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Abstract. A parallel algebraic multigrid linear solver method is presented which is scalable to thousands of
processors on significant classes of two- and three-dimensional problems. The algorithm is entirely algebraic and
does not require prior information on the physical problem. Scalability is achieved through the use of an innovative
parallel coarsening technique in addition to aggressive coarsening and multipass interpolation techniques. Details of
this algorithm are presented together with numerical results on up to several thousand processors.
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1. Introduction. The demand for larger physical simulations on large-scale parallel
computers drives an increasing need for efficient and scalable linear solver methods. This
need has sparked recent interest in algebraic multigrid (AMG) methods. On single processor
computers these methods afford scalable solutions to a variety of problems of interest. Scal-
ability in this context indicates that the time to solution to a specified tolerance for a class
of linear systems requires bounded or slowly increasing time per unknown as the number of
unknowns is increased.

On parallel computers, linear solver methods are said to be scalable if the time to solution
is bounded or slowly increasing as the number of unknowns per processor is kept nearly
constant and the number of processors is increased. Recent efforts, e.g., [2], [7], [12] and
[16], have been made to develop scalable parallel AMG methods, in some cases generalizing
the serial AMG algorithm of Ruge and Stüben [14]; for a survey of recent work see [1].

This paper focuses on parallel AMG methods implemented in the parallel algebraic
multigrid solver library, LAMG [9], [10]. As will be shown, the LAMG solvers are scal-
able for important classes of problems derived from 2-D and 3-D physical simulations. The
solvers are also fully algebraic, not requiring any physics or grid information from the user,
and can solve problems defined on arbitrary unstructured grids.

The solver methods described in this paper are parallel extensions of the classical AMG
method of Ruge and Stüben [14] and the aggressive coarsening AMG methods of Stüben
[15]. The parallelization of these methods is targeted to scalability on up to thousands of
processors.

Other recent work on parallel AMG has been based on similar but different approaches.
Henson and Yang [7] describe a parallelization of Ruge/Stüben AMG which makes use of
new parallel coarse grid selection algorithms, derived in part from parallel maximal inde-
pendent set (MIS) methods, see e.g. [8], [13]. The reported performance of these methods
on 3-D problems in parallel, however, indicates high computational expense for the AMG
setup phase. In contrast, the method described in this paper uses a generalization of the
Ruge/Stüben coarse grid selection algorithm which does not rely on the approach of [13].
Also, this method makes use of aggressive coarsening AMG and therefore does not have
efficiency or scalability problems for the 3-D parallel case.
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Krechel and Stüben [12] present a parallelization of AMG based primarily on modifying
the coarsening and the interpolation operators at the processor subgrid boundaries to control
interprocessor connectivity as well as to facilitate parallel coarsening. Their work presents
parallel performance on up to 64 processors. The present work is different in that it uses the
same interpolation scheme as the corresponding serial methods for all problem unknowns.
This approach avoids any problems which may occur from using a different interpolation
at the processor subgrid boundaries, which may be important for simulations with complex
physics solved on very many processors.

Tuminaro and Tong [16] present a parallel method based on the smoothed aggregation
method of Vanek et. al. [17]. The numerical results presented indicate effective paralleliza-
tion. However, the performance of the method is sensitive to the size and shape of the ag-
gregates formed by the algorithm, which may be a particular concern for more challenging
problem geometries or parallel decompositions. The current work, on the other hand, does
not require the formation of aggregates and thus does not have this concern.

The organization of the remainder of this paper is as follows. Section 2 briefly reviews
the basic elements of AMG algorithms. Sections 3 and 4 describe the particular techniques
used in the parallel LAMG algorithms. Section 5 discusses some performance considera-
tions relevant to the parallel methods. Then, section 6 gives the results of parallel numerical
experiments on large numbers of processors.

2. AMG algorithmic components. It is assumed that the reader is familiar with AMG
methods as described for example in [14], [15]. Here we give a very brief overview of some
of the fundamental issues involved.

The basic idea of AMG is to improve the convergence of an iterative method on a given
problem by solving smaller versions of the same problem and using these solutions to improve
the solution estimate on the original problem.

A sparse linear system can be represented as a graph, where the nodes of the graph
indicate the system unknowns and the edges of the graph are the nonzero entries of the matrix.

An AMG algorithm is composed of two parts: a setup phase and a solve phase. Given
the linear system and its associated graph, the AMG setup phase entails the following steps.� Smoothers are built, which are iterative methods used to solve the linear system for

the given matrix, accounting for short-range influences between nodes of the graph.
Common examples of smoothers are the underrelaxed Jacobi method and the Gauss-
Seidel method.� Edges of the original matrix graph are identified as either strong or weak connec-
tions. This identification refers to the implied influence between graph nodes in-
dicated by the given matrix. For a matrix

���	��
�����
, a point � is considered to be

strongly connected to a point � if � 
������������� "!# � � 
$�% , where
�

is a preset param-
eter, typically chosen to be

�&�(' )+*
. (Note: [15] presents an additional criterion for

identifying strong positive connections; we do not make use of this criterion here.)� A coarsening process is applied to the graph of strong connections in order to se-
lect a subset of the original nodes of the problem. These nodes are considered to be
strategic for representing the smaller or coarse version of the problem. Two methods
are available. First, standard coarsening as described in [14] attempts to account for
influences via nearest-neighbor connections in the graph. The algorithm involves
a first pass to make the initial selection of coarse points and a second pass to add
additional coarse points which may be needed in some cases. Second, aggressive
coarsening [15] attempts to account for more long-range influences. The algorithm
which implements aggressive coarsening essentially applies the first pass of the stan-
dard coarsening algorithm several times in sequence, resulting in a smaller number
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of coarse points.� Intergrid transfer operators are formed to transfer vectors between the original prob-
lem nodes and the coarse problem nodes. Two methods are considered: Ruge/Stüben
interpolation [14], used with standard coarsening, and multipass interpolation [15],
used with aggressive coarsening. The resulting interpolation operator can then op-
tionally be modified in several ways. First, Jacobi relaxation of interpolation can
be used to improve the quality of the interpolation, though this may also make the
operator less sparse. Second, thresholding can be applied to make the operator more
sparse by discarding small entries. For details, see [15].� These operators are used to project the original matrix to a representation of the
original problem on the coarse set of nodes.� The above procedure is repeated recursively on the resulting matrix, until a max-
imum number of levels is reached. The algorithm may coarsen down to a single
point or alternatively stop coarsening when some specified criterion is attained. The
problem on the coarsest grid can then be solved by a direct or an iterative method.

Given an AMG setup, the following steps are performed to execute a single AMG itera-
tion or V-cycle:� A residual ,.-0/"1 �32 � �54 -0/61 is formed based on the current approximate solution4 -7/61 for the given linear system

�849�:2
.� Several smoothing steps are applied to this residual.� The result is transferred to the coarse grid.� An approximate solve is performed on this smaller system, using the AMG solve

process applied recursively.� The result is transferred back to the original problem nodes.� Several additional smoothing steps are applied.
This V-cycle AMG iteration can be accelerated by a conjugate gradient-type method, for

which the V-cycle is considered to be a preconditioning step.

