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DUAL VARIABLE METHODS FOR MIXED-HYBRID FINITE
ELEMENT APPROXIMATION OF THE POTENTIAL FLUID FLOW

PROBLEM IN POROUS MEDIA
�

M. ARIOLI
�
, J. MARYŠKA � , M. ROZLOŽNÍK � , AND M. TŮMA �

Abstract. Mixed-hybrid finite element discretization of Darcy’s law and the continuity equation that describe
the potential fluid flow problem in porous media leads to symmetric indefinite saddle-point problems. In this paper
we consider solution techniques based on the computation of a null-space basis of the whole or of a part of the left
lower off-diagonal block in the system matrix and on the subsequent iterative solution of a projected system. This
approach is mainly motivated by the need to solve a sequence of such systems with the same mesh but different
material properties. A fundamental cycle null-space basis of the whole off-diagonal block is constructed using
the spanning tree of an associated graph. It is shown that such a basis may be theoretically rather ill-conditioned.
Alternatively, the orthogonal null-space basis of the sub-block used to enforce continuity over faces can be easily
constructed. In the former case, the resulting projected system is symmetric positive definite and so the conjugate
gradient method can be applied. The projected system in the latter case remains indefinite and the preconditioned
minimal residual method (or the smoothed conjugate gradient method) should be used. The theoretical rate of
convergence for both algorithms is discussed and their efficiency is compared in numerical experiments.
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1. Introduction. Let us consider a set of porous media occupying the bounded con-
nected domain �����	� with boundary 
��
� 
������ 
���� . We assume that 
��������� ,
�������
�������� and that the area of 
���� is strictly positive.

The steady state equations for the potential fluid flow in � combine Darcy’s law for the
velocity � and the piezometric potential (fluid pressure) � , and the continuity equation with
Dirichlet and Neumann boundary conditions on 
�� as follows "!$#&% ���('")"�+*,)(-.�/��01* #�2 �(1.1) �3�4�5� on 
����6*7�8-.9/�;:�� on 
����<*(1.2)

where
 =!>#&%

is the symmetric and uniformly positive definite second rank tensor of hydraulic
permeability of the media and 9 is the outward normal vector defined (almost everywhere)
on the boundary 
�� . We approximate the weak form of (1.1-1.2) by a mixed-hybrid finite-
element method that uses the low order Raviart-Thomas finite elements RT0 (for details we
refer to [30, 33]). The family of meshes is computed by dividing the domain ?� into trilateral
prisms with vertical faces and general nonparallel bases (see, e.g., [30, 33, 34]) and with
each prisma diameter bounded by @ . All our results can be directly generalized to tetrahedra
or other three-dimensional elements since our analysis can be applied to almost any matrix
arising from an RT0 based mixed-hybrid discretization of (1.1-1.2).A
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Mixed finite elements yield very accurate approximations to fluid pressure and veloc-
ity components. However, the mixed matrix system becomes ill-conditioned for steady-flow
problems [8] and the hybridization seems to be one of the possible strategies able to avoid this
problem. Hybridization of the mixed formulation was introduced in [13]. The local conser-
vation property of mixed and hybrid finite element models fairly well transport phenomena.
Moreover, from the algebraic point of view, the systems resulting from hybridization have a
rather transparent and simple sparsity structure. In particular, the hybridization can be con-
sidered as a specific matrix stretching technique [22], [1].

A mixed-hybrid discretization technique requires the solution of the following symmetric
indefinite system of linear algebraic equationsBCED F GF<HG6H IJKBC :� L IJ � BC 0.M0ON0 �

IJ *(1.3)

where :�� ! :PMQ*ORSRSRT*U:WV � �5X % H *Y�3� ! ��MQ*ORSRSRT*Z�5�WX % H * L � ! L M[*\RTRSRT* L �W]_^&`P�5�Wa % H
represent, respectively, the unknown values of the velocity momentum through the faces, the
pressure values in the prisms, and the pressure values on the faces. We denote by:bdc"e the number of elements,bdc"fhg the number of interior inter-element faces,bdc"c G the number of faces with the prescribed Neumann boundary condition, andbdc"i G the number of faces with the prescribed Dirichlet boundary condition ( cji G ��k

).
The total number of faces is l=m c"e �on c"fhg�pqcji G pqcjc G .

We assume that the elements in the mesh have been enumerated such that the global
position of every face and its corresponding entries in the matrices is given by the position of
the element in the enumeration, and by its local position on the element. The matrix blockD 2 � V � �WXsr V � �5X is symmetric positive definite and from the analysis in [34] it follows that
its spectrum lies in the interval t ! D % �vuZw M@ *xw N@zy *(1.4)

where w M and w N are positive constants independent of the discretization parameter @ . The
off-diagonal block

F 2 � V � �WXsr �WX is the face-element incidence matrix (with weights equal
to '|{ ) and, therefore, l~} MU��N F is an orthogonal matrix. The matrix block

G
has the form

G �! G M G N %|2 � V � �5X�r �5]T^P`P�W�5a * where the matrix block
G|HM represents the discrete continuity

equation for the fluid velocity across interior inter-element faces and where
G<HN stands for

fulfilment of the Neumann boundary conditions (for details we refer to [33], [34]). Both
matrix blocks n } MU�UN G M and

G N are orthogonal and
G HM G Nj� k . Thus, after scaling, the matrixG

is an orthogonal matrix. The normalization coefficients do not play an important role here
and eventually may be circumvented by a proper scaling of the columns and corresponding
rows in the system matrix (1.3) (or later in (1.6)). The condition number of the whole off-
diagonal matrix block

! F�G %
(the ratio between the largest and the smallest singular values)

is, however, dependent on the mesh size @ [34] and for its singular values we have�O� ! F(G % ��u w � @&* w�� y��(1.5)

here w � and w�� are again positive constants independent of the discretization parameter @
[34]. Let �����x����� ! @ M���N f V � ��X�*�@�} M���N f ��X"*�@P} MU��N f ��]�^P`P����a % a block diagonal matrix. If
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we consider the symmetric diagonal scaling of the whole indefinite system (1.3) by � we
have BC�� F GF�HG6H IJ � BC @ D F GF<HG6H IJ ��� BCED F GF<HG6H IJ �	R(1.6)

Then the inclusion set for the spectrum of the positive definite matrix block
�

becomes
independent of the parameter @ with

t ! � % ��u w M[* w N y . The matrix block
! F�G %

remains
untouched and it is now the only part of the system matrix (1.6) that depends on the mesh
size @ . We note here again that its sub-blocks

F
and

G
are matrices with an orthogonal set of

columns. In addition to this, when the conditioning of the matrix
�

itself is rather significant,
scaling of the matrix with its diagonal may lead to substantial improvements.

Linear systems similar to (1.3) have recently attracted a lot of attention in a number of
applications e.g. Navier-Stokes problems [47], magneto-static problems [40], quadratic and
nonlinear programming ([4], [32]) or porous media problems ([30],[7]). Several approaches
for a solution of such systems have been considered. They range from the Uzawa-type and
other splitting iteration methods [17], [6] , nonstationary conjugate gradient-type methods
like the MINRES method [39] applied to the whole indefinite system (see e.g. [47], [34] or
[43]) or the conjugate gradient method applied to the Schur complement systems ([30], [35]).
Other possible techniques are the geometric multigrid approach ([16], [50]) or the direct
solution based on the Bunch-Parlett or the � i � H -factorization ([15], [49]). An approach
based on the null-space method (using the sparse QR decomposition) combined with the
iterative solver was presented in [4].

