
Electronic Transactions on Numerical Analysis.
Volume 21, pp. 81-106, 2005.
Copyright 2005, Kent State University.
ISSN 1068-9613.

ETNA
Kent State University
etna@mcs.kent.edu

LOCALITY OF REFERENCE IN SPARSE CHOLESKY FACTORIZATION
METHODS

�
ELAD ROZIN

�
AND SIVAN TOLEDO

�
Dedicated to Alan George on the occasion of his 60th birthday

Abstract. This paper analyzes the cache efficiency of two high-performance sparse Cholesky factorization
algorithms: the multifrontal algorithm and the left-looking algorithm. These two are essentially the only two al-
gorithms that are used in current codes; generalizations of these algorithms are used in general-symmetric and
general-unsymmetric sparse triangular factorization codes. Our theoretical analysis shows that while both algo-
rithms sometimes enjoy a high level of data reuse in the cache, they are incomparable: there are matrices on which
one is cache efficient and the other is not, and vice versa. The theoretical analysis is backed up by detailed experi-
mental evidence, which shows that our theoretical analyses do predict cache-miss rates and performance in practice,
even though the theory uses a fairly simple cache model. We also show, experimentally, that on matrices arising from
finite-element structural analysis, the left-looking algorithm consistently outperforms the multifrontal algorithm. Di-
rect cache-miss measurements indicate that the difference in performance is largely due to differences in the number
of level-2 cache misses that the two algorithms generate. Finally, we also show that there are matrices where the
multifrontal algorithm may require significantly more memory than the left-looking algorithm. On the other hand,
the left-looking algorithm never uses more memory than the multifrontal one.

Key words. Cholesky factorization, sparse cholesky, multifrontal methods, cache-efficiency, locality of refer-
ence

AMS subject classifications. 15A23, 65F05, 65F50, 65Y10, 65Y20

1. Introduction. In the late 1980’s and early 1990’s it became clear that exploiting
cache memories has become crucial for achieving high performance in sparse matrix fac-
torizations, as in other algorithms. Independently, Rothberg and Gupta [23] and Ng and
Peyton [22] showed that supernodes, groups of consecutive columns with identical nonzero
structure, are key to exploiting cache memories in sparse Cholesky-factorizations. Neither
paper, however, used a formal model to analyze the memory-system behavior of the factor-
ization algorithms. Without such a model, different algorithms can only be compared exper-
imentally, and it is not possible to predict how different algorithms behave under untested
extreme conditions.

In this paper we fill this gap in the understanding of the cache behavior of sparse fac-
torization algorithms. We present a formal model for analyzing cache misses, and show that
the so-called multifrontal algorithms are better able to exploit caches for some input matrices
while for some other input matrices the so-called left-looking algorithms are better. That is,
they are incomparable in terms of cache efficiency. Experiments on specially constructed
matrices validate our theoretical analyses. The experiments show, through running-time mea-
surements and processor-event measurements, that some matrices cause many more cache
misses in the left-looking algorithm than in the multifrontal one, while others cause many
more cache misses in the multifrontal algorithm than in the left-looking one. On these classes
of matrices, more cache misses are correlated with increased running time.

We also show that the total memory consumption of multifrontal algorithms may be
significantly higher than that of left-looking algorithms, which sometimes causes problems
in the lower levels of the memory hierarchy, such as paged virtual memory.�

Received August 4, 2004. Accepted for publication July 11, 2005. Recommended by J. Gilbert. This research
was supported in part by an IBM Faculty Partnership Award, by grants 572/00 and 848/04 from the Israel Science
Foundation (founded by the Israel Academy of Sciences and Humanities), and by grant 2002261 from the United-
States-Israel Binational Science Foundation.�

School of Computer Science, Tel-Aviv Univesity, Tel-Aviv 69978, Israel (stoledo@tau.ac.il).