3. AMG algorithms and their parallelization. The LAMG code implements parallel
extensions of Ruge/Stüben AMG [14] and Stüben’s aggressive coarsening AMG [15]. Unless
otherwise noted, the algorithm definitions in LAMG follow the descriptions given in [14] and
[15]. For additional details, see [9].

Many underlying components of these two serial algorithms are easily parallelized using
standard sparse parallel linear algebra techniques. This includes such operations as sparse
matrix-vector products, sparse matrix-matrix products and global inner products. The paral-
lelization of certain other parts of AMG requires particular attention so that parallel scalability
is attained. The parallelization of these parts is described below.

3.1. Smoother. The primary smoother used at each level is underrelaxed Jacobi smooth-
ing. The relaxation factor is computed via Gershgorin’s circle theorem applied to the given
matrix.

Though underrelaxed Jacobi smoothing performs well for the cases studied, in some
cases using the Jacobi-preconditioned conjugate gradient method (JCG) as a smoother can
give improved performance. Conjugate gradient methods have been used as multigrid smoothers
before; see e.g. [4], [6]. Our experience has been that for sufficiently well-behaved problems,
e.g. discretizations of Poisson problems, JCG smoothing can improve both solution time and
scalability relative to underrelaxed Jacobi smoothing. However, the use of a nonstationary
method such as JCG as a smoother makes the AMG V-cycle preconditioning a nonlinear
operator, potentially causing convergence problems. To increase robustness in the presence
of these nonlinearities, the flexible GMRES acceleration method FGMRES is used as the
acceleration for the multigrid V-cycle preconditioner when JCG smoothing is used.
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3.2. Coarsening. The coarsening strategy used for parallel computation must not only
be parallelizable but also yield coarse grid problems which are suitable for efficient parallel
solution.

Ruge/Stüben [14] coarsening generates coarse grid problems which can be solved in
parallel efficiently for matrices derived from 2-D physical problems. However, for 3-D prob-
lems the coarse grid matrices generated generally have increasing numbers of nonzeros per
row as the number of multigrid levels is increased. This results in increased interprocessor
communication which destroys scalability, especially for the AMG setup phase; see section 5
below.

To mitigate this effect, aggressive coarsening as defined in [15] is used. The rate of
coarsening between levels is tunable; aggressive coarsening methods considered here are A2
coarsening (moderately aggressive), A1 coarsening (more aggressive), and (4,4) coarsening
(even more aggressive); see [15].

Our experience has been that for a given aggressiveness setting, more difficult problems
tend to generate more coarse grid points to represent the problem on coarse grids. For these
cases, the aggressiveness of the coarsening may need to be increased to enforce adequate
sparsity of the coarse grid matrices.

The algorithms of [15] utilize aggressive coarsening only for the coarsening step at the
first level of the AMG hierarchy. However, our experiments with large 3-D problems indicate
the need to apply aggressive coarsening at every level of the AMG hierarchy, to insure that
the coarse grid matrices at each level are kept sparse (see Subsection 5.5). Therefore, in the
present work aggressive coarsening is used at every level.

Each step of the aggressive coarsening process requires the use of a standard coarsening
kernel. The original Ruge/Stüben algorithm [14] defined standard coarsening as a two-pass
method for generating coarse grids. This entailed a first pass similar to a greedy maximal
independent set (MIS) algorithm and a second pass which added additional coarse grid points.
The second pass of this algorithm is sequential but can be efficiently parallelized via a simple
reordering of the unknowns. In this case the processor subgrid interiors are visited first, then
the processor subgrid boundaries are visited by first coloring the processors in such a way
that processors of the same color can work independently and then visiting each color in
sequence. However, the second pass, as pointed out by Stüben [15], is not essential when
aggressive coarsening and multipass interpolation are used. Therefore we use only the first
pass of the coarsening algorithm.

Parallelization of the first pass of standard coarsening presents significant challenges.
The parallel coarsening strategy used is described in section 4.

3.3. Interpolation. As in [15], we use multipass interpolation in combination with ag-
gressive coarsening. Multipass interpolation parallelizes in a straightforward way, and the
parallelized method gives identical results (up to roundoff) to the serial method. Also fol-
lowing [15], we use (full) Jacobi relaxation of interpolation to refine the resulting operators,
followed by thresholding to eliminate very small entries of these operators. These algorithm
components also parallelize in a natural way.

3.4. Number of levels. Multiplicative multigrid methods of the type examined in this
paper have an inherent ;7<"=?>A@CB complexity component pertaining to the communication re-
quirements for each multigrid level as the number of levels is increased by ;7<"=?>A@CB for larger
problems. In a parallel context, this means there is an order ;7<"=D>�EDB component in the execu-
tion time. Fortunately, this ;7<"=?>�EDB factor in the scaling is typically small and in fact can be
made even smaller by limiting the number of multigrid levels used.

For parallel AMG solves, performing work on the coarsest grids can be expensive be-
cause of the communication requirements relative to the computations performed. For this
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reason, when the linear system matrix is symmetric, the coarsening process is halted when a
bound on the condition number of the problem at that level is sufficiently small. This bound
is computed using the conservative Gershgorin eigenvalue bounds for the matrix at that level.
If a halt is indicated, the corresponding coarse grid is treated as the coarsest grid in the AMG
hierarchy and the problem at that level is solved without recourse to more multigrid levels.

3.5. Solves on the coarsest grid. Since the matrix on the coarsest grid necessarily has a
bounded condition number, the number of iterations required for an iterative method to solve
the corresponding linear system to a given tolerance is bounded. Thus we solve the coarsest
system with an iterative method. The two methods used are underrelaxed Jacobi iteration and
the Jacobi conjugate gradient method.

The iteration terminates when the ratio of the two-norm of the residual vector to the
two-norm of the right-hand side vector is less than or equal to a given tolerance.

It should be noted that using a convergence tolerance rather than specifying a fixed num-
ber of iterations for the coarse grid solve introduces a mild nonlinearity into the multigrid
V-cycle preconditioner. Likewise, use of the Jacobi conjugate gradient method rather than
underrelaxed Jacobi also introduces a slight nonlinearity. Though problematic in theory,
these factors did not cause a problem for any of the runs presented here. In any case, the
nonlinearity can easily be eliminated by requiring a fixed number of iterations of standard or
underrelaxed Jacobi for the coarse grid solve without use of a convergence tolerance.

3.6. Acceleration for the V-cycle preconditioner. To achieve speed and robustness, the
AMG V-cycle is used as a preconditioner to a conjugate gradient-type iterative acceleration
method. Two methods are considered: the conjugate gradient (CG) method and a restarted
flexible GMRES (FGMRES) method.

The iteration terminates when the ratio of the two-norm of the residual vector to the
two-norm of the right-hand side vector is less than or equal to a given tolerance.

3.7. Load rebalancing. For irregular problems it is possible for the number of coarse
grid points generated on different processors to be nonuniform, even if the original problem
is properly load balanced, resulting in uneven workloads across processors. To insure effi-
cient performance on coarse grids, a simple load balancing scheme is applied to the coarse
grid matrix at each level to reduce any significant load imbalance with respect to the original
problem distribution introduced by the coarsening. In this scheme, a diffusive load rebalanc-
ing method is used to migrate subgrid boundary unknowns from overweighted processors to
underweighted ones.