In this paper we consider an approach based on the computation of a null space basis of
some off-diagonal block in the system matrix (1.6) and on the use of an iterative method in
order to solve the remaining part of a system projected onto the computed null-space. At the
continuous level this is equivalent to a procedure based on divergence-free finite elements.
In the two-dimensional case such finite elements correspond to stream functions. In three
dimensions, which is our case of interest, the divergence-free finite elements can be char-
acterized as curls of appropriate vector potentials [38]. The problem of finding an explicit
divergence-free basis in the three-dimensional case is open even for the lowest-order Raviart-
Thomas discretization. A partial solution to this problem was proposed in [53], see also [46].

Our approach is purely algebraic and it allows interesting insight into the problem. First,
we consider the off-diagonal block

! F�G % H
and its fundamental cycle null-space basis which

is computed using a spanning tree of a directed incidence graph related to the block
! F�G % H

.
The resulting projected system is then symmetric positive definite and a conjugate gradient
or a smoothed conjugate gradient method (minimal residual method) can be applied. Unfor-
tunately, as we will show later, the computed null-space basis may be ill-conditioned and,
therefore, the convergence rate of an iterative solver applied to the projected systems may be
rather slow for a mesh with a large number of elements.

Alternatively, we can take advantage of the structure of the submatrix��� FF�H �(1.7)

which is permutable in a block diagonal form where each of the c�e diagonal blocks is of
order 6 and has the structure of an augmented system. Therefore, we consider the approach
based on a null-space basis of the block

G�H
. Since the matrix block

G
is orthogonal, one can

very easily construct a null-space basis of
G�H

, which is orthogonal as well. The projected
system is now symmetric indefinite, and it is equivalent to the system obtained approximating
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the problem (1.1) with the boundary conditions (1.2) by the Raviart-Thomas mixed finite
element method [9]. For this symmetric indefinite problem, instead of the pure conjugate
gradient method its smoothed variant or, in other words, the minimal residual method is used.
Its rate of convergence is estimated and linear asymptotic dependence on the mesh size @ is
shown. Thus this approach is asymptotically as efficient as other approaches like the Schur
complement reduction ([30, 35]) or the solution using some indefinite iterative solvers on the
whole system (1.3) ([47, 34]).

Moreover, for nonlinear schemes modelling the transport of chemicals and/or saturation,
a sequence of problems with the same topology, i.e. with the same off-diagonal matrix blocksF

and
G

, must be solved. Therefore, the dual variable methods can compute once at the
starting the null space of

! FvG % H
(or the null space of

G|H
) and use it to project the gradient

of the nonlinear function during an outer iteration of a Newton like method. On the contrary,
Schur complement methods need to compute a new block matrix at each step and then they
must recombine all the blocks.

Both the Schur complement and dual variable approaches can be naturally coupled with
multilevel procedures to avoid deterioration of convergence with decreasing @ (see [28] where
instead of construction of an explicit basis the kernel of the curl operator is eliminated in a
multilevel way). In our case, however, the convergence deterioration is principally related to
the actual size of constants than to the asymptotic dependence on mesh discretization [33].

The outline of this paper is as follows. In Section 2 we focus on the approach based on
the computation of a null-space basis of the whole block

! F�G % H
. We study the structural

and spectral properties of a fundamental cycle null-space basis and based on these results, the
theoretical convergence rate of the conjugate gradient method applied to the resulting pro-
jected system is estimated. In Section 3 we describe an approach based on a null-space basis
of the block

G|H
and analyze the spectrum of a resulting indefinite matrix projected onto the

orthogonal null-space basis. Section 4 describes some numerical experiments which com-
pares these two approaches. In Section 5 we give some conclusions and point out directions
for the future research.

2. Approach based on a null-space basis of the matrix block
! F�G % H

. The dual
variable method [24] for computing the unknowns : , � and

L
in the system (1.3) is given in

the following Algorithm.
ALGORITHM 2.1. The dual variable method for a solution of the system (1.3) - an

approach based on a null-space of
��F�HG6H � .

Step 1. Compute a null space basis   of the matrix
��F<HG6H�� so that� F�HG6H��  �� k R

Step 2. Find some solution : M of the underdetermined system� F<HG6H � :PM�� � 0\N0 � � R
Step 3. Compute (iteratively) :�N from the projected system  H �  �:�N"�o  H ! 0.M�' � :PM % R
Step 4. Set :���:PM p  �:�N .
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Step 5. Find the unknown vectors � and
L

such that! FvG % � � L � ��0QM�' � :¡R
2.1. Step 1. The most critical component of Algorithm 2.1 is Step 1. There exist sev-

eral approaches how to compute a null space basis   . Some of them are tightly coupled
with particular applications. An extensive overview of null space basis algorithms based on
sparse decompositions is given in [25]. A possible way to compute a null space basis of
an equilibrium matrix in structural optimization is based on looking for a set of cycles in a
suitably defined graph, see e.g. [26, 42]. The cycle null space basis can be found efficiently
using various techniques (see, e.g., [41, 14, 11, 31]). Special attention should be paid to the
approach used for solving two-dimensional problems in computational fluid dynamics (see
[2, 24, 10]). These techniques use network algorithms to find a suitable cycle null space basis
for a discrete divergence matrix which comes from certain finite difference discretizations.

First we briefly recall the basic terminology used in the following text. In our description
we will use a slightly generalized concept of a graph by allowing more edges between a pair
of vertices. This generalization is commonly called a multigraph, but since all the standard
tools for graphs which we use can be trivially extended to multigraphs we will not emphasize
this difference later.

DEFINITION 2.1. Let ¢�� !Z£ * e % be a connected directed graph with ¤ £ ¤ vertices and¤ e ¤ edges such that ¤ e ¤Y'�¤ £ ¤ p {�¥ k R Then the vertex-edege incidence matrix of the graph
is ¤ £ ¤.¦�¤ e ¤ matrix with a row associated to each vertex and and a column associated to each
edge. The column associated with edge

! ��*¨§ % has only two nonzero entries, a ”1“ entry in the
row associated to vertex � and a ”-1“ entry in the row associated with vertex § .

We start with a definition of a cycle null space basis of a graph.
DEFINITION 2.2. Let ¢�� !Z£ * e % be a connected directed graph such that ¤ e ¤Y';¤ £ ¤ p{d¥ k R Then the columns of the cycle basis are given by a set of ¤ e ¤5'�¤ £ ¤ p { linearly

independent edge incidence vectors that correspond to some cycles in the graph ¢©R These
incidence vectors have the � -th component equal to p { if ªY« is an edge in the cycle and the
orientations of the cycle and ª[« agree, equal to '|{ if ªQ« is an edge in the cycle and the
orientations disagree, and equal to

k
if ªY« is not an edge in the cycle.

Since the cycle basis is formally defined for a graph we will not distinguish between the basis
of the graph and the basis formed from the columns of its incidence matrix. The concept of
fundamental cycle basis is based on the notion of a spanning tree defined as follows.

DEFINITION 2.3. A spanning tree of a connected directed graph ¢�� !¨£ * e % is a con-
nected subgraph of ¢ with ¤ £ ¤ vertices and ¤ £ ¤Q'�{ edges.
Note that in the previous definition we did not consider the fact that the edges are oriented.
In the following we define the fundamental cycle basis.

DEFINITION 2.4. A cycle basis is fundamental if it is obtained from a spanning tree ¬
of the graph in such a way that each cycle in the basis has exactly one non-tree edge ª and
its other edges lie on the unique path in ¬ connecting the vertices of the edge ª .
The following lemma introduces a graph which will be used for enumeration of the cycle null
space basis vectors in our application.

