Y1 — v (1), wii(1) = —vf (1), i > 1.

and wy ; = 0in 7. Similarly as in [11] we can prove that w; ; satisfy the estimates (2.8).
The second term w» ; satisfy for ¢ = 0, 1, 2, 3 the problems

Liwz,i =0, ze0t
[wa,ila=¢ =0,  [wh;]e=g = —[vi + W} Ja=;
'11)2,1'(0) = 0, ’wz,z’(l) =0.
We shall prove that the functions ws ; satisfy the bounds
—(k+1/2) — — O
(k) < Me exp(—ro(€ — z)/e), r e,
I vy y P

Define the following barrier function for k =0 andi = 0,1,2,3:
Ui () =4 “MVEeD(Toll —2)/e) L way, z €N,
o — Mz exp(— @z — )/vE) £ wn, © € QY.

Then using the estimates for v; and wy ; we have

L= \%exp(—m(ﬁ —_)/e) (2 = ror(z) — Veq(@) <0,z €0,

LTW; . = My/eexp(—+/qo(x — £)/e) (g0 — q()) <0,
[Tis],e =0, [¥is],_. = Mg + %
¥;,1(0) = ~My/eexp(—roé/e) <0,

¥;+(1) = —Myeexp(—y/ao(1 — §)/Ve) <O0.

Now estimates (2.10) for ¥ = 0 follow by the maximum principle. The estimates for & > 1
are derived by induction, similarly to [4]. Finally from the estimates for w; ; and bounds
(2.10) we obtain (2.7) and (2.8).

The remainder Ry (z) solves the problem

+ [/U; + wll,i]l':E Z 07

L*Ry = (v3)", 2 € OF, [Ralo=¢ = 0, [Rilo=¢ = 0, Ra(0) =0, Ry(1) =0.
Applying estimates (2.4),(2.5) in Lemma 2.3 we obtain

(2.11) lle*(RE) k) <M F <M, 0<k<A4.

}Lm(ﬁi)

The bound (2.6) follows from representation (2.8) and the estimates (2.9), (2.11). O
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3. Numerical approximation.

3.1. Grid and grid functions. To obtain e-uniform convergent difference scheme we
shall construct a special partially uniform (Shishkin) mesh wj condensed near to boundary
z = 1 and around interface point z = £

Wh = {xiyxi :.’131'_1+hi,7::1,2,---,m+n:N,fE0:0,$m:E,ZUN: ]-}a

where
hl = 20 i=1,...,m/2,
h? =21 i=m/2+1,...,m
h; = h3:&, i=m+1,...,m+n/4,
h4=M, i=m+n/4+1,...,m+3n/4,
B =42 i=m+3n/4+1,...,N,

81 = min{o1elnm/ry,&/2}, 2 = min{oavelnn/ /g, (1 — &)/4}.

The structure of the mesh follows the pattern of the boundary and the interior layers. Near
the layers it is O(¢) in @~ and O(4/€) in QF. The parameters o1 and o play essential role
in the proof of the uniform convergence below. In section 2 we obtained that the singular
part is small outside of the layers. More exactly it is O(N %), k = 1,2. Thus the error due
to singular part will be O(N~%¢), k = 1,2 at the points where condensed and coarse mesh
meet. Therefore to obtain second order of convergence we should have 01,02 > 2; see [3, 4].

Let u(z;) and v(z;) be mesh functions of the discrete argument z; € wy,. Let in addition
g be a partially continuous function with possible discontinuity at the mesh point z,, = &.
Denote g; = g(z;) and g = g(z,,, = 0). We shall also use the following notations for the
grid,

_hithig hmi1gh +h

iL' Gy = L
i 9 ) 9m %

mgm, D yy=——- D = —f+—
_ ~ Vit1l — Vi A _
DYv;=D wiyq, DT =22 D¥Dw; = 2
h; h;
Further we shall use the discrete maximum norm
llulloo,@, = max |u].
T;iEWh

3.2. Finite difference scheme. To obtain a numerical approximation we shall use the
balance equation for problem (1.1)-(1.4). Denote by z;_1/2 = z; —h;/2, Ui 1/2 = u(:c,-,l/Q).