3.8. Reducing the number of processors used for coarse grids. For the coarse grid
matrices, parallel efficiency is decreased because a small problem is being solved across a
large number of processors. In particular, each processor may be connected to a very large
number of other processors via the given matrix, which is problematic because of communi-
cation latencies. This is not an issue for large numbers of unknowns per processor but may be
an issue when the number of unknowns per processor is small and thus communication costs
are more dominant (for details regarding the impact of this issue on multigrid performance,
see e.g. [5]).

To address this, an operation is performed which reduces the number of processors which
store the coarse grid problems, via a redistribution of these problems. In this technique, at
each multigrid level the number of processors used to hold the problem is optionally reduced
by a power of two. A heuristic is used to determine how much reduction, if any, is to be made,
based on the relevant computation and communication costs.

Experiments show that this technique is effective, reducing the total solve time by as
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much as a factor of two or more for some cases of smaller numbers of unknowns per proces-
sor.

3.9. Processor graph coloring algorithms. Several parts of the parallel AMG algo-
rithm require the formation of a graph incidence matrix of size E on a processor. This includes
for example the processor reduction operation mentioned above, pass 2 of Ruge/Stüben coars-
ening, and the parallel coarsening strategy described in the next section.

These coloring algorithms have order E complexity and are potentially problematic for
very large numbers of processors. However, for the experiments described in this paper on
up to 3500 processors, these algorithm components did not pose a problem to scalability.

For larger numbers of processors, e.g. for machines such as Blue Gene/L, alternative
graph algorithms can be used to circumvent the order E complexity problem. For example,
parallel graph coloring algorithms [8] provide a significantly better probabilistic performance
bound than the deterministic algorithms described here. Our experience with these algorithms
on smaller numbers of processors thus far suggest that they give good results.

4. New parallel coarsening strategy. The coarse grid selection process is the most
difficult component of an AMG algorithm to parallelize efficiently. As described in [14]
and [15], the uniprocessor coarse grid selection algorithm resembles a greedy MIS algorithm
which is inherently sequential.

This algorithm is roughly defined by Algorithm 4.1. The labels C and F refer respectively
to the selected set of coarse grid points and the complement of this set. Also,

�
denotes the

matrix at the given level, and
�GFIHAJLK

/�M denotes the matrix of strong connections in
�

obtained
by dropping entries in

�
which are small as described in section 2. The value N � is initialized

to the degree of node � in the adjacency graph of
� FIHAJLK

/�M . The procedure cycles until all
nodes in this graph are labeled C or F. Nodes

� �POI� � are said to be connected via
� FQHAJLK

/�M if
and only if

� FQHAJLK
/�M >A�POR�$BTS

�:U'
ALGORITHM 4.1. > Uniprocessor Coarsening B

At each level of the AMG hierarchy form
�GFIHAJPK

/�M from
�

.
Pass 1: Initialize N � to the degree of node � in

�GFIHAJPK
/�M .

Until all nodes are labeled C or F points
Select node � with maximum N � and label � a C point.
Label all nodes connected to � via

�GFQHAJLK
/�M as F points.

Set N �8� N �WVYX
for each node � connected to these Z points via

� FIHAJPK
/�M

End
End
Pass 2:

For each pair of F points
� �POR� � labeled in pass 1 connected via

� FIHAJPK
/�M ,

ensure a common C point by adding new C points if necessary.
End

Pass 1 of Algorithm 4.1 is sequential in nature, tending to sweep through the grid in a
wavefront fashion. This typically keeps the number of strong F-F connections small, which is
good for convergence. However, sequential calculations are problematic for scalable parallel
computations.

Parallelization is obtained by generalizing Algorithm 4.1. A naive approach to paral-
lelization would apply Algorithm 4.1 independently and in parallel to the subgrid of the prob-
lem on each processor. However, this approach results in coarsenings which tend to have a
large number of strong F-F connections across processor subgrid boundaries, due to labeling
mismatches between neighbor processors. Some of these F points could be converted to C
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points by applying pass 2 of the algorithm. However, particularly for 3-D problems of in-
terest, the resulting coarse grids would not be coarse enough to control the overall operator
complexity of the resulting parallel AMG algorithm.

The novel approach used here introduces a limited amount of sequentiality between
neighbor processor computations to decrease the number of mismatched subgrid boundary
cells. First a coloring of the processors relative to the matrix

��FQHAJLK
/�M of strong connections is

generated. Pass 1 of the uniprocessor Algorithm 4.1 is then applied to each color in sequence
on the processors corresponding to that color. When pass 1 of Algorithm 4.1 is applied to the
subgrid on a processor for a given color, this coarsening operation flags some of the unknowns
on neighbor processors, to label these unknowns as F points or modify their N � values. At the
end of processing each color, these modifications are communicated to neighbor processors
as a prelude to commencing the next color.

This algorithm makes use of the processor connectivity graph relative to
��FQHAJLK

/�M . This
is the graph whose number of nodes equals the number of processors and for which two
nodes are connected if and only if the matrix

��FIHAJLK
/�M has at least one connection between the

corresponding processors. Note that this graph is small, thus computations using this graph
are very fast.

ALGORITHM 4.2. > Parallel Coarsening B
Generate a MIS with respect to the processor graph.
Assign a color value of

X
to each processor in the resulting MIS.

Set � �Y)'
Until all processors are colored

Generate a MIS with respect to the subgraph of the processor graph
composed of all processors connected to processors previously colored.

Assign a color value of � to each processor in the resulting MIS set.
Set � � � VYX"'

End
Artificially limit the number of colors @\[ generated.
For each color in sequence

Perform pass 1 of Algorithm 4.1 on every processor of the given color,
taking into account possible F/C point selections and N � modifications
from neighbor processors for previous colors.

Communicate all F/C point selections and N � modifications to
neighbor processors.

End

For the experiments presented in this paper, an order(p) greedy MIS algorithm is used
for computations with the processor connectivity graph, though one may alternatively use a
Luby-type parallel randomized MIS algorithm which has a better (probabilistic) computa-
tional complexity bound; cf. [13]. Also, if a smaller number of points in the resulting set for
the first color is desired, then it is possible to apply alternatively a MIS algorithm to some
power of the processor graph, e.g. the square of the processor graph, rather than the processor
graph itself. These approaches are not used for the experiments presented here.

The number of colors @][ generated is artificially limited by recoloring all processors with
color value higher than @][ to have color @][ . This limits the loss of parallelism of this part of
the AMG algorithm to a small amount.

For the numerical experiments presented in this paper, the first AMG coarsening level
uses @ [ �^)

. For coarser grids at lower levels, there are fewer unknowns, thus the time
required for the calculation of the coarse points is less significant and therefore computa-
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tions can be allowed to be more sequential without serious impact on parallel performance.
The number of steps allowed at level _ is >A@\[PBI` �	) >ba&cedfa�`PBhg , where ai` is the number of
unknowns of the problem at level _ and j �k'�l

. Thus larger numbers of parallel steps are
allowed based on the effective overall grid cell reduction at the given level.