LEMMA 2.1. Denote by ­ the matrix obtained from
! F�G % H

by removing the rows
corresponding to Neumann boundary conditions, removing the columns corresponding to
faces with Neumann boundary conditions and adding a row which has ones in all the positions
corresponding to faces with Dirichlet boundary condition. Then ­ is an incidence matrix of
some directed graph ¢<®	� !¨£ ®+* e ® % .
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FIG. 2.1. An example of an off-diagonal block ¯±°3²s³Z´ for a simple test problem

Proof. The columns and rows of the matrix
! F�G % H

can be reordered to an upper block
triangular form with the unit diagonal block formed from the rows corresponding to Neu-
mann boundary conditions and the columns corresponding to faces with Neumann boundary
conditions. This means that the components of null space vectors corresponding to faces
with Neumann boundary conditions must be zero. Therefore we do not need to consider their
columns and rows in the matrix

! F�G % H
. Denote by µ­ the resulting matrix and let � H be the

row vector with components corresponding to faces with Dirichlet boundary condition equal

to one and remaining components equal to zero. Then define ­4� � µ­� H � R It is clear that ­
is an incidence matrix (with the column sum equal to zero) of some directed graph which we
denote from now by ¢<® .

An example of an off-diagonal block
! F�G % H

and the corresponding matrix ­ is shown
in Figure 2.1 and Figure 2.2, respectively. Figure 2.3 depicts the corresponding graph ¢ ® .

If we find a fundamental cycle basis to the graph of the incidence matrix ­ we can
easily extend it to the null space basis of

! F�G % H
. We border   ® with rows of zero in

correspondence of the columns in
! F¶G % H

relative to the edges of the Neumann boundary
conditions. Therefore, we can pay our attention to the matrix ­ only. For easier reference we
will formulate it as a proposition.

PROPOSITION 2.1. Let   ® be a null space basis of ­ . Then the null space basis   of! FEG % H
can be obtained from   ® by adding zero rows to positions of faces with Neumann

boundary condition.
For large and sparse problems it is important to keep sparsity of the null space basis as

much as possible. The problem to find the sparsest null-space basis for a given matrix is NP-
hard ([18, 12]). The sparsest null-space basis, however, may not be the most efficient way
when solving our problem. Namely, it may be rather ill-conditioned. Therefore, an effort
was devoted to computation of orthogonal null-space bases (see [4]). On the other hand, the
sparse QR-decomposition may lead to rather dense and in practice infeasible factors. In this
section we attempt to find a compromise between these two extreme cases. In particular, we
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FIG. 2.2. The matrix · constructed from the off-diagonal block ¯¸°¹²s³Z´ in Figure 2.1

would like to compute a relatively sparse null-space basis and, at the same time, to keep it
sufficiently linearly independent.

We specify now more precisely how our fundamental cycle null space basis is con-
structed. The cycles in ¢ ® here are determined using some spanning tree. By its choice
one can influence the conditioning of the basis in a substantial way. We assume that the span-
ning tree is constructed using the Algorithm 2.2. In its description we use the technique of
partitioning the graph nodes into º node sets

! ��»x*���M.*\ROROR\*U�½¼ } M % which are called level sets.
Starting with some initial node, which forms the initial level set ��» , the level set ��¾ is defined
recursively as the set of all unmarked neighbouring nodes of all the nodes of a previous level
set ��¾ } M . This technique is intensively used, e.g., for graph partitioning or in heuristics to
find graph pseudoperipheral vertices (see [19, 45]).

ALGORITHM 2.2. Algorithm to construct the spanning tree ¬�� !¨£ ®+* e H % of the graph¢�®	� !Z£ ®&* e ® % .
Step 1. Find a level set partitioning

! � » *�� M *\ROR\RO*U� ¼ } M % of ¢ ® starting from an arbitrary
node ¿ 28£ ® .
Step 2. For all components of subgraphs induced by a level set partitioning construct an
arbitrary spanning tree. Add all these edges of every spanning tree into e H .
Step 3. Connect the set of edges e H into a spanning tree of the whole graph ¢�® .

This construction guarantees that there are no cycles in the graph ¢z® which would use
nodes from more than two levels of the partitioning. The whole process of construction is
schematically depicted in Figure 2.4. The situation after Step 2 in Algorithm 2.2 is illustrated
on the left-hand side and the spanning tree of ¢�® after Step 3 is depicted on the right-hand
side. The edges of the spanning tree are denoted by double lines.

In the following we study the conditioning of the null-space basis constructed using the
spanning tree from Algorithm 2.2. We give bounds on the extreme singular values of the
matrix  À® , i.e. the smallest and the largest singular value. In particular, we are interested
in their asymptotic behaviour with respect to the discretization parameter @ under uniformly
regular refinement of the mesh.
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FIG. 2.3. The graph ÈsÉ corresponding to the matrix · from Figure 2.2. Orientation of edges is not shown
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FIG. 2.4. Graph with level sets and spanning tree edges after Steps 2 and 3 of Algorithm 2.2

THEOREM 2.2. Let  À® be a matrix with fundamental cycle null-space basis vectors
induced by the spanning tree from Algorithm 2.2. Let

tÌË�Í�Î !  À® %�Ï t N !  À® %�Ï ROR\R ÏtÌË « ¼ !  À® % ¥ k
be the singular values of  À® . Then there exist a constant w V such that

tÌË�Í�Î !  À® %�Ð w V\@P} N .
Proof. In a uniform mesh the ratio between the internal and the external diameters of
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any element is independent of @ and both diameters are of order Ñ ! @ % . Then, the number
of elements in each direction is independent of the direction. Algorithm 2.2 computes a
“Shortest Path Spanning Tree” for the graph ¢�® where each arc has length 1. Therefore, the
value of a level set is also the value of the minimum distance of any of its nodes from the
root. Such a distance is equal to the number of elements in the mesh that we cross going
from a node in the level set to a node corresponding to a boundary element directly connected
to root. Because of the uniformity of the mesh this number is in the worst case of orderÑ ! @P} M % . The nodes in a level set map into a wavefront in the mesh, therefore, the number
of nodes in a level set is in the worst case of order Ñ ! @+} N % . Since  À® is a cycle null-space
basis, its Frobenius norm is determined by the count of its nonzero entries. Each column of  ® corresponds to an arc which is not in the tree and the number of non zeros in the column
is the length of the shortest cycle formed using the nodes on the tree and the arc. Because
the max distance of a node in the tree from the root is of order Ñ ! @ } M % the maximum length
of the cycle is Ñ ! @P} M % . The total number of arcs out-of-tree is Ñ ! @&}�� % . Then, the number
of nonzeros in   ® is of order Ñ ! @P} � % . Hence there exists a positive constant w V such that
tÌË�Í�Î !  �® % �Ò¤T¤  �®¡¤T¤ Ð ¤S¤  À®+¤S¤ ^ Ð w V\@P} N .THEOREM 2.3. Let

t M !  �® %�Ï t N !  �® %�Ï R\ROR Ï tÌË « ¼ !  À® % ¥ k be the singular values of
the matrix  À® given by the fundamental cycle null-space basis vectors  �® . Then

t5Ë « ¼ !  �® %�Ï{xR
Proof. From the Courant-Fischer theorem we havet Ë « ¼ !   ® % � Ó©ÔTÕÖ « Ëj× ®ÙØ$Ú+M ÓÜÛYÝÎxÞ ®Ùr Î~ßÚ�» ¤S¤  À®à¿á¤T¤¤S¤ ¿¡¤S¤ Ï Ó©ÔSÕâãâ Î âãâ Ú+M ¤T¤   ® ¿¡¤S¤_R

Because ­ is the incidence matrix of the graph ¢z® , there exist äsM and ä¡N permutation matri-
ces [36] such that ä M ­sä N � � ��M� N � H *
with ��M non singular lower triangular matrix. Then  ® � � '=� } HM � HNf � R
Since the matrix   ® has a unit submatrix embedded, it always satisfies ¤S¤   ® ¿¡¤S¤ Ï ¤T¤ ¿¡¤S¤ . From
this observation we obtain the desired result.