Integrating equation (1.1) on the interval (a:,-,l/Q, mi+1/2), 1=1,...,m —1 and dividing by
ili we get
€ ! I; 1 Fita/2 !
(CRDEE A_(Uz'+1/2 - ui71/2) =7 (f(z) — r(@)u'(z) — g(z)u(z))dz.
h; h;
i i VY Ti—1/2

After approximation of the integrals in (3.1) we obtain
E h / h _
(3.2) Y [“i+1/2(1 = Riyy) —ui_ypp(1+ Ry )] + qiui = fis
K3
where
hﬂ“?

r? = r(x; — 0.5h;), Rf = o
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Now we approximate

(3.3) Uiy /o ® D7U;, iy o = DYU;.
and use that
1-Rh= ! iy 1+ Rl = — 4 aR! - .
1+ R 14 (RN " T 1+Rk 1+ (R})!

Ignoring the term eu” in (1.1) we replace the first derivative u' by (f — qu)/r to obtain an
approximation

N ( eR!D~w; > 1o+ ( hir} D~ u; ) ~ 1+ (hz’(fi _Qiui)> _
1+ (Rh)_l 2 1+ (Rh)_l 2 1+ (RZ'-L)_1

>

1ﬁ+ ( hi fz ) 1 ( quul > — lf)+ ( hzfz ) _

2 1+ (RF)- 2P 1% (Rh-1) ~ 2 1+ (R

1D+ ( zqz ) git+1 hz-{—l/h D+ u; lb ( hlf’l ) _
2 1+ (RM)- 2(1+ (RE,)™Y) 2 1+ (Rh)—!
1D+ ( zQz ) z+1/h q;—i-lfz' 12+1/i" qi+194: ]
2 1+ (RM)- (R )Y ripn 20+ (RE)7Y) rip

Thus from (3.2) we get on the left the so called modified Samarskii scheme, see [2].
(34) L";=—eD*(&'DU) +rtD U+ U =, i=1,....m—1.

where

- 1- higi Wa/hi  givags
:1+Rh 17 h:i+_D+< 141 >_ 1+ 1 z’
UHB) e = a3 D T @y 1) " 20+ @) D i

h _ ¢ 1 A+ ( hi fi ) _ ;2+1/il Qi1 fi
o= gt 2D 1+ (Rp) 201+ (R 1)™Y) mipn

Integrating equation (1.2) on the interval (z;_1/2, Zjy1/2). 4 = m+1,...,N — 1 and
dividing by ﬁz we get

€ , , 1 Tit1/2
(35) - Sl =i =5 [ (@) - d@u@)ds.
i i JYTi—1/2

After approximation of the integrals in (3.5), applying (3.3), we obtain the following finite
difference scheme on the right of the interface

(3.6) L"U; = —eD¥YD U+ qU; = fi, i=m+1,...,N—1.

To obtain numerical approximation on the interface we integrate equation (1.1) on the in-
terval (2,,—1 /2, Zm — 0), equation (1.2) on the interval (2, +0, Z,,41/2), sum the integrands
and use the interface conditions (1.3) to get

! ! 1 #m =0 !
G ) = [ (6 e @) ~ o)
67 + 2 [ @) - wputa)a

hm Tm+0
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After approximation of the integrals in (3.7) we get

c . _
7 [“Im+1/2 - Ulm—1/2(1 + Rﬁz)] + Gmum = fm-

Now using the equation (1.2) and the interface conditions (1.3) we approximate

€ by I 1 h R , N
B (1 + Rm)umfl/Q - ’Al_ (1 +R¢n +2Bzm - 1+ (Rnén)_l Ump—1/2 &
9 h
h n— h 73— m
HJDUm"f‘TDUm— = mf_mem;
€ € eh? .1 (3
ﬂu;m-i-l/? ~ Eu;n-i-lﬂ - 63,: U5n)+0 =
Aiulm+1/2 + —h%}ﬂ (frln+0 - q;n+0um - (Jm+0U;n+o) ~
hm 6h.,
€ h?
—DYU,, + 2 (D fr — Upn DY gy — im0 D UL) -
hom 6h.,

The term —eh?2, _Huggl_o (ﬁﬁm) is added to ensure the second order of convergence (see

the proof of Theorem 5.1 below). Thus we obtain the following difference scheme on the
interface

h h h
(3.8) L'Un= (pfn - ; ) D¥Up + (M) D U + ¢/\Um = fh,
where
o= sl gy Mmoo B g,
6h., 2hm(1+ (Rh)-T 6h.;,
fh — fm + hmfmfo + h?n—i—l _D+fm
m ~ .