The effect of Algorithm 4.2 is in effect to create small computational wavefronts in the
processor grid. It is easy to see that for a connected domain, if the initial MIS were instead
chosen to to be a single processor, and @\[ were not limited, then the processor coloring would
sweep across the processors as a wavefront. This coupled with the fact that the computation
on each processor is itself a wavefront sweep shows that the resulting parallel algorithm is
very similar to the uniprocessor algorithm, which itself performs a wavefront sweep over the
entire global grid.

Introducing some sequentiality in the computation recovers most of the quality of the
grids generated by the serial algorithm, Algorithm 4.1. At the same time, the fact that the
coarse grid selection consumes a small fraction of the cost of the entire AMG algorithm
(typically less than ten percent) makes it feasible to accept a slight sacrifice of parallelism for
this part of the algorithm in order to recover scalability of the overall AMG algorithm. This
will be demonstrated in the parallel performance data presented later in this paper.

5. Performance considerations.

5.1. AMG parameter settings and code versions. The experiments presented in this
paper use several combinations of solver options. This variation of solver options combina-
tions does not imply that problem-specific tuning is required to solve the targeted problems
effectively, but rather that for some situations certain adjustments can give some degree of
improved performance. The choices are described in Table 5.1.

The first combination of options, denoted “standard” or S1, assumes LAMG code version
1.4.5. This set of options is intended to give good performance on general problems without
any problem-specific tuning.

The second combination of options, denoted “fast” or F, also assumes LAMG code ver-
sion 1.4.5. This set of options is tuned to give better performance than the standard options
for some very well-behaved problems, e.g. Poisson problems. In particular, the improved
interpolation and the stronger smoother give better performance for these problems, though
as discussed earlier the latter is problematic for more general linear systems.

The final combination of settings, denoted S2, assumes a later version of LAMG, code
version 1.5.5. This more recent LAMG version includes all the functionality and performance
of the earlier version but also includes the processor reduction algorithm described earlier as
well as other small performance improvements. These options are identical to the S1 options
except for use of the processor reduction algorithm and a change in the number of smoother
steps which was found to give comparable but slightly better performance in many cases.

5.2. Platforms used for experiments. Tests are run on the Compaq QA, QB and QSC
platforms at Los Alamos National Laboratory (LANL). Each of these machines is a cluster
of Compaq AlphaServer ES45 nodes, each of which is a 4-CPU SMP with EV68 1.25 GHz
processors with 16 MB cache and 8, 16 or 32 GB of node main memory. The nodes are
connected by a high-speed Quadrics Interconnect fat-tree network. The QA and QB platforms
each have 4096 processors, 512 of which are file server nodes, while the QSC platform has
1024 processors, 256 of which are file server nodes. All calculations were performed using
64-bit floating point arithmetic. MPI was used for interprocessor communication. Jobs can
be run using either 3 or 4 processors of each 4-processor node; using 3 out of 4 processors
per node can result in better performance since one processor is left free to process system
tasks for that node.
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TABLE 5.1
LAMG Options

Name S1 F S2
LAMG Code Version 1.4.5 1.4.5 1.5.5
Pre/Postsmoother Method Jacobi JCG Jacobi
Pre/Postsmoother Iterations 2 4 4
V-cycle Acceleration CG FGMRES CG
Convergence Tolerance 1e-12 1e-12 1e-12
Coarsening Method A1 A1 A1
Jacobi Relaxation of Interp. Steps 1 2 1
Interpolation Thresholding Factor .2 .1 .2
Coarsest Matrix Condition Bound 30. 30. 30.
Coarsest Grid Solver Jacobi JCG Jacobi
Coarsest Grid Convergence Tolerance .1 .1 .1
Load Rebalancing yes yes yes
Processor Reduction no no yes

For numerical experiments, unless otherwise noted wallclock times are reported in sec-
onds.

5.3. Description of model problems. Several classes of model problems are used for
numerical experiments.� 3-D Poisson Problems. This problem set consists of a sequence of model 3-D Pois-

son problems based on a 7-point discretization of the equation � 4Cmnm � 4Dofo � 4?pPpT� j
on a regular rectahedral domain with Dirichlet boundary conditions. Each processor
has a cube-shaped subgrid of dimensions @rqs@tq9@ . These subgrids are combined
as tiles to form global grids of the respective sizes. For example, for E processors a
problem decomposition of E m qiE o qiE p is used, where E � E m5u E ovu E p . In each test
the true solution to the problem is a vector of all 1s; experiments with other right-
hand-side vectors gave qualitatively similar results. In each case the initial guess is
the zero vector.� 3-D Discontinuous Problems. This problem set consists of the following modifica-
tions of the Poisson problems defined above. Material discontinuities are introduced.
In particular, the diffusion coefficient in the lower half of the domain with respect
to the w -coordinate differs from that of the upper half of the domain by a factor ofXnU+x

. Otherwise, the problem specifications are the same as those for the 3-D Poisson
problems.� 3-D Poisson Problems, Higher-Order Discretizations. This problem set consists of
Poisson problems constructed as in the 3-D Poisson problems described above but
which utilize higher-order discretizations of a 3-D Poisson problem. Problems using
a 19-point stencil and problems using a 27-point stencil are constructed. Otherwise,
the problem specifications are the same as those for the 3-D 7-point Poisson prob-
lems.� 2-D Poisson Problems. This problem set consists of a sequence of model 2-D Pois-
son problems discretized with 5-point finite differences for the equation � 4 m�m �4 oeo � j on a regular rectangular domain with Dirichlet boundary conditions. Each
processor has a square-shaped subgrid of dimensions @yqr@ . These subgrids are
combined as tiles to form global grids of the respective sizes, e.g. for E processors
a problem decomposition of E m qzE o is used, where E � E m&u E o . Otherwise, the
problem specifications are the same as those for the 3-D Poisson problems.
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TABLE 5.2
LAMG Performance, 3-D 7-pt Poisson, 1 Processor, S2 Settings

{ Number of AMG AMG AMG AMG JCG JCG
Unknowns Iter Setup Solve Total Iter Time

Time Time Time
6 216 11 0.01 0.00 0.02 10 0.00

12 1728 12 0.03 0.02 0.06 37 0.01
25 15625 13 0.21 0.20 0.41 82 0.13
50 125000 15 2.37 3.69 6.06 158 3.93

100 1000000 20 26.78 53.60 80.39 312 91.13
200 8000000 19 230.44 444.72 675.15 611 1512.65

5.4. Single processor performance. Table 5.2 summarizes single processor results for
3-D 7-point Poisson problems with increasing numbers of unknowns. LAMG options S2 as
described in Table 5.1 are used. For comparison, results from applying Jacobi CG to the same
problems with the same convergence tolerance are included.

For LAMG one can observe a slow increase in iteration count as the problem size is
increased. This compares very favorably with the corresponding scaling of JCG, whose itera-
tion count for this problem set roughly doubles whenever @ is doubled. Also, as is typical for
AMG solvers of this type, the AMG setup time consumes a significant fraction of the total
time, in this case 35-50 percent.