The approach which we adopted is based on the concept of the fundamental cycle null
space basis   for which one could simply bound the smallest singular value of   from below
but then some growth in the norm of the matrix   with the bound in Theorem 2.2 should be
expected. Another approach which uses cycles of small lengths for the basis can fall into a
different trap. While the norm of   can be simply bounded by a constant times a maximum
degree in the graph ¢<® , it is not easy to give a reasonable lower bound for the minimum
singular value of   in the case of general domain. Nevertheless, we do not exclude that such
ill-conditioned null-space basis vectors may appear frequently in practical computations.

2.2. Step 2. The construction of a particular solution :¡M in Step 2 of Algorithm 2.1 is
considerably simpler than the construction of the null space basis (cf. [24]). Compute the
uniquely determined components of the particular solution corresponding to the faces with
the Neumann boundary conditions. Denote by g the matrix obtained from

! F
G % H
after

elimination of these components and after removal of all columns corresponding to faces
with a Dirichlet boundary condition. Construct a spanning tree ¬+^ of its incidence graph ¢�^



ETNA
Kent State University 
etna@mcs.kent.edu
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rooted in a vertex which corresponds to some element with a Dirichlet boundary condition.
Then remove all non-tree columns (columns corresponding to non-tree edges) from g . The
resulting matrix åg is then the incidence matrix of ¬&^ . Therefore, the rows and columns ofåg can be reordered into upper Hessenberg form such that the row corresponding to the root
will be numbered first. Adding a linearly independent Dirichlet column related to the root
we get a nonsingular upper triangular system. By solving this system and setting all the other
non-tree and Dirichlet components to zero we get the desired particular solution :áM . Note
that the construction of the particular solution based on the incidence matrix can be done in
a stable fashion. Indeed, it is clear that the norm of :+M is uniformly bounded with respect to
the norm of the right-hand side vector.

2.3. Step 3. For a solution of the projected system in Step 3 one may use the iterative
conjugate gradient [27] or the minimal residual method [48]. The theoretical rate of con-
vergence has been throughly studied and the bounds for their error and/or residual norm has
been given (see e.g. [27, 45]). Here we consider the conjugate gradient method smoothed by
the minimal residual smoothing, which is mathematically equivalent to the minimal residual
method [23]. If we apply this method to the symmetric and positive definite projected system,
the residual norm of the º -th approximate solution : ¼N can be bounded as followsæ   H ! 0 M ' � ! : M p  =: ¼N %U% æ Ð n	ç {�'è{[é~ê ë !   H �   %{ p {[é ê ë !   H �   %[ì ¼ æ   H ! 0 M ' � ! : M p  =: »N %�% æ R(2.1)

The bound (2.1) indicates that its rate depends strongly on the spectrum of the projected
matrix   H&�   . Using the bounds on the singular values of the null-space basis matrix   con-
structed in Step 1 and using the bound for the eigenvalues of the positive definite matrix blockD

(1.4) with scaling (1.6) then we can obtain the following simple result on the eigenvalues
of the matrix   H&�   .

LEMMA 2.4. Let  À® be the fundamental null-space basis matrix induced by the span-
ning tree from Algorithm 2.2 and let   be the null-space basis matrix of the block

! FEG % H
obtained from  ½® by adding zero rows corresponding to faces with Neumann boundary con-
dition. Then for the eigenvalues of the matrix   HP�   we havet !   H �   % ��u w MY* w N¡w NV@ � y R(2.2)

Proof. The statement of lemma follows from (1.4) and (1.6), from results given in the
subsection Step 1 and from the inequalityw M !  �¿+*� =¿ %�Ð�!   H �  =¿&*U¿ %�Ð w N !  =¿&*� =¿ % *
which gives the relation between the spectrum of   H&�   and the singular values of   .

Considering the bound (2.1) and Lemma 2.4 we haveæ   H ! 0.M�' � ! :�M p  =: ¼N %U% ææ   H ! 0 M ' � ! : M p  �: »N %U% æ Ð n BC {�' MíhîÌï íñðíhò @ N{ p MíhîÌï í ðíhò @ N IJ ¼ R(2.3)

For the asymptotic convergence factor then it follows from (2.3) that there exists a positive
constant wOó independent of the discretization such thatô ÔSÓ¼xõ�ö � æ   H ! 0QM�' � ! :PM p  �: ¼N %�% ææ   H ! 0 M ' � ! : M p  =: »N %�% æ � MU�U¼ Ð {�' w÷ó @ N p Ñ ! @ � % R(2.4)
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Preconditioning of projected matrices arising in optimization was studied in [37], see also
[21].

2.4. Step 5. The vector
! � H * L H % H in Step 5 of Algorithm 2.1 can be found as follows.

Consider the spanning tree ¬ ^ of the matrix g and the upper triangular system constructed
in Step 2 (see Subsection 2.2). The unknowns � and

L
are then a solution of the system with

a nonsingular lower triangular matrix obtained by transposing the matrix from Step 2. The
components of the unknown vector

L
corresponding to Neumann boundary conditions are

determined accordingly from remaining rows of
! F�G %

. The right hand-side vector is given
as 0 M ' � : substituting for the vector : computed in Step 4.

3. Approach based on a null-space basis of the matrix block
G�H

. Since the off-
diagonal matrix block

G
has orthogonal columns it is much easier to construct a null-space

basis for the block
G6H

rather than for the whole block
! FÒG % H

. In contrast to the previous
approach, this basis can be chosen orthogonal and thus the condition number of the basis
matrix is not dependent on the discretization parameter. Although we are splitting the poten-
tially ill-conditioned matrix block

! F�G %
into two matrix blocks with orthogonal columns,

the spectrum of the remaining part of the indefinite system is dependent on the discretization
parameter. Consequently, the rate of convergence of the minimal residual method applied to
the projected system can be bounded in terms of the mesh size and it depends linearly on the
uniform mesh refinement. The algorithm is given as follows.

ALGORITHM 3.1. The dual variable method for a solution of the system (1.3) - approach
based on a null-space of

G H
.