81

ETNA
Kent State University
etna@mcs.kent.edu

82 E. ROZIN AND S. TOLEDO

In experiments on typical matrices obtained from a sparse matrix collection, the left-
looking algorithm usually outperforms the multifrontal one. On these matrices, the left-
looking algorithm incurs more level-1 cache misses but fewer level-2 misses. However, a
detailed analysis of several processor events, not only cache misses, suggests that the supe-
rior performance of the left-looking algorithm is mainly due to a reduced instruction count,
not to differences in cache-miss rates. Since the asymptotic instruction-count behavior of
the two algorithms is similar, and since the exact instruction counts depend to a large extent
on hand and compiler optimizations of the inner loops, the superiority of the left-looking
algorithm on these real-world matrices is probably implementation-dependent.

The papers of Rothberg and Gupta and Ng and Peyton examined three classes of factor-
izations. Rothberg and Gupta used a so-called right-looking factorization scheme. Ng and
Peyton compared left-looking and multifrontal schemes. It is now generally accepted that left-
and right-looking schemes are very similar, but that left-looking schemes are somewhat more
efficient. Therefore, there does not seem to be a reason to prefer a right-looking factorization
over a left-looking one (Rothberg and Gupta explain that they chose a right-looking over a
multifrontal one to save memory, but they do not make any claims concerning left-looking
factorizations). In this paper, we provide additional experimental evidence that substantiates
Ng and Peyton’s empirical conclusion that left-looking algorithms are more efficient than
multifrontal ones. But we also show that left-looking algorithms may almost completely fail
to exploit cache, even when the matrix is partitioned into wide supernodes. The multifrontal
algorithm may also fail to exploit the cache, but it never fails when supernodes are wide. This
observation is new.

The main conclusions from this research are that in practice, left-looking methods are
slightly faster and require less memory, but in theory, both the left-looking and the multi-
frontal approaches have defects. A left-looking factorization, even a supernodal one, may
suffer from poor cache utilization even when the matrix has wide supernodes; a multifrontal
factorization may also suffer from poor cache reuse, and it may require a large working stor-
age, which may force it to utilize lower, slower levels of the memory hierarchy.

The paper is organized as follows. Section 2 describes the basic structure of sparse
Cholesky factorization and the so-called left-looking and multifrontal algorithms. Section 3
analyzes the two algorithms using simplified cache models. In Sections 4 and 5 we show
that in terms of cache-miss rates, each algorithm is inferior to the other on some classes of
matrices. Section 6 deals with the memory usage of the multifrontal algorithm. In Section 7
we describe our experimental results, on both synthetic matrices and real-world matrices. We
present our conclusions in Section 8.

2. Sparse Cholesky Factorization. This section describes the basic structure of the
sparse Cholesky factorization; for additional information, see the monographs of Duff, Eris-
man, and Reid [7] and of George and Liu [10], as well as the papers cited below. The fac-
torization computes the factor � of a sparse symmetric positive-definite matrix �������
	 .
All state-of-the-art sparse Cholesky algorithms, including ours, explicitly represent only few
nonzero elements in � , or none at all. Many algorithms do represent explicitly a small num-
ber of the zero elements when doing so is likely to reduce indexing overhead. The factor � is
typically sparse, but not as much as � . One normally pre-permutes the rows and columns of� symmetrically to reduce fill (elements that are zero in � but nonzero in �).

A combinatorial structure called the elimination tree of � [26] plays a key role in virtu-
ally all state-of-the-art Cholesky factorization methods, including ours. The elimination tree
(etree) is a rooted forest (a tree unless � has a nontrivial block-diagonal decomposition) with� vertices, where � is the dimension of � . The parent ������ of vertex � in the etree is defined
to be �������������������� �!���"�$#��%'& . The elimination tree compactly represents dependencies

ETNA
Kent State University
etna@mcs.kent.edu

LOCALITY OF REFERENCE IN SPARSE CHOLESKY FACTORIZATIONS 83

FIG. 2.1. A fundamental supernodal decomposition of the factor of a matrix corresponding to a 7-by-7 grid
problem, ordered with nested dissection. The circles correspond to elements that are nonzero in the coefficient matrix
and the stars represent fill elements.

in the factorization process and has several uses in sparse factorization methods [18]. The
elimination tree can be computed from � in time that is essentially linear in the number of
nonzeros in � .