For comparison purposes, Table 5.3 presents results obtained using the uniprocessor
AMG1R6 code authored by Ruge, Stüben and Hempel. AMG1R6 implements Ruge/Stüben
AMG as defined in [14]. The problems being solved, the platform used and stopping test used
for this case are the same as those used to generate Table 5.2. A comparison of the iteration
counts for LAMG, JCG and AMG1R6 is given in Figure 5.1. The corresponding solve times
per unknown are compared in Figure 5.2.

It should be noted that it is difficult to compare results from two different codes in this
way. Not only the algorithms but also the implementations are different, which can cause
significant differences in runtime performance, e.g. due to cache effects for different problem
sizes on the given platform. Nonetheless, some conclusions can be drawn from the compar-
isons.

Significantly, for LAMG and for AMG1R6, the growth rate of the iteration counts as the
problem size is increased is roughly the same, indicating the same basic algorithmic scaling
behavior of the two codes. The absolute cost in numbers of iterations is higher for LAMG
than for AMG1R6. This is to be expected on account of the aggressive coarsening used in
LAMG. Furthermore, the total timings of the two codes are comparable, with LAMG actually
faster than AMG1R6 for the largest problem solved. We conclude that on a single processor
LAMG performance is as scalable as the performance of the classical Ruge/Stüben AMG
method, which is widely considered to be an effective scalable algorithm for serial computers.
Finally, it should be noted that this iteration count scalability behavior is not specific to the
Poisson problem or to the serial case; the 3-D discontinuous parallel results shown in the next
section manifest similar iteration count scalability to the 3-D Poisson problems considered
here.

Tables 5.4 and 5.5 give additional data for the same runs. Included are the number of
multigrid levels; the number of unknowns associated with the coarsest grid; the maximum
value over all multigrid levels of the average number of nonzeros per row of the matrix at the
given level; the grid complexity, which is the sum of the matrix number of unknowns for all
levels divided by the number of unknowns of the original matrix; and the operator complexity,
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TABLE 5.3
AMG1R6 Performance, 3-D 7-pt Poisson, 1 Processor

{ Unknowns Iterations Setup Solve Total
Time Time Time

6 216 7 0.00 0.00 0.00
12 1728 8 0.03 0.00 0.03
25 15625 9 0.40 0.09 0.49
50 125000 10 4.53 1.50 6.03

100 1000000 11 54.70 20.02 74.72
200 8000000 13 726.61 200.46 927.07

0

5

10

15

20

25

30

35

40

45

50

1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07

Number of Unknowns

It
er

at
io

ns
  .

LAMG
AMG1R6
JCG

FIG. 5.1. LAMG, JCG and AMG1R6 Iteration Counts
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FIG. 5.2. LAMG, JCG and AMG1R6 Solve Time per Unknown

which is the sum of the matrix nonzero counts for all levels divided by the number of nonzeros
of the original matrix.

Significantly, the maximum average nonzeros per row, which is a measure of matrix spar-
sity and its impact on communication for the parallel case, is strongly bounded for LAMG,
showing very small growth with problem size, while for AMG1R6 this quantity grows very
rapidly. The stencil growth in the latter case makes the algorithm impractical for parallel
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TABLE 5.4
LAMG Run Data, 3-D 7-pt Poisson, 1 Processor, S2 Settings

{ Multigrid Size of Maximum Grid Operator
Levels Coarsest Average Complexity Complexity

Grid Nonzeros/Row
6 2 14 9.14 1.099 1.065

12 3 4 13.98 1.136 1.065
25 3 28 16.08 1.136 1.057
50 4 6 22.61 1.167 1.064

100 4 39 26.23 1.172 1.064
200 5 7 31.06 1.176 1.064

TABLE 5.5
AMG1R6 Run Data, 3-D 7-pt Poisson, 1 Processor

{ Multigrid Maximum
Levels Average

Nonzeros/Row
6 6 17.48

12 8 44.92
25 11 105.75
50 13 255.94

100 15 545.51
200 18 1049.70

implementation for problems such as this, due to the excessive communication requirements.
It should also be noted that the number of levels for LAMG is much less than for

AMG1R6. Aggressive coarsening as well as the condition number criterion for terminating
coarsening causes this effect. This improves parallel performance also.

5.5. Aggressive coarsening effects. The algorithm described in this paper differs from
those of [15] in that the former uses aggressive coarsening on all multigrid levels while the
latter do so only for the coarsening of the finest grid level.

To compare these two approaches, performance data is presented in Table 5.6 using the
same problems and solver settings as in Table 5.2, except that aggressive coarsening is used
only for the first level and standard Ruge/Stüben (pass 1) coarsening is used for all other
levels. Multipass interpolation is used for all levels.

It should be noted that, though the results of Table 5.6 for the maximum average nonzeros
per row are considerably better than those of AMG1R6 (Table 5.5), the behavior of this
statistic is still not scalable. This growth in the average stencil size is not favorable for parallel
communication, thus motivating the need to coarsen aggressively on all multigrid levels.

5.6. Performance of parallel coarsening. The results presented thus far are for a single
processor. Now we present parallel performance data to examine the impact of the parallel
coarsening strategy on AMG performance.

For these experiments we use LAMG with settings S2 applied to 3-D Poisson problems
on 1, 8, 27 and 64 processors.

One aspect of performance potentially affected by the parallel coarsening is the conver-
gence rate of the method. Figure 5.3 shows the number of iterations required to converge for
the test cases. It can be observed that the impact of parallelization on convergence is minimal,
in the worst case increasing the iteration count by a factor of about 20 percent. This suggests
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TABLE 5.6
LAMG Run Data, 3-D 7-pt Poisson, 1 Processor, S2 Settings, Aggressive Coarsening on One Level Only

{ Multigrid Maximum
Levels Average

Nonzeros/Row
6 2 9.14

12 3 18.33
25 4 46.86
50 5 72.23

100 5 126.20
200 7 227.41

TABLE 5.7
Impact of LAMG Parallel Coarsening on Maximum Average Nonzeros per Row

{ Unknowns / Proc 1 Proc 8 Procs 27 Procs 64 Procs
6 216 9.14 15.87 21.64 23.03

12 1728 13.98 17.68 23.21 25.99
25 15625 16.08 22.81 26.38 28.69
50 125000 22.61 28.02 30.49 31.79

100 1000000 26.23 30.83 31.89 32.72

that the parallelization strategy for the coarsening has only a small effect on the convergence
of the method.
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FIG. 5.3. Impact of LAMG Parallel Coarsening on Iteration Count

One can also consider the impact of the parallel coarsening on the maximum average
nonzeros per row statistic discussed earlier, which indicates the communication bandwidth
required to manipulate the sparse matrices generated by the algorithm. Table 5.7 shows for
each of the test cases the maximum average nonzeros per row for the coarse grid matrices
generated for the multigrid levels. The values are only slightly greater for the parallel cases
compared to the serial cases and indicate little dependence on the number of processors,
implying that the communication burden should be acceptable.

Finally we consider the cost of actually performing the parallel coarsening. For this we
analyze a representative case from the above tests, namely the case of 64 processors and one
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million unknowns per processor.
Two cost issues need be examined: the cost of the parallel gathers required for the par-

allel steps of the coarsening, and the impact of sacrificing some parallelism by introducing
sequentiality to the coarsening process.