Step 1. Determine the null space basis   of the matrix block
G<H

such thatG H  �� k R
Step 2. Find some solution : M of the underdetermined systemG H : M ��0 � R
Step 3. Compute iteratively : N and � from the projected system�   H �     H FF<H   � � :WN� � � �   H ! 0QM�' � :�M %0 N ' F�H : M � R
Step 4. Set :3��: M p  =: N .
Step 5. Find the unknown

L
such that

G L ��0[M�' � :ø' F �+R
3.1. Step 1. The matrix block

G
has orthogonal columns and it has the form

G �! G M G N %d2 � V � �WXsr �W]_^P`&�5�Wa , where the block
G M has two nonzeros per column, corre-

sponding to the interior inter-element faces between neighbouring elements in the mesh.
The block

G N is just the face-Neumann boundary condition incidence matrix. Therefore
it is easy to construct the null-space matrix   such that

G�H  ù� k
. The resulting ma-

trix  K� !  ½MÜ sN %42 � V � �5X�r �5]T^P`P�W�Ùa can be chosen in the following way. The block ÀM 2 � V � �WXsr �W]_^ will have two nonzeros per column (1 and -1) exactly in the same posi-
tion as in the corresponding block

G M ; the block  �N is the face-Dirichlet boundary condition
incidence matrix. It is obvious that such matrix   has an orthogonal set of columns with  H  ��(���h��� ! nà*OROR\R÷*�nà*O{�*OROR\R�*O{ % (which can be also orthonormalized). The null-space basis
matrix   for our example is given in Figure 3.1.
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FIG. 3.1. Null-space basis of the off-diagonal block ²�´ from our example in Figure 2.1

3.2. Step 2. The matrix block
G

has one entry per row, so the system
G�H : M ��0 � can

be immediately solved by permuting its rows and columns to an upper trapezoidal form. In
other words, we immediately get the unknowns that correspond to faces with the Neumann
condition, and setting one of the two unknowns that stand for the interior inter-element faces,
we can recompute the other. The remaining unknowns corresponding to Dirichlet faces are
then set to zero. Another possible approximate solution is the least squares solution :áM	�G ! G6HáG % } M 0 � which is clearly stable since

G
is orthogonal up to normalization coefficientsú n .

3.3. Step 3. The projected system from Step 3 is symmetric but indefinite. On the other
hand, the null-space basis matrix   is orthogonal. Therefore, this approach can be very
efficient. The projected system can be written as a result of an orthogonal projection applied
to the remaining part of the indefinite system matrix in (1.6) in the form�   H&�     H+FF<H   � � �   H f � �;� FF<H � �   f � R(3.1)

The structural pattern of the resulting system for our example is depicted in Figure 3.2. The
projected system (3.1) is still rather sparse, so its iterative solution may be a reasonable op-
tion. Moreover, the expression given by (3.1) shows that we can implement the matrix-vector
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FIG. 3.2. Structural pattern of the projected matrix (3.1) from our simple problem

product quite efficiently. The product   � is equivalent to a permutation of the vector � . The
product   H&û can be implemented in parallel because the rows of the matrix   H are struc-
turally orthogonal. Furthermore, the matrix� � FF�H �
can be symetrically permuted in a block diagonal form with diagonal blocks of size 6. Here
we consider the conjugate gradient method smoothed by the minimal residual smoothing [23].
It is well known that the rate of convergence of symmetric iterative methods depends strongly
on the eigenvalue distribution of the system matrix ([45, 23]). In the following we analyze
the spectrum of the matrix in the projected system (3.1).

LEMMA 3.1. Let   be the null-space basis of the off-diagonal block
G H

constructed
in Step 1 of Algorithm 3.1. Then for the spectrum of the projected matrix block   H&�   it
follows

t !   H&�   % ��u w MQ*�n w N y RProof. The proof of the lemma is similar to the proof of Lemma 2.4 provided that   H  ���x����� ! n~*\ROR\R÷*�nà*O{x*\ROR\R�*O{ % .
LEMMA 3.2. Let   be the null-space basis of the off-diagonal block

G<H
constructed

in Step 1 of Algorithm 3.1. Then there exist positive constants w\ü and w÷ý such that for the
singular values of the matrix block   H+F it follows �O� !   H+F % �vu w÷ü @P* w÷ý y RProof. Define the graph ¢�þ�� !Z£ þ"* e þ % as follows. Let

£ þE��ÿ k *\{x*OR\ROR�* c"e�� R Let! ��*¨§ % be an edge in e þ whenever elements � and § are connected by an interior inter-element
face. Furthermore, let

! k *�� %�2 e þ be an edge for each Dirichlet boundary condition defined
on some element � . Note that there can be more edges between the node

k
and some node�=�� k R Moreover, introduce the mapping ��� £ þ���� � such that ��» � k and 	 « Þ 
�� � N ! � % ��{

and the induced mapping
û Ö � e þ
��� � satisfying the formula

û Ö ! ª % ��¤ � ! § % 'd� ! � % ¤ forª � ! ��*¨§ %�2 e þ R
Consider a tree ¬�� !Z£ þ * e H % rooted in the node

k
such that ¤ e H ¤x��¤ £ þ ¤Q'�{ . Let � be
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its arbitrary node. Using the Schwarz inequality we get� N ! � %�Ð��U! � %��
�
Þ
�
× »\r ¾�Ø û NÖ ! ª % *(3.2)

where ä ! k *�� % is a unique path between the nodes
k

and � in ¬ (where we do not take into
account the orientation of the edges) and � ! � % is its length. Summing the inequalities in (3.2)
for all � 2�£ þ we get{ Ð��¾ Þ 
 � � ! � %��

�
Þ
�
× »Or ¾�Ø û NÖ ! ª %�Ð � NË�Í�Î �

�
Þ X�� û NÖ ! ª %�Ð � NË�Í÷Î �

�
Þ X � û NÖ ! ª % *(3.3)

where �
Ë�Í�Î

is the length of the path of maximum length from the node
k

to some node� 28£ þ . This implies that

�
�
Þ X � û NÖ ! ª %�Ï � } NË�Í÷Î R(3.4)

Consider now the matrix   H&F 2 � � �5]T^P`P�W�1aPr �WX R Its rows correspond to Dirichlet bound-
ary conditions and interior inter-element faces. There is only one nonzero in the rows cor-
responding to Dirichlet boundary conditions (either p { or '|{ ) placed in the column of
the element where this condition is imposed. In the rows which correspond to the interior
faces, there are exactly two nonzeros, equal to p { and '|{ , respectively. Consider a vector��� ! � » *�� M *OR\RORO*�� �WX % H such that � ! k % � k R Clearly, from the definition of ¢<þ we have

�
�
Þ X � û NÖ ! ª % � æ !   H F % å� æ N *(3.5)

where å��� ! � M *OR\RORO*�� �WX % H R Consequently, using the Courant-Fischer theorem and (3.4) we
have t

��� � !   H F % � Ó©ÔSÕ� �Ö � ò Ú+M æ !   H F % å� æ Ï � } MË�Í�Î R(3.6)

The uniformly regular mesh refinement provides that �
Ë�Í�Î �ÒÑ ! c"e } MU� � % �ÒÑ ! @ % R There-

fore, there is a positive constant w\ü such thatt
��� � !   H F %�Ï w÷ü @PR(3.7)

Since
æ   H&F æ Ð æ   æÀæ F æ Ð ú n ú là* the singular values of   H+F are bounded by a positive

constant wOý � ú { k and this completes the proof.
LEMMA 3.3. Let   be the null-space basis of the off-diagonal block

G
constructed in

Step 1 of Algorithm 3.1. Then for the spectrum of the projected matrix (3.1) it followst �   H&�     H&FF�H   � ��u {n ! w M ' ï w N M p Ä w Ný % *O'øw Nüw N @ N p Ñ ! @ � % y �/u w M * w N p ï w NN p w Ný y
Proof. The proof of the lemma follows from [44], Lemma 2.1 and from the statements

of Lemma 3.1 and Lemma 3.2.
It is well-known that applying the minimal residual method to the projected system (3.1)

the relative residual norm of the º -th approximate solutions : ¼N and � ¼ , º4� k *O{x*\ROR\R can be
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FIG. 3.3. Null-space basis of the off-diagonal block !á´W° from our example in Figure 2.1

bounded (see also [23, pag. 54], [52, pag. 234]) as follows
""""
�   H ! 0 M ' � : M %0 N ' F<H : M � ' �   H+�     H&FF<H   � � : ¼N� ¼ � """"""""
�   H ! 0QM�' � :PM %0\N�' F�H :PM � ' �   H �     H FF�H   � � : » N� » � """" Ð n