Virtually all the state-of-the-art sparse Cholesky algorithms use a supernodal decompo-
sition of the factor � , illustrated in Figure 2.1 [8, 22, 23]. The factor is decomposed into
dense diagonal blocks and into the corresponding subdiagonal blocks, such that rows in the
subdiagonal rows are either entirely zero or almost completely dense. In a strict supernodal
decomposition, subdiagonal rows must be either zero or dense; the subdiagonal blocks in
a strict decomposition can be packed into completely dense two-dimensional arrays. In an
amalgamated [8] (sometime called relaxed [5]) decomposition, a small fraction of zeros is
allowed in the nonzero rows of a subdiagonal block. Relaxed decompositions generally have
larger blocks than strict ones, but the blocks contain some explicit zeros. Since larger blocks
reduce indexing overheads and provide more opportunities for data reuse in caches, some
amount of relaxation typically improves performance. Given � and its etree, a linear time
algorithm can compute a useful strict supernodal decomposition of � called the fundamental
supernodal decomposition [20]. This decomposition typically has fairly large supernodes and
is widely used in practice. Finding a relaxed supernodal decomposition with larger supern-
odes is somewhat more expensive, but is usually still inexpensive relative to the numerical
factorization itself [5, 8].

The supernodal decomposition is represented by a supernodal elimination tree or an
assembly tree. In the supernodal etree, a tree vertex represent each supernode. The vertices
are labeled % to (*),+ using a postorder traversal, where (is the number of supernodes. We
associate with supernode � the ordered set -�� of columns in the supernode, and the unordered
set .�� of row indices in the subdiagonal block. The ordering of indices in -/� is some ordering
consistent with a postorder traversal of the non-supernodal etree of � . We define 0��1��2 -3�42
and 56�7�82 .���2 . For example, the sets of supernode 9;: , the next-to-rightmost supernode in
Figure 2.1, are -�<>=?�@BA4C'DEAGFHDEAG:G� and .3<>=I�J�LKG%�DMK�+ DMK�9'DEKGNHDEK�C'DMK F�DMK :H& .

ETNA
Kent State University
etna@mcs.kent.edu

84 E. ROZIN AND S. TOLEDO

left-looking-factor(�OD>P)
for each root �RQ*P
call recursive-ll-factor(�GDE�)

end for
end

recursive-ll-factor(� D>�)
for each child S of �
call recursive-ll-factor(STD>�)

end for
set UHV'W6X�Y4W6Z V'W\[]�\V'W>X�Y4W6Z V'W
for each child S of �
call recursive-ll-update(�GD>U^D>STD>�\D6P)

end for
factor U V W Z V W\�_� V W Z V W`� 	V W Z V W
solve �^Y4W6Z V'W`�^	V W Z V W �aU�Y4WbZ V'W for ��Y4W6Z V'W
append �^V'WEX�Y4WbZ V'W to �

end

recursive-ll-update(� D6UcD6STDE�?D>P)
if .cd
ef-3�?�hg return
for each child SHi of S
call recursive-ll-update(�GD>U^D>SHijDE�?D>P)

end forUlk V'WEX�Y4WMmBn�Y'o!Z V'WEn�Y'o [Upk V'W>X�Y4WqmBn�Y o Z V'WEn�Y o)r�\k V'WEX�Y4WqmBn�Y o Z V o ��	V'WEn�Y'oLZ VHso
end

FIG. 2.2. Supernodal left-looking sparse Cholesky. These three subroutines compute the Cholesky factor t
given a matrix u and its supernodal etree v .