Table 5.8 presents performance data for this case. It should be noted that an aggressive
coarsening step makes use of several passes of standard coarsening—in this case, three for
each multigrid level. For every pass of standard coarsening on each level, the table shows
the number of colors or parallel steps employed to perform the coarse grid selection; the
number of unknowns per processor taken as input to the coarse grid selection; this quantity
normalized to the problem size per processor of the original problem; and a cost estimate,
which is the number of parallel steps multiplied by the normalized unknowns per processor,
the latter being a measure of the relative computation cost per parallel step.

The number of parallel steps per level is no more than about 35. This is the number
of parallel gathers required to do the parallel coarsening. This quantity is reasonable, since
many more gathers than this are required to perform other AMG operations, e.g. the smoother
steps for each level. Furthermore, other experiments indicate that this factor weakly depends
on the number of processors, so scalability should not be adversely affected.

The sum of the estimated costs for all passes is about 5. This is an estimate of the
factor of increase in wallclock time to perform the computations for the parallel coarsening,
relative to the time to compute the coarse grid if all processors could coarsen independently.
In other words, this is the performance penalty factor from introducing sequentiality into the
coarsening process.

Since on a single processor the cost of the coarsening is small relative to the entire solve,
multiplying the coarsening time by a factor of 5 has a noticeable but relatively minor effect
on the solution time. For example, if the cost for coarsening were 5 percent of the total solve
time for a single processor, in parallel the added expense would be limited to 20 percent of
the entire solve time. Furthermore, the way the number of colors is calculated as described in
the previous section imposes a limit on how much this loss can be, independent of the number
of processors. Thus scalability for large numbers of processors is not impacted.

Thus we expect the expense of the parallel coarsening to be minimal. This evaluation is
borne out by the parallel performance results presented in the next section.

6. Numerical results. In this section scalability results are presented for large numbers
of processors.

In these experiments the total solve time over a set of test problems is measured. To
test scalability, the number of unknowns per processor is kept nearly fixed, the number of
processors is increased, and the resulting solution wallclock times are reported.

It would be expected for any solver method, including AMG, that the wallclock solve
times on more than one processor would increase modestly as the number of processors is
increased slightly above one processor, due to the introduction of interprocessor communica-
tion. For the structured grid cases considered in this section it is expected that the solution
time would increase significantly until there exists a processor subgrid for which all four
edges of the subgrid square (2-D) or all six faces of the subgrid cube (3-D) require communi-
cation. For 2-D structured problems this occurs at 9 processors; for 3-D structured problems
this occurs at 27 processors.

6.1. 3-D Poisson problems. Tests are presented here for 3-D 7-point Poisson problems
described in Subsection 5.3 using from 1 to 3584 processors of the LANL QB platform. As
the number of processors is increased, the number of unknowns is increased from 1 million
to 3.584 billion unknowns. For these experiments, each processor has a subgrid of size

X�U"U q
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TABLE 5.8
Estimated Cost of Parallel Coarsening

Multigrid Pass Colors Unknowns/ Unc/Proc Estimated
Level Processor Normalized Cost

1 1 2 1000000.00 1.000 2.000
1 2 4 497420.83 0.497 1.990
1 3 4 123270.22 0.123 0.493
2 1 8 61207.19 0.061 0.490
2 2 8 12278.22 0.012 0.098
2 3 11 1777.61 0.002 0.020
3 1 11 959.44 0.001 0.011
3 2 11 146.70 0.000 0.002
3 3 10 36.78 0.000 0.000
4 1 11 21.30 0.000 0.000
4 2 10 4.63 0.000 0.000
4 3 11 1.66 0.000 0.000
5 1 10 0.81 0.000 0.000
5 2 14 0.47 0.000 0.000
5 3 9 0.22 0.000 0.000

Sums: 134 5.103

XnU+U q XnU+U , corresponding to one million unknowns per processor. The fast LAMG settings
F described in Table 5.1 are used.

Table 6.1 summarizes the results of these runs using all 4 processors on each compute
node. For selected cases, iteration counts and timings for a Jacobi conjugate gradient (JCG)
solver applied to the same problems with the same convergence tolerance are given for com-
parison purposes. The wallclock times are also shown in Figure 6.1.

Observe that the iteration counts and the wallclock timings for the LAMG solver are very
flat as the number of processors is increased, indicating good scalability. Some increase in
solve time is evident, particularly as the number of processors is increased from 1 to 27. This
increase is in part due to communication costs and in part due to the number of processors
being used per compute node increasing from 1 to 4. This is slightly problematic for this
computer architecture due to the need for one of the processors of each compute node to
interrupt to service system requests, as well as the fact that more processors per node are
required to share the same memory, causing memory bandwidth speed constraints. These
performance penalties are not specific to LAMG but adversely impact any iterative method,
including the Jacobi CG method used here.

Since a node of QB requires some processor cycles to handle system operations for
that node, the tests depicted in Table 6.1 were rerun using only 3 out of the 4 CPUs per
compute node. The results of those tests are summarized in Table 6.2 and Figure 6.2 which
clearly illustrate the effects of the system demands upon that fourth processor on the wallclock
timings. It is evident from Table 6.2 and Table 6.1 that the scalability performance of LAMG
is significantly improved using this improved hardware configuration. In fact, as the number
of processors is increased from 27 to 1000 and thus the problem size is increased by over two
orders of magnitude, the total LAMG wallclock solution time increases by only 22 percent,
an indication of excellent scalability.

6.2. 3-D discontinuous problems. Practical physical problems may involve more than
one material and correspond to materials with very different properties. The test problems
used for this set of experiments are 3-D 7-point discontinuous problems involving two ma-
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TABLE 6.1
LAMG and JCG Performance, 3-D 7-Point Poisson, |~}�}e� Subgrid per Processor, 4 CPUs

per Node, QB

Number of Processor AMG JCG AMG JCG
Processors Tiling Grid Time Time Iter Iter

1 �v���5��� 79 95 10 312
8 �T�&����� 127 249 12 611

27 �����G��� 151 373 12 891
64 �G������� 158 503 12 1181

125 �T�&����� 178 — 12 —
216 �����G��� 180 — 12 —
343 �T�&����� 210 — 12 —
512 �����G��� 202 — 12 —
729 �����G��� 233 — 12 —

1000 ���G�����G����� 218 — 12 —
1331 ���5�����5����� 258 — 12 —
1728 �f�����f�����f� 251 2041 12 3318
2197 ���G�����G����� 306 — 12 —
2744 �P�����P�����P� 290 — 12 —
3375 �f�����f�����f� 342 — 12 —
3584 ���G�����G���P� 312 — 12 —
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FIG. 6.1. LAMG and JCG Performance, 3-D 7-Point Poisson, |~}�} � Subgrid per Processor,
4 CPUs per Node, QB

terials with diffusion coefficient ratio of one million (see Subsection 5.3). For these experi-
ments, each processor has a subgrid of size

XnU"U q XnU+U q XnU+U , corresponding to one million
unknowns per processor. The standard LAMG settings S1 described in Table 5.1 are used.