BC {�' ï # íÍ Ö @{ p ï # íÍ Ö @ IJ%$ ¼x��N'& *(3.8)

where �z��{Qéxn ! ê w N M p Ä w Ný ' w M % , (�� w Nü é w N , w � w M and ��� w N p ê w NN p w Ný . From (3.8) we
obtain the bound for the asymptotic convergence factor in the form

ô ÔSÓ¼xõ�ö B
))
C """" �   H ! 0QM�' � :�M %0ON=' F�H :PM � ' �   H+�     HPFF�H   � � : ¼N� ¼ � """"""""

�   H ! 0 M ' � : M %0 N ' F<H : M � ' �   H&�     H+FF�H   � � : » N� » � """"
I
**
J M���¼ Ð {�' w,+ @ p Ñ ! @ N % R

Clearly, the bounds for the rate of convergence of the minimal residual method applied to the
indefinite projected system depend linearly on the discretization parameter @ . Moreover, since
we have used, in fact, the assumption on the symmetric spectrum for the projected matrix,
this bound may be an overestimate of the actual rate of convergence of the unpreconditioned
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TABLE 4.1
Model potential fluid flow problem on a rectangular domain with a constant tensor of hydraulic permeability.

The quantity -�. denotes the number of elements, -�/10 stands for the number of interior inter-element faces, -325²
and -3-P² denotes the number of Dirichlet and Neumann boundary conditions, respectively. The dimension of the
null-space of ¯¸°�²s³ ´ is given as -3!547698�:;-3.%<=-�/10><=-3-P² and the dimension of the null-space of ² ´ is
given as -3!@?A6CBD:�-3.><E-�/10F<E-D-P² .

Discretization parameters Dimension of null-spaces@ cje cjfhg c"i G c"c G c  &{ c  Wn
1/5 250 525 100 100 375 625
1/10 2000 4600 400 400 3000 5000
1/15 6750 15975 900 900 10125 16875
1/20 16000 38400 1600 1600 24000 40000
1/25 31250 75625 2500 2500 46875 78125
1/30 54000 131400 3600 3600 81000 135000
1/35 87750 209475 4900 4900 138625 226375
1/40 128000 313600 6400 6400 192000 320000

minimal residual method [52]. The preconditioning of the projected matrix (3.1) can be
incorporated as well and many other approaches are possible [47], [44], [51].

3.4. Step 5. Since the matrix block
G

has an orthogonal set of columns, the unknown
vector

L
is given as

L � i } M G6H ! 0QM�' � :¹' F � % which is easy to solve owing to the fact
that i � G6HáG �������x� ! nà*OR\ROR�*�nà*O{�*OROR\R÷*O{ % is a diagonal matrix.

4. Numerical experiments. In this section we give the results from numerical experi-
ments. Two sets of matrices have been considered.

The first set corresponds to a model potential fluid flow problem in a rectangular domain
with homogeneous Neumann on the top and bottom and Dirichlet conditions prescribed on the
rest of the boundary. The tensor of hydraulic permeability is constant in the whole domain.
Uniform prismatic discretization with the varying mesh size @ was used. In Table 4.1, we
give the values of discretization parameters cje ��n�éx@W� , c"fhg , c"c G and c"i G for different
values of @ . The dimension of the resulting indefinite system matrix (1.3) can be computed
as c �oÅ=m cje�p c"fhg�p c"c G and the number of columns of the off-diagonal block

! FvG %
is given by c FáG � cjevp;cjfhg�p�c"c G . In Table 4.1 we report the dimension c  &{ of the
null-space of the whole block

! F(G % H
and the dimension c  Wn of the null-space of the blockG6H

for all values of mesh size @ .
Table 4.2 reports the inclusion sets of the spectrum of matrix blocks

D
and

! F G %
as

well as of the whole symmetric indefinite matrix from (1.3). The extreme singular values of
the block

! F�G %
(square roots of the extreme eigenvalues of the matrix

! FÒG % H ! F�G %
) and

the extreme positive and negative eigenvalues of the whole indefinite matrix were approxi-
mated by the eigenvalues of the symmetric tridiagonal matrix obtained from 2000 steps of the
symmetric Lanczos algorithm [20]. The eigenvalue computation of the resulting tridiagonal
matrix was done using the LAPACK double precision subroutine DSYEV [3]. The extreme
eigenvalues of the diagonal matrix block

D
were computed directly by the LAPACK sym-

metric eigenvalue solver element by element. It is clear from Table 4.2 that the computed
eigenvalues of the block

D
are in a good agreement with the result (1.4) and after scaling

(1.6) the spectrum of the diagonal block
�

becomes independent of @ . Similarly the com-
puted extreme singular values of

! F�G %
agree well with (1.5).

Approaches based on the computation of the null-space basis of the whole off-diagonal
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TABLE 4.2
Model potential fluid flow problem on a rectangular domain with a constant tensor of hydraulic permeability.

Spectral properties of the matrix blocks and the whole indefinite system for different values of mesh size G . The
extreme eigenvalues and singular values were approximated using the symmetric Lanczos process and subsequent
computation of the eigenvalues of resulting tridiagonal form.

spectrum of matrix blocks whole indefinite system@ spectrum of
D

s.v. of
! F�G %

negative part positive part
1/5 [0.0016, 0.01] [0.1810, 2.63] [-2.63 , -0.1800] [0.00166, 2.63]

1/10 [0.0033, 0.02] [0.0927, 2.64] [-2.64, -0.0898] [0.00335, 2.64]
1/15 [0.0050, 0.03] [0.0622, 2.64] [-2.64, -0.0354] [0.00509, 2.65]
1/20 [0.0066, 0.04] [0.0467, 2.64] [-2.64, -0.0413] [0.00679, 2.65]
1/25 [0.0083, 0.05] [0.0374, 2.65] [-2.64, -0.0311] [0.00861, 2.65]
1/30 [0.0099, 0.06] [0.0312, 2.65] [-2.64, -0.0241] [0.01040, 2.65]
1/35 [0.0110, 0.07] [0.0268, 2.65] [-2.64, -0.0190] [0.01200, 2.65]
1/40 [0.0130, 0.08] [0.0234, 2.65] [-2.64, -0.0152] [0.01360, 2.65]

block
! F�G % H

are discussed first. In Table 4.3, we compare the memory requirement (denoted
as c"c   !  �{ % ) and the computational cost of constructing the null-space basis and iteration
counts for the (smoothed) conjugate gradient method applied to the projected positive defi-
nite system in Algorithm 2.1, Step 3. For computation of the null space basis   (such that! F�G % H  �� k ) we use the sparse QR factorization (for details see [4]) and the fundamental
cycle null space basis. Sparse QR decomposition was computed with the code MA49 from
the Harwell Subroutine Library [29]. Fundamental cycle null space basis is based on the
shortest path spanning tree of ¢<® , SDS algorithm from [14]. In Table 4.3 we further give the
number of nonzero elements (denoted as cjc   !IHKJ|% ) necessary for storing the orthogonal
and upper triangular factors of

! F�G %
and the time of computation in seconds (in brackets).