State-of-the-art sparse factorization codes fall into two categories: left-looking [22, 23]
and multifrontal [8, 19]. The next paragraph explains how left-looking and multifrontal meth-
ods, including ours, work.

Given a matrix � and its supernodal etree P , the code shown in Figure 2.2 computes the
Cholesky factor of � using a left-looking method. The code factors supernodes in postorder.
To factor supernode � , the code copies the � th supernode block of � into working storageU . The code then updates U using blocks of � in the subtree rooted at � . Once all the
updates have been applied, the code factors U to form the � th supernode block of � . The
factorization of U is performed in two steps: we first factor its dense diagonal block and
then solve multiple linear systems with the same dense triangular coefficient matrix �
	V'WbZ V'W .
Two sparsity issues arise in the subroutine recursive-ll-update: testing the condition.cdwe7-c���xg and updating U . The condition .�d?e7-c���yg can be tested in time z{B5!d;� by
looking up the elements of .�d in a bitmap representation of -^� , but the set of supernodes that
update supernode � can also be computed directly from P and � [18]. The update to U is a
sparse-sparse update, which is typically implemented by representing U�k V'W>X�Y4WMm|n�Y�o}Z V'WEn�Y'o in
an � -by- ~>�>d array, where ~>�>d{��2 -c��e�.cd�2 , and by using .^d to index into this array. That is, U
is unpacked into an array with full columns. The unpacking can be done inside the ��S update,
in which case ~>�>d���2 -3�Ie�.cdH2 , or once before we begin updating supernode � , in which

ETNA
Kent State University
etna@mcs.kent.edu

LOCALITY OF REFERENCE IN SPARSE CHOLESKY FACTORIZATIONS 85

multifrontal-factor(�1D>P)
for each root ��Q�P
call recursive-mf-factor(�GDE�)

end for
end

recursive-mf-factor(�GD>�)
set � k � mV'W6X�YGW6Z V'W>X�YGW [�%
add � k � mV'W6X�YGW6Z V'W [�� k � mV'WEX�Y4WbZ V'W^� � V W X�Y W Z V W
for each child S of �� k d mY'o!Z Y'o [recursive-mf-factor(STDE�)
extend-add � k � mV W X�Y W Z V W X�Y W []� k � mV W X�Y W Z V W X�Y W) ��k d mY'o!Z Y'o
discard

�{k d mY'oLZ Y�o
end for
factor � k � mV W Z V W �h�cV'WbZ V'W`��	V'WbZ V'W
solve ��Y4WbZ V'W`�^	V W Z V W �h� k � mY W Z V W for ��YGW6Z V'W
append �^V'WEX�Y4WbZ V'W to �
update

� k � mY W Z Y W []� k � mY W Z Y W)�� Y W Z V W���	Y4W6Z V'W
return

�{k � mY W Z Y W
end

FIG. 2.3. Supernodal multifrontal sparse Cholesky. These subroutines compute the Cholesky factor t given a
matrix u and its supernodal etree v .

case we use ~>�>d���0'� . To allow finding the intersection |-^���*.��!��ef.cd quickly, the sets .^d
are kept sorted in etree postorder. This allows us to exploit the identity B-/�
��.��!�3e7.cd*�.cd
e���S'i|�>S'i is a descendant of S�& .

Figure 2.3 describes how multifrontal methods work. These methods factor supernodes
in etree postorder. To factor supernode � , the algorithm constructs a symmetric |0�� � 5b�!� -by-|0'� � 56�!� full matrix � k � m called a frontal matrix. This matrix represents the submatrix of �
with rows and columns in -^���?.�� . We first add the � th supernode of � to the first 0�� columns
of � k � m . We then factor all the children of � . The factorization of child S returns a 5�d -by- 5!d
full matrix