The results of the tests are shown in Table 6.3 and Figure 6.3. We observe that the scal-
ability of the LAMG wallclock times is good, though there is some performance degradation
for larger numbers of processors. However, as observed in Subsection 5.4, a slight increase in
iteration count with problem size is typical of AMG methods applied to problems of this type
and is considered to be good scalability. Also, these tests use all 4 processors per compute
node on QB, which accounts for some of the performance loss. The solve time and scalability
are vastly improved compared to JCG, which is used in many parallel applications because
of its simplicity and minimal communication requirements.



ETNA
Kent State University 
etna@mcs.kent.edu

SCALABLE PARALLEL ALGEBRAIC MULTIGRID 121

TABLE 6.2
LAMG and JCG Performance, 3-D 7-Point Poisson, |~}�}e� Subgrid per Processor, 3 CPUs

per Node, QB

Number of Processor AMG JCG
Processors Tiling Grid Time Time

1 �5���v�z� 80 94
8 ���&�T��� 120 238

27 �G�����&� 139 359
64 �����G��� 145 487

125 ���&�T��� 153 —
216 �G�����&� 155 —
343 ���&�T��� 165 —
512 �G�����&� 165 —
729 �G�����&� 174 —

1000 ���G�����G����� 170 —
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FIG. 6.2. LAMG and JCG Performance, 3-D 7-Point Poisson, |~}�} � Subgrid per Processor,
3 CPUs per Node, QB

6.3. 3-D Poisson problems, higher-order discretizations. It is of interest to consider
the effects of larger stencils on performance. Results of experiments using the test problems
described in Subsection 5.3 generated using 3-D 19-point and 27-point stencils are shown
in Table 6.4 and Figure 6.4. For these cases, each per-processor subgrid has dimensions� U q � U q � U , resulting in 512,000 unknowns per processor. The fast LAMG settings F
described in Table 5.1 are used.

The observed LAMG wallclock time performance is highly scalable. The smaller per-
processor subgrid size

� U q � U q � U results in a larger communication to computation ratio,
leading to slightly less scalable performance than the 3-D 7-point stencil case. Each test was
run on QB using all 4 processors on each compute node.

6.4. 2-D Poisson problems. Parallelization efforts have focused on the operator com-
plexity issues which arise with 3-D problems. However, 2-D problems are also of interest
in many applications. Table 6.5 summarizes the scalability performance of LAMG across
the solution of a sequence of 2-D Poisson problems as described in Subsection 5.3. The
corresponding LAMG wallclock times are shown in Figure 6.5.

For this case, each processor has a subgrid of size
X � U+U q X � U"U , resulting in roughly 3.2



ETNA
Kent State University 
etna@mcs.kent.edu

122 W. JOUBERT AND J. CULLUM

TABLE 6.3
LAMG and JCG Performance, 3-D 7-Point Discontinuous, |~}�}e� Subgrid per Processor, 4

CPUs per Node, QB

Number of Processor AMG JCG AMG JCG
Processors Tiling Grid Time Time Iter Iter

1 �v���5��� 89 115 23 384
8 �T�&����� 147 299 28 733

27 �����G��� 189 440 36 1051
64 �G������� 211 583 39 1369

125 �T�&����� 217 — 38 —
216 �����G��� 234 — 41 —
343 �T�&����� 241 — 39 —
512 �����G��� 265 — 44 —
729 �����G��� 287 — 43 —

1000 ���G�����G����� 295 — 45 —
1331 ���5�����5����� 315 — 43 —
1728 �f�����f�����f� 322 2170 45 3562
2197 ���G�����G����� 350 — 44 —
2744 �P�����P�����P� 382 — 49 —
3375 �f�����f�����f� 408 — 45 —
3584 ���G�����G���P� 429 — 51 —
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FIG. 6.3. LAMG and JCG Performance, 3-D 7-Point Discontinuous, |~}�} � Subgrid per
Processor, 4 CPUs per Node, QB

million unknowns per processor. The LAMG solution settings F in Table 5.1 are used, and
only 3 out of the 4 processors per compute node are used.

For these 2-D test problems, on a single processor the LAMG solver is already more
than an order of magnitude faster than the Jacobi CG solver. Also, based on known scaling
behavior of Jacobi CG, one would expect that AMG would be over two orders of magnitude
faster than Jacobi CG for the largest case run, and nearly three orders of magnitude faster at
3500 processors. Furthermore, LAMG exhibits nearly perfect scalability: as the number of
processors is increased from 9 to 289, the performance loss is only 6 percent.

6.5. 3-D SAGE problems. The following experiments make use of test problems gener-
ated using a modified version of the Los Alamos National Laboratory / Science Applications
International Corporation (SAIC) SAGE code. SAGE is an Adaptive Grid Eulerian code, a
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TABLE 6.4
LAMG Performance, 3-D 19- and 27-Point Poisson, |~}�}e� Subgrid per Processor, 4 CPUs

per Node, QB

Number of Processor AMG AMG AMG AMG
Processors Tiling Grid Time Iter Time Iter

19-Point 19-Point 27-Point 27-Point
1 �v���v�z� 59 10 73 8
8 �T�&�T��� 87 11 112 10

27 �������&� 101 12 141 10
64 �G���G��� 110 13 148 10

125 �T�&�T��� 112 12 165 10
216 �������&� 115 12 166 10
343 �T�&�T��� 136 13 190 10
512 �������&� 138 13 195 11
729 �������&� 152 13 220 11

1000 ���G����������� 157 13 218 11
1331 ���5�����v����� 193 13 252 11
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FIG. 6.4. LAMG Performance, 3-D 19- and 27-Point Poisson, |~}�} � Subgrid per Processor,
4 CPUs per Node, QB

multidimensional multimaterial hydrodynamics code with adaptive mesh refinement (see e.g.
[11]) which was modified by Tom Betlach of SAIC to generate test problems which simulate
radiation diffusion problems with material discontinuities and complex geometry.

The problem set is composed of 3-D heat conduction problems involving three materials
and three levels of mesh refinement. The grid is generated using the SAGE adaptive mesh
generator which allows for the successive generation of complex grids by using overlays to
replace the existing grid. The geometry of the object is a cube composed of Material 1. Within
this cube is a sphere composed of Material 2. Within this sphere is a spherical shell composed
of Material 3. The shell ’s interior is composed of Material 2, as are two connecting pipes
which connect the interior of the shell to the exterior.