All experiments were performed on the SGI Origin 200 with processor R10000. Our results
from Table 4.3 indicate that the use of sparse QR factorization becomes prohibitive for last
two values of @ and the ratio cjc   !LJ|% é c"c   !IHMJ6% tends to approach the value 1/2 with the
decrease of @ . Note that the number of nonzeros in the fundamental cycle null-space ba-
sis c"c   !  |{ % is significantly smaller than the number of nonzeros in the factors Q and R.
This is even more pronounced for the computation time. In the iterative part the initial ap-
proximation of : N was set to zero, the relative residual norm

�ONQP ��ONQR�� ��{ k } ý was used as the
stopping criterion. Only the unpreconditioned case is considered in this case. In the case of
the QR approach we included the number of iterations and timing in seconds for two possible
approaches using either both factors Q and R (denoted in Table 4.3 as QR, see also [4]) or
solution via seminormal equations (SN) (for details we refer to [40]) which uses only the
upper triangular factor R from the QR factorization. The latter then necessarily leads to ap-
proximately double cost of matrix-vector multiplications in the iterative solver. For the case
of fundamental cycle basis we report the number of iterations and timings when the matrix  H �   is unpreconditioned and kept in factorized form (UN). We have noticed that simple
preconditioning strategies like Jacobi (note that the system matrix was initially scaled) or IC
(using explicit matrix assembling) do not help to improve the results. It is clear from iteration
counts in Table 4.3 that the number of iterations in the case of the QR factorization remains
independent of the mesh size @ while the number iterations in the approach based on the fun-
damental cycle basis increases more than linearly with @ , which leads to higher timings also
in the iterative part of the process.

In Table 4.4 we compare the approaches based on the null-space basis of the off-diagonal
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TABLE 4.3
Model potential fluid flow problem on a rectangular domain with a constant tensor of hydraulic permeability.

Memory requirements (the number of nonzero entries -D-3!s¯TSAU¡³ and -D-3!s¯T!�4U³ )of the approaches using the null-
space basis of the whole block ¯¸°�²s³ ´ , iteration counts and timings (in brackets for both approaches) of the
conjugate gradient method applied to the projected positive definite system.

memory requirements iteration counts@ QR approach fund. cycles QR approach fund. cyclescjc   !IHKJ|% cjc   !  �{ % QR SN UN
1/5 28360 3360 22 20 71

(3e-2) (7e-3) (0.17) (0.44) (0.08)
1/10 410466 47120 22 21 163

(0.97) (0.07) (1.87) (4.23) (1.57)
1/15 1979203 226780 22 21 252

( 9.73) (0.30) (8.48) (17.1) (19.9)
1/20 7120947 697840 22 21 346

(59.6) (0.93) (25.0) (48.6) (75.9)
1/25 18105131 1675800 22 21 438

(237) (2.21) (57.2) (107) (222)
1/30 40837823 3436160 21 21 523

(980) (4.60) (110) (214) (510)
1/35 — 6314420 — — 596

(8.64) (1009)
1/40 — 10706080 — — 670

(14.8) (1900)

block
G H

. The iteration counts and times of the preconditioned conjugate gradient method
applied to the projected indefinite system in Algorithm 3.1, Step 3 are discussed for positive
definite block diagonal preconditioner (IP) and indefinite (constraint) preconditioner (IQ),
where the inverses of corresponding matrices are approximated by the incomplete Cholesky
decomposition IC(0) (see e.g. numerical experiments in [40] and references therein). For
comparison we also give results for the preconditioner based on the approximate factorization
of the indefinite system (NS) developed originally by Nash and Sofer [37, pag. 52, formula
(3.2)]. It is clear from Table 4.4 that the computed results are in a good agreement with the
theoretical result (3.8) developed in Section 3. Indeed, the number of iterations required for
reducing the relative residual norm to { k } ý increases linearly with the decrease of @ . The
results with the IQ and IP preconditioners are reasonably good, better than the results for the
NS preconditioner which has, on the other hand, more potential for parallel implementation.
We note that the stopping criterion and the level { k } ý used throughout the paper leads usually
to much higher accuracy of the approximate solution than that required in practice in a finite
element method framework. For a thorough discussion we refer to [5].

The iterative solution of the projected indefinite system (Algorithm 3.1, Step 3) is com-
pared with the approach based on the sparse QR of the off-diagonal block

FÜH   . We report
the memory requirement c"c   !IHMJ6% and the timings for the computation of the factors to-
gether with the number of nonzeros in the null-space basis   (denoted as cjc   !  jn % here).
We note that since the latter is equal to n6m c"fhg�p;cji G the time for the construction of  
is negligible and it is not included in Table 4.4. Similarly to Table 4.3 in Table 4.4 we also
included iteration counts and times for the iterative part of the QR approach that uses either
both Q and R factors (QR) or only the factor R (SN).
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TABLE 4.4
Model potential fluid flow problem on a rectangular domain with a constant tensor of hydraulic permeability.

Number of nonzeros of the projected matrix onto the null-space basis ! of the block ² ´ (see Algorithm 3.1, Step 3),
iteration counts and timings of the preconditioned conjugate gradient method applied to the orthogonally projected
indefinite system compared to the memory requirements and iteration counts for the solution of the same system
based on the sparse QR decomposition of its off-diagonal block ! ´ ° .

pure iteration sparse QR@ NNZ(Z2) IP IQ NS c"c   !VHKJ|% QR SN
1/5 14375 62 35 55 20834 18 14

(0.05) (0.03) (0.10) (0.02) (0.09) (0.09)
1/10 123000 103 64 108 356267 19 16

(0.68) (0.48) (1.60) (0.35) (1.11) (0.89)
1/15 424125 144 93 160 1840670 21 15

(5.17) (3.79) (13.6) (3.14) (6.09) (4.63)
1/20 1016000 186 118 212 6322468 21 15

(20.2) (14.2) (49.6) (17.97) (18.3) (14.94)
1/25 1996875 225 145 265 16661544 23 15

(50.8) (37.4) (122) (86.6) (47.0) (27.8)
1/30 3465000 260 174 311 40669978 22 15

(111) (84.2) (268) (584) (96.7) (85.5)
1/35 5518625 295 204 362 — — —

(224) (173) (520)
1/40 8256000 331 230 412 — — —

(383) (295) (941)

The first set of matrices was obtained from a discretization of a model potential fluid
flow problem with a constant tensor of permeability in a rectangular domain. Theoretical
analysis and numerical experiments for the first set clearly indicate that the conditioning
of the positive definite block

D
does not dramatically affect the behaviour of the conjugate

gradient method used in the iterative part of the whole solution process. In addition, the linear
dependence (or independence in the case of the QR approach) in the iteration counts of the
conjugate gradient method on mesh size does not represent a serious difficulty in terms of the
computational complexity, especially owing to the fact that in the three-dimensional case even
large values of mesh size ( @XW¶{Qé[Ä k ) lead to a rather large problems, so a further decrease
of @ would lead to a practically infeasible system anyway. The second set of matrices comes
from a real-world application of underground water flow modelling in the area of Stráž pod
Ralskem in northern Bohemia. Realistic values of hydraulic permeability lead to the positive
definite diagonal block

D
with the condition number which may become a dominating factor

for the behaviour of the iterative solver applied onto a projected system. This is illustrated in
the following experiments. In Table 4.5 we give a description of the problems together with
the inclusion sets for the extreme eigenvalues of

D
and extreme singular values of

! F G %
computed as for the model problem in Table 4.2.