2 (1 + (RE)™Y) 6l
Setting the boundary conditions
(3.9) Uo = o, Un = 11,

we obtain the discrete problem (P"): (3.4), (3.6), (3.8), (3.9). By (1.5) the coefficients in
(P") are such that

(3.10) K" >0,¢ >qo/2, 7} 270, i=1,...,m, ¢; > qo,i=1,...,N -1

Since by 41 = 0(y/zn~! Inn) then for sufficiently large n independent of € holds

€
(3.11) = — P > po > 0.
hm

Therefore this difference scheme satisfies the discrete maximum principle.

LEMMA 3.1. If Uy > 0,Un > 0 and L*U; > 0, then U > 0 on @p,.

An immediate consequence of this discrete maximum principle is the following inequal-
ity,

LEMMA 3.2. Let U be a solution to the discrete problem (P") satisfying zero boundary
conditions. Then

2/ LU |0 o

Ulloo,an <
1Ulloo,@1. < o
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4. A priori estimates. Let V'~ be a solution to the discrete problem (P ™),

LMV = —eDYRID V) 4DV + ¢tV = fi=1:m -1,
2 h

- _ Lh’_ _
% 07 Vm hm

hD Vo +20h D=V 4 gV = )

m

where

fm—O

h,— _ am h,—
m gm—o + 1:f = fm-o+ 1+ (RE)1

1+ (Rh )~
For the grid functions defined on the mesh @, = {zo,...,%n} and vanishing for zo,

define the scalar product

4.1) Vg = thyzvz 5 Ymtm

and the norms

iy = (ol oo ol = max o
T (J.)h

The following problem (P"*™) is adjoint to (P"~) in the sense of the scalar product (4.1),

L"~W; = —eDT(k}D"W;) = DY (e} W) + W = fli=1:m—1,
— hx,— 117 — 25h——27"h - hy— 117 — h,—
Wy =0, LM Wy =-——khD Wy + 7 2W + g W, = fl™.
hom hom

Now, we consider the Green function G~ (z;,7;) of problem (P"~). As a function of
x;, with 77; held constant, it is defined by the relations

4.2) LG (zi,n;) = 6" (zi,n;), i = 1:m, G (0,n;) = 0.

As a function of ;, with z; held constant, Green function G~ (z;,7;) satisfies the equations
(4.3) L"™=G™ (zi,m) = 8"(zi,m;), = 1:m, G~ (2;,0) = 0.

where

5h(mz~,m):{ hi, il @i =1,

0, if Z; # ;-
Denote f~ = f} fori =1,...,m — 1. Itis obvious that the solution to problem (P"~) is
expressed in terms of Green function as
(4.4) V(@) = (G @), f" o

whereas the solution to (P"*:~) is written as
W= (i) = (G~ (0, 2), f1g -

LEMMA 4.1. If conditions (3.10) are fulfilled, the Green function G~ (x;,1;) is nonneg-
ative and e-uniformly bounded:

4.5) 0 <G (zi,m;) <7t
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Moreover; the solution to problem (P™ ™) satisfies the estimate

(4.6) ||V7||oo,o_.1; Sral||fh’7]|1,w;'

Proof. Fix x; € wy . The fact that the Green function is nonnegative obviously follows
from (4.2) and the validity of the maximum principle for L»~ under conditions (3.10). To
derive the estimate in (4.5), consider a point 77;, € w, such that

4.7 G~ (wi,mj,) = max G (z4,n;)-

n; EWWy,

Multiplying (4.3) by ﬁj forj =1:m —1, by hy,, /2 for j = 2 and summing up the results
with respect to j from jp to m one obtains

m—1 h
> R LM TG (@i ny) + LG (@) +
J=jo
h hm h,—~—
TG~ (is7jo) + Z hid} G~ (i, n;) + - im G (Tinm) =
J=Jjo
m—1
(4.8) Z h; 6h %;m) + —Jh(wzﬂ?m) <L
Jj=jo

Since the Green’s function is nonnegative and (4.7) holds, then all terms in (4.8) are non-
negative. Thus (3.10) implies (4.5). The estimate (4.6) follows directly from (4.5) and the
representation (4.4). O

Letnow V', V;t =Vt be a solution to the discrete problem (P"+F):

LMV = DDV + Vi =fi, i=m+1,...,N—1,

Pm41@m+o 2e
vi=0 L[Mtyt= m+14m+0 D*V,, h +V+ — fht.
N Y m 3 hm+1 + q fm

where

h h
qm+ = gm+o + 7’;+1D+ ms fh = fmto0 + ";rl D* fp.