The regions of the domain have diffusion coefficients with ratios equal to one million.
These problems are designed to represent difficulties which arise in typical SAGE work-
flows which may pose a challenge to linear solvers, including large diffusion coefficients
with strong discontinuities, complex gridding and multiple levels of adaptive mesh refine-
ment. The simulation involves one timestep designed to be representative of a single timestep
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TABLE 6.5
LAMG and JCG Performance, 2-D 5-Point Poisson, |~��}�}n� Subgrid per Processor, 3 CPUs

per Node, QSC

Number of Processor AMG JCG AMG JCG
Processors Tiling Grid Time Time Iter Iter

1 �v��� 249 3533 12 3759
4 �T�&� 317 8429 12 7398
9 ����� 365 — 13 —

16 �G��� 373 — 13 —
25 �T�&� 374 — 13 —
36 ����� 381 — 13 —
49 �T�&� 379 — 13 —
64 ����� 381 — 13 —
81 ����� 389 — 13 —

100 ��������� 385 — 13 —
121 ���v����� 386 — 13 —
144 �f�T���f� 385 — 13 —
169 ��������� 387 — 13 —
196 �P�G���P� 386 — 13 —
225 �f�T���f� 386 — 13 —
256 ��������� 391 — 13 —
289 �f�T���f� 388 — 13 —
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FIG. 6.5. LAMG and JCG Performance, 2-D 5-Point Poisson, |~��}�} � Subgrid per Processor,
3 CPUs per Node, QSC

of a longer simulation.
Problems are generated such that the number of unknowns per processor is approxi-

mately constant. Tests with these problems cannot be viewed as scaling tests in the same
sense as the model problem tests presented above, since the problem difficulty depends not
only on the number of unknowns but also on the specific adaptive grid generated.

For all cases, the relative residual convergence tolerance for both LAMG and JCG isXnU� c~� . In each test all 4 processors per compute node are used.
For the first set of tests, the number of unknowns per processor is kept between 710,000

and 750,000 unknowns. The largest problem considered has 181.4 million variables on 256
processors. These tests were run on the QSC computer at LANL in a shared user environment
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TABLE 6.6
LAMG and JCG Performance, 3-D SAGE Problems, �n|~}��R}�}�} to �P��}��I}�}�} Unknowns per

Processor, 4 CPUs per Node, QSC

Number of AMG JCG Number of
Processors Time Time Unknowns

1 96 118 735,288
2 116 178 1,507,458
4 146 263 3,065,728
8 152 307 5,925,400

16 175 528 11,958,784
32 199 651 24,977,000
64 226 805 46,065,280

128 247 1005 90,239,544
256 326 1338 181,444,416

using the S1 LAMG settings listed in Table 5.1.
The results are shown in Table 6.6 and Figure 6.6. These results indicate that LAMG

scales very well and also vastly outperforms Jacobi CG in both runtime and scalability with
respect to problem size and number of processors.
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FIG. 6.6. LAMG and JCG Performance, 3-D SAGE Problems, �n|~}��R}�}�} to �P��}��I}�}�} Un-
knowns per Processor, 4 CPUs per Node, QSC

In the next set of tests, the number of unknowns per processor is approximately
)+*6U O U"U+U .

The largest problem considered has about 350 million variables on 1408 processors. These
tests were run on the QB computer at LANL in a shared user environment using the S2 LAMG
settings listed in Table 5.1, with the exception that the more aggressive (4,4) coarsening was
used rather than A1 coarsening. The (4,4) coarsening was required to cope with the commu-
nication demands required by this 3-D problem with complex physics and smaller numbers
of unknowns per processor.

The results are shown in Figure 6.7. Again, both solve time and scalability are much
improved for LAMG compared to the JCG solver. These results confirm the robustness and
scalability of the algorithm on difficult real-world problems.

6.6. 2-D RAGE problems. The following experiments use the LANL/SAIC RAGE
code. The RAGE code is a version of the SAGE code described above which also includes
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FIG. 6.7. LAMG and JCG Performance, 3-D SAGE Problems, ����}��R}�}�} Unknowns per
Processor, 4 CPUs per Node, QB

TABLE 6.7
LAMG and JCG Performance, 2-D RAGE Problems, 250,000 Unknowns, 4 Processors, QB

AMG JCG
Total simulation time (hours) 25.5 37.1
Time in solver (hours) 1.76 13.39
Total solver iterations 3.4e4 4.05e6

radiation diffusion and radiation-material energy coupling.
The problem solved is a simulation of a laser-driven hohlraum high density energy

physics experiment. The problem geometry is a 3-D cylindrically symmetric domain, reduced
to a 2-D domain for the simulation. Radiation transport is modeled with a gray diffusion
model. The problem has material discontinuities which are captured using an unstructured
AMR grid with up to 8 levels of mesh refinement.

The simulation is run over 1300 time steps on 4 processors of the LANL QB platform.
The linear systems each have approximately 250,000 unknowns. One linear solve is per-
formed for each time step. Tests on these problems use the S2 LAMG settings listed in
Table 5.1.

The simulation timings are shown in Table 6.7. The LAMG solver reduces the solve
times by a factor of 7.6 compared to the Jacobi CG solver. Notably, this is a huge cost savings
for a relatively small problem; larger problems should expect even more savings. Also, the
cost of the linear solver has been reduced to a nearly inconsequential 7 percent of the entire
simulation time, which attains a difficult objective for simulations requiring a linear solver,
namely, making the linear solve time negligible.

6.7. 2-D Zathras problems. The following experiments make use of the Zathras code
developed at Los Alamos National Laboratory [3]. Zathras is a non-equilibrium radiative
transport code that solves the gray radiation transport equation using the diffusion or the P1
first order spherical harmonic approximation on 2-D and 3-D unstructured grids with adaptive
mesh refinement.

The problem being solved is radiative transfer in a 2-D domain with material disconti-
nuities of two orders of magnitude or more that vary over time. This is a structured problem
with 22,400 unknowns per processor run on 1 to 512 processors of the LANL QB platform.
An example solution profile is shown in Figure 6.8. For the simulation, the number of time
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steps increases from 400 to 900 as the problem size is increased. For more details, see [3].
Nearly all of the simulation time is spent in the solver.

Tests on these problems use the S2 LAMG settings listed in Table 5.1. Two other solvers
are compared: SSOR CG with manually set relaxation parameter, and an overlapping approx-
imate block Jacobi or additive Schwarz CG with 1 step of SSOR used for the subgrid solver
and one layer of cells overlap. The convergence tolerance for the solves is

X�U?�?�
.

Two observations should be made regarding these experiments. First, because the num-
ber of time steps is increased as the problem size increases, one would not expect the total
simulation time to be independent of the number of processors, but rather one would ex-
pect a slow increase in simulation time, even if the solver is perfectly scalable. Second, this
number of unknowns per processor is comparatively small for LAMG, so one would expect
significant communication requirements for this case.

In spite of this, the results shown in Figure 6.9 show LAMG is not only faster than the
one-level solvers for large numbers of processors but also the scalability of LAMG compared
to the other solvers is better as more processors are added.

FIG. 6.8. Solution Profile, 2-D Zathras Problem, �����R�f}�} Unknowns per Processor

FIG. 6.9. Solver Performance, 2-D Zathras Problem, �����R�f}�} Unknowns per Processor, QSC

7. Conclusions. The new AMG algorithm described here and implemented in the LAMG
package is an effective, scalable parallel algebraic multigrid method. Performance data for



ETNA
Kent State University 
etna@mcs.kent.edu

128 W. JOUBERT AND J. CULLUM

2-D and 3-D problems on up to 3584 processors indicates highly scalable behavior and one
to two orders of magnitude speed improvement or more for large problems compared to the
competing Jacobi-preconditioned conjugate gradient method. This new AMG method is also
shown to be robust for difficult problems involving complex physics and gridding.
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