Similarly as before, in Tables 4.6 and 4.7 we report the same quantities for the second
set of matrices. It follows from Table 4.6 that also here the memory requirements and the
times for computing the (sparse) QR decomposition are substantially larger than in the case
of construction of the fundamental cycle null-space basis. For realistic examples, however,
the iteration counts and timings for the conjugate gradient method applied on the system with  H+D   (UN) dramatically increase and for last two examples exceed 9999 iterations. The
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TABLE 4.5
Realistic problems from underground water flow modelling in Stráž pod Ralskem. The name of the problem,

the number of elements -3. and the dimension of the whole indefinite system -Y6
Z[:7-�.9\9-�/109\9-3-P² .
The spectral properties of the matrix blocks ] and ¯¸°/²s³ for all matrices. The extreme eigenvalues and singular
values were approximated using the symmetric Lanczos process and subsequent computation of the eigenvalues of
the resulting tridiagonal form

discretization parameters spectrum of matrix blocks
name c"e c spectrum of

D
s.v. of

! FvG %
k1san 14700 126980 [0.21e-4,0.80e2] [0.026,2.64]

olesnik0 24300 210060 [0.74e-4,0.91e3] [0.020,2.64]
dpretok 36300 313940 [0.77e-3,0.12e5] [0.017,2.64]
turon 50700 438620 [0.19e-4,0.96e2] [0.014,2.64]

TABLE 4.6
Realistic problems from underground water flow modelling in Stráž pod Ralskem. Memory requirements of

the approaches using the null-space basis of the whole block ¯±°�²s³ , iteration counts and timings of the conjugate
gradient method applied to the projected positive definite system.

memory requirements iteration counts
Name QR approach fund. cycles QR approach fund. cyclesc"c   !IHMJ6% c"c   !  �{ % QR SN UN
k1san 3674914 983640 44 44 2635

(38.1) (0.95) (34.4) (78.4) (703)
olesnik0 6626296 2057880 58 58 4544

(102) (2.03) (79.1) (181) (2397)
dpretok 10453556 3719320 37 37 ¥ 9999

(224) (3.73) (78.6) (187) (—)
turon 15398104 6095960 36 36 ¥ 9999

(434) (6.62) (116) (265) (—)

iteration counts and timings for both QR approaches (QR and SN), on the other hand, remain
comparable to the results in Table 4.3. Iterations counts and timings for the positive definite
block-diagonal preconditioner (IP) and indefinite (constraint) preconditioner (IQ) in Table
4.7 are comparable to results in Table 4.4 and show that this approach is very efficient even
for realistic problems. The Nash-Sofer preconditioning is, however, substantially worse for
problems with the dominant tensor of hydraulic permeability. The QR approach applied to
the projected indefinite system seems to be a useful approach. Nevertheless, it may fail in
some cases.

Finally, we report a comparison of the dual variable approach from Section 3 with the
primal approach based on the construction of the Schur complement matrix, and its subse-
quent solution by the conjugate gradient method [35]. Instead of considering the model po-
tential flow problem (1.1) and (1.2) in a rectangular domain with a uniform mesh refinement
[33], [34], where the primal approach typically outperforms our null-space based variants, we
present results on our real-world problems where realistic values of hydraulic permeability
tensor lead to the positive definite diagonal block

�
with a large condition number which

significantly affects efficiency of iterative solvers applied to systems (1.3). In Table 4.8 we
present the number of nonzeros of the corresponding Schur complement matrix, and projected
matrix (3.1), iteration counts and total time for solving the linear system (1.3) including time
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TABLE 4.7
Realistic problems from underground water flow modelling in Stráž pod Ralskem. Number of nonzeros of

the projected matrix onto the null-space basis ! of the block ² ´ (see Algorithm 3.1, Step 3), iteration counts and
timings of the preconditioned conjugate gradient method applied to the orthogonally projected indefinite system
compared to the memory requirements and iteration counts for the solution of the same system based on the sparse
QR decomposition of its off-diagonal block ! ´ ° .

pure iteration sparse QR
Name NNZ(Z2) IP IQ NS c"c   !VHKJ|% QR SN
k1san 862820 184 76 3156 3284826 93 93

(17.1) (7.86) (629) (5.80) (51.1) (59.1)
olesnik0 1426140 287 103 5582 6007628 ¥ ÃxÃxÃ�Ã ¥ Ã�ÃxÃxÃ

(44.9) (18.4) (1846) (13.7) (—) (—)
dpretok 2130260 112 51 1705 9495418 23 23

(26.3) (14.1) (865) (26.1) (35.6) (42.3)
turon 2975180 155 80 442 14426491 26 26

(56.0) (32.7) (325) (49.6) (59.0) (72.1)

TABLE 4.8
Real application problems from the underground water flow modelling in Stráž pod Ralskem. Memory require-

ments, iteration counts and total timings of the pure and preconditioned conjugate gradient method applied to the
Schur complement system with ¯>¯L<D^`_a]¡³I_a][bab�³I_�°dcac compared to the memory requirements, iteration counts and
total timings for the solution of the projected system (3.1) using the pure and preconditioned MINRES method.

Matrix Schur complement approach dual variable approach
NNZ(S) unprec prec NNZ(Z2) unprec prec

k1san 33880 6632 221 49420 650 76
(244) (13.3) (36.2) 10.3

olesnik0 56160 ¥ 9999 925 81540 727 103
(—) (92.7) (65.7) (20.5)

dpretok 84040 ¥ 9999 407 121660 784 51
(—) (65.9) (117) (22.5)

turon 117520 1843 376 169780 722 80
(302) (91.8) (161) (40.3)

for all initial transformations and substitutions. Here we considered both unpreconditioned
and preconditioned variants. In the preconditioned case we applied IC(0) preconditioning to
the Schur complement system, and the indefinite constraint preconditioning [21], [32], [43] to
the indefinite projected system with block inverses approximated by IC(0). The results in Ta-
ble 4.8 show that the dual variable variant based on the null-space basis of

G�H
is significantly

faster for the chosen set of real-world problems.

5. Conclusions. In this paper we have compared the computational efficiency of several
dual methods for the solution of augmented linear systems coming from the mixed-hybrid
finite element approximation of the potential fluid flow problem in porous media. We have
discussed the approach based on the computation of a null-space basis either of the whole
off-diagonal block

! F�G % H
or its orthogonal part

G H
. We have shown that although the

sparse QR decomposition of the off-diagonal block is prohibitive for large problems in terms
of memory requirements for storing the factors, its iterative part is very efficient (although
the cost of iteration is rather high) and not dependent on the mesh size. On the other hand,
the construction of the fundamental cycle null space basis is very fast, but the iteration counts
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are much worse. In addition, since the basis is non-orthogonal the number of iterations in
the iterative part is no longer independent of the mesh size and in the case of more difficult
tensors of hydraulic permeability may become very large. The cost of iteration is, however,
owing to higher sparsity of the basis lower than for the QR approach. Good preconditioning
of the projected matrix   H D   may be of help especially for realistic examples and in general
it is an open question. For examples with moderate values of hydraulic permeability it seems
useful to keep the projected matrix in factorized form.

The approach based on the null space of the off-diagonal block
G<H

seems to be more
efficient both in terms of the memory requirements and computational cost. The null-space
basis of

G|H
can be explicitly given and the construction of the resulting projected (mixed)

system is cheap. Again, the sparse QR decompostition of   H&F (if it is not prohibitive)
leads to lower iteration counts and times in the iterative part. Numerical experiments on all
examples indicate that the pure iterative solution of the projected and still indefinite system is
a very promising approach especially together with some efficient preconditioning techniques
like the indefinite (constraint) or block-diagonal positive definite preconditioner. Moreover,
following the discussion of Section 3.3, we can take advantage of (3.1) for an efficient parallel
implementation of the matrix by vector product.
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to the Dept. of Mathematical Modelling in DIAMO, s.e., Stráž pod Ralskem for providing us
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