Denote flh+ = f; and q?’+ =g;fori =m+1,...,N — 1. The problem (P"%) can be
written in operator form

4.9) ATV =i i =m,.. ., N —1, Vy = 0.

For the grid functions defined on the mesh Q,‘l‘ = {Zm,...,zN} and vanishing for z, define
the scalar product

N-1 N
(4.10) [ya )0 wi = Z hzyzvz + hmymvma Y,v Z zyivi-
i=m+1 i=m-+
where
~ 3h
]’Lm = m+1& S Cohm+1.

6 — gm+o hfnﬂ
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and ¢y is independent of € constant, given in (3.11).
LEMMA 4.2. The operator At from (4.9) is selfadjoint and positive definite in the scalar
product [.,.), wt defined in (4.10). For arbitrary discrete functions y,v defined on w,‘l‘ and

satisfying yny = vy = 0 holds

4.11) [y,v) 4+ = [A+y’v)0,wj; =e(D7y, D7), ,+ + [qh’+y,v)0,w:.

Proof. The operator At satisfies

N-1
[y, 0)a+ = (DT ym)vm — D ehi(DT D y)vi+ "y, 0)0 4 =,

i=m+1

N
Y ehiD7yD v + [g"Fy,0)g .+ = e(D7y, Do), o+ + [0y 0) 1
i=1
Now the statement of the lemma follows from the positivity of qf +0
Since A* is selfadjoint and positive definite operator, then (A%)~! is also selfadjoint
and positive definite operator. So we can define the energy norms

(4.12) ollas = /[AT0,0) 45 ullas)- = \/[(A+)—1U,U)0’w:.

LEMMA 4.3. Let V't be a solution to problem (P") then

C iren
(4.13) ||V+||oo,a,; < %Hf Hay-1-
for some positive constant C' independent of the small parameter e.
Proof. Since ATV+ = fh+ then V* = (A+)~! f+. Using the embedding inequality
(see [16])

IVl oot < C(D™VED7VH], s
and estimate (4.11) we have
_ _ c
||V+||oo@: <C(D~V*tD V+]*,w;; < %[A+V+,V+)0,w:

e
G

5. Uniform convergence. Suppose thatm ~ n =~ N/2. Let Z = U — u be the error of
the discrete problem (P"). Then Z satisfies

£ (A7 g =l oy O

L"Z = (ff — £;) = (L"u; — Lu;) =4, xi €Ewny, Zo=Zn =0.

The next Theorem gives the main result in this paper.

THEOREM 5.1. Let the conditions in Theorem 2.4 be fulfilled. If the parameters of the
mesh satisfy 01,02 > 2, n & m &~ N/2, and N is sufficiently large (3.11) to hold, then the
solution U of the discrete problem (P") is e-uniformly convergent to the solution u to the
continuous problem (1.1)-(1.4) in discrete maximum norm and the following estimates hold

(5.1) U = ulloow, < CN2In*N,
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for some positive constant C independent of the parameters of the mesh and the small pa-
rameter €.

Proof. Using the fact that the solution u can be decomposed into regular part v and

singular part w, that satisfy the estimates (2.6)-(2.8) in Theorem 2.4 we can write the approx-
imation error 2; in the form

Vi =1+ P2
where
Y= fl = fi = (L"i— Lvy), 2, = L'w; — Lw;.

Denote A; = [#i—1,%i+1], A] = [®i—1,%i—¢) and A;" = [Zit0, Tit1]- We begin with the
internal points in w;, . The approximation error has the form, see [4]

A 1 . o
s = eDTD7u; —eull — [E(TQ_HD"'W +riD ;) — nu;]

. hi
D v
- (2(1 (&)
hzz+1/ilz' qdi+1 (
201+ (RM)=Y) ria

(rf D~ u; + giu; — fi))

—riy1 DY — qu; + f;)

Similarly to [2, 4], using that e/ <ﬁ,(1 + (R?)_l)) is e-uniformly bounded, we can prove
3 4
. sl B2 €) h2 (9
il < C | (elhir = hil + hi)zggegg [u (@)] + eh ZI;HE% [ut ()
j= i=

2
- .
(5.2) + (|hig1 — hi| + h2) 21 max [ ()|
iz

On the interface we present the approximation error in the form

hm Ehm+1 hm+1
m = 7 m + m)+t = m + pm) + —% m + m) -
(2 . (Y1,m + P2,m) T (M, m41 + pm) " (&1,m + &2,m)

hm hm m m

where

2e h _ -

[1,m| = ‘h_ |:’U;n—0 - va%_o -D Um—O] + [rm—0Vm_o — D Um—0]

1 [_ " _h D~ + ! ]
71 T (Rh )_1 EVp—0 T Um—0 m—0o?
m

m—0

+

2

(5.3) < C | ey, max [v® (z)] + hmz max |[v) (z)|
TEAL, j=1 TEAL,

h n !

2e m _ -
. |:w;n—0 Ty Wm0~ D me] + [rm—oWin_g = T D™ Wm0}

|¢2,m| = ‘
m

1 " h o — ,
Ty T om0 = T D Wno Pt o]
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2 .
(5.4 < C | ehy, max [w® (z)| + hy, z max |w? (z)|
TEAL, =1 TEA,,
2h 2., s
Inm1| = hm:-nl —D om0 + U;n+1/2 - T+1’U7(nz|-1/2
(5.5) < Oy max [0 (2)]
zEAT,
2h o h? 3 h2 3
| = hm;nl Unpo + mTU;;Iero + T%—H ’Ur(n?l—O —Upy1p t n;_l v£n)+1/2
(5.6) < Chl 4y max [v® (z)|
TEAN,
hm-‘rl ! ! i + +
|§1,m| = 3 |fm+0 ~Apt0Um — Qm40Uy,_o — D fm+0 + umD dm+0
6.7 - qm+0D_um_o| <cC <h$n+1 + hm+1hm Inix_ |U(2) ($)|)
TEA,
2e h 1 h2
€2l = 5 — ~D w0 + W yo + 5wl + e S
(5.8) < CehZ, max lw® (z)]
TEANL

At the interior points on the interval (£, 1) we present the approximation error in the form

Vi =eDVmy i+ 61+ by,

where
h2
(5.9) il = ‘_D_Ui +vi_o5 — _zvz(i)o 5| < Ch? max |U(3) ()]
8 ’ TEAT
1 h2.. (3 h? 3
€1l = € |vi’ — ﬁ_ <U§+0.5 ~Vi_o5 — Zgl U§+)0.5 + g”g—)o.zs) ‘
7
(5.10) < Ceh? arcréan |v(4) (2)]
|6a,i] = ‘615+D_w,- —ew]'| < Cemin {rréan lw® (z)],
z i
(5.11) [hiv1 — hil max lw® (z)| + h2 max |w(4)(x)|} .

Now we decompose the error Z in the form Z = Z' + Z2 + Z3. The first term Z' is a
solution to the problem

Lh,_Zil = 1pl,i +¢2,i7 i = 17 ceey MM, Z& =
Using Theorem 2.4 and estimates (5.2)-(5.4), similarly to [2, 4] we obtain
]l - = O(N 2 In? N), 92l - = O(vVeN~21n% N).

Applying the a priori estimates (4.6) we get

(5.12) 17 gz < € (Inlly i + lle2lly oz ) < ONT22 N,
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The second term Z2 is a solution to the problem

LhFz2 =¢ (Dﬂh,,- + D+n2,,-) —@ii=m+1,...,N—1,

15
Lh’+an = ~—(771,m+1 + 772,m+1) =Om, ZJJ\FI =0.

>

m

where
M2, = fbm, t=m+1,... N.
Using Theorem 2.4 and estimates (5.5),(5.6), (5.9) we obtain
mi=O0N"2), n;,=0N"%),i=m+1,...,N.

Let ( = (AT) 1@ and n; = m1; + o, then

N-1
|[0”%A+)—1 = |[C||2A+ = |[C>0)0,w: = e(mNm+1 t € Z hZC,D—i_’I]z
i=m+1
< —e(D7¢ ), 0 < CVENT?[Clla+-
Therefore
|[0||%A+)—1 < CveN~2.
Applying the a priori estimates (4.13) we get
(5.13) 122t < l[Bllas) < CN-2
: o00,wy, — \/E (A1) — .

The last term Z2 is a solution to the problem
Lh,‘i‘Z? = é—l,i +§2,i; 1= m,...,N— 1, Z]SV =0.
Using Theorem 2.4 and estimates (5.7),(5.8), (5.10), (5.11), similarly to [2, 4] we obtain

E1m = ON"210®N), &; = OEN"2In®N),i=m+1,...,N - 1,
€5, =0O(N"2In®N), i=m,...,N.

Now from the comparison principle for operator L+ we find
(5.14) ||Z3||Oo,w: < Cll6 + &lloo i < CN~21n® N.
The theorem follows now from estimates (5.12)-(5.14)0

REMARK 5.2. The requirements n &~ m = N/2 are a technicality. In the general case
it is clear from the analysis above that the order of convergence will be O(m 2 In®m +
n~2In’*n 4+ mnlnmlnn).
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6. Numerical results. Consider the problem

—eu" + (1 + cos(mz)) v’ + (1 + sin(rz/2)) u = 1 + sin(7z) cos(rz)), x € (0,0.5),
—eu" + (4 4 cos(mz/2)) u = 3 + 2sin(wx/2) cos(nz/2), z € (0.5,1),
[U)z=05 =0, [u']z=05 = 0, u(0) = u(l) = 0.

The solution of this problem exhibits typical boundary and interface layer behavior (see Fig.
6.1). For our tests we take m = n = N/2. The exact solution of this problem is not
known. To investigate the convergence rate we compare our numerical results with the linear
interpolation of the solution for N = 16384. Table 6.1 displays the results of our numerical
experiments. For large N we observe almost second-order e-uniform convergence. The
convergence rate is taken to be

pn = 1083 (1N [loo,w/ | E2n o)

where || EN||oo,w 1s the maximum error norm error for the corresponding value of N. Figure
6.1 shows the approximate solution and the maximal error for N = 128 and e = 2710, It
illustrates very well the boundary and interior layers behavior of the solution. Thus the nu-
merical results support the theoretical ones and show the effectiveness of the special meshes.

TABLE 6.1
Error of the solution on Shishkin’s meshes

e\N 32 64 128 256 512 1024 2048
e=1 6.53e-5 | 1.62e-5 | 4.04e-6 | 1.0le-6 | 2.52e-7 | 6.28¢-8 | 1.56e-8
PN 2.01 2.01 2.00 2.00 2.00 2.01 2.04
e=2"2 | 234e-4 | 5.46e-5 | 1.31e-5 | 3.19¢e-6 | 7.87e-7 | 1.95¢-7 | 4.80e-8
PN 2.10 2.06 2.03 2.02 2.01 2.02 2.07
e=2"%1120le3 | 567e4 | 1.49¢-4 | 3.81e-5 | 9.65¢-6 | 2.42e-6 | 6.00e-7
PN 1.83 1.93 1.96 1.98 1.99 2.01 2.07
=252 | 274e-3 | 9.34e-4 | 3.84e-4 | 1.42e-4 | 4.93e-5 | 1.61e-5 | 5.03e-6
PN 1.55 1.28 1.43 1.53 1.61 1.68 1.78
=278 1.04e-2 | 2.77e-3 | 7.03e-4 | 1.77e-4 | 4.41e-5 | 1.10e-5 | 2.72e-6
PN 1.91 1.98 1.99 2.00 2.00 2.01 1.95
e=2"10"1"180e-2 | 7.94e-3 | 2.79¢-3 | 7.09¢e-4 | 1.78e-4 | 4.44e-5 | 1.10e-5
PN 1.18 1.51 1.98 1.99 2.00 2.01 2.07
e =212 [ 1.80e-2 | 7.96e-3 | 3.02¢e-3 | 1.04e-3 | 3.41e-4 | 1.06e-4 | 3.19¢-5
PN 1.18 1.40 1.54 1.60 1.68 1.74 1.77
e=2"1% | 1.80e-2 | 7.98e-3 | 3.02e-3 | 1.04e-3 | 3.4le-4 | 1.06e-4 | 3.20e-5
PN 1.18 1.40 1.54 1.61 1.68 1.73 1.80
e=2"16"1180e-2 | 7.98¢-3 | 3.03¢e-3 | 1.04e-3 | 3.41e-4 | 1.07e-4 | 3.20e-5
PN 1.17 1.40 1.54 1.61 1.68 1.73 1.80
e =218 11802 | 7.99¢-3 | 3.03e-3 | 1.04e-3 | 3.42e-4 | 1.07e-4 | 3.20e-5
PN 1.17 1.40 1.54 1.61 1.68 1.73 1.80
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