� k d m called an update matrix. The update matrix contains all the updates to the
remaining equations from the elimination of columns in supernode S and its descendants.
These updates are then subtracted from � k � m in a process called extend-add. The extend-add
operation subtracts one compressed sparse matrix from another containing a superset of the
indices; the condition . d�� - � �f. � always holds. Once all the children have been factored
and their updates incorporated into the frontal matrix, the first 0�� columns of �l� are factored
to form columns -^� of � . A rank- 0'� update to the last 5b� columns of � k � m forms

� k � m , which
the subroutine returns. If � is a root, then

� k � m is empty (5b����%). The frontal matrices in a
sequential multifrontal factorization are allocated on the calling stack, or on the heap using
pointers on the calling stack. The frontal matrices that are allocated at any given time reside
on one path from a root of the etree to some of its descendants. By delaying the allocation
of the frontal matrix until after we factor the first child of � and by cleverly restructuring the
etree, one can reduce the maximum size of the frontal-matrices stack [16].

3. Theoretical Cache-Miss Analysis of the Algorithms. This section presents a theo-
retical analysis of cache misses in left-looking and multifrontal sparse Cholesky factorization

ETNA
Kent State University
etna@mcs.kent.edu

86 E. ROZIN AND S. TOLEDO

algorithms. We focus on capacity misses, which are caused by the relatively small size of
the cache. We ignore compulsory or cold-start misses, which read the input data into the
cache, since their number is independent of the algorithm that is used. Any sparse Cholesky
algorithm must read z{E2 ��2 � words into the cache and must write z{>2 �w2 � words back to mem-
ory. We also ignore conflict misses, which are caused by the mapping of memory addresses
to cache locations. Conflict misses are relatively unimportant in highly associative caches,
and there are simple techniques to reduce them even in low-associativity and direct-mapped
caches [27].

In a sparse Cholesky factorization algorithm, data reuse within the cache can occur due
to two different reasons. Suppose that during the processing of supernode � , the algorithm
references a datum that is already in the cache, so no cache miss occurs. When did that datum
arrive in the cache? If the datum was brought into the cache when the algorithm processed
another supernode and was not evicted since, we say that this is an inter-supernode data reuse.
If the datum was brought into the cache earlier in the factorization of supernode � , this is an
intra-supernode data reuse. Inter-supernode data reuse is important near the leaves of the
elimination tree, where supernodes tend to be smaller, or when the cache is very large. For
example, in out-of-core factorization, many supernodes often fit simultaneously within main
memory, so there is a significant amount of inter-supernode data reuse.

Analyzing both inter- and intra-supernode cache misses simultaneously is hard, because
sparse-matrix factorizations are irregular computations. The elimination tree, which guides
the computation, is often irregular, and supernode sizes and aspect ratios vary widely. Be-
cause of the irregularity, it is hard to derive closed-form expressions for bounds or estimates
on cache misses, the kind of expressions that one can derive for structured computations
such as dense-matrix computations [13, 21, 29], sorting [1, 15], and FFTs [1]. However,
inter-supernode cache misses usually have only a minor influence on cache misses in the data
caches close to the processor, which are small relative to the size of supernodes. Therefore, in
this paper we focus mostly on intra-supernode cache misses, which are the dominant class of
cache misses in the top-level caches. Inter-supernode misses, which are the dominant class in
sparse out-of-core factorizations, have been carefully analyzed in that context, e.g., [24, 25].

We formalize the notion that inter-supernode cache data reuse is insignificant using the
cold-cache assumption. Under this assumption, the cache is always empty when we start to
factor a supernode. In other words, we ignore the reuse that results from data remaining in
the cache when the processing of a supernode is completed.

We assume that the cache contains � words. We measure cache efficiency by data
reuse ratio, which is the ratio of the total number of operations that an algorithm performs to
the number of cache misses that it generates. This metric provides an approximation to the
slowdown caused by cache misses; an algorithm with a high-data reuse ratio does not slow
down by much, because it uses the cache effectively. An algorithm with a low ratio, on the
other hand, slows down significantly because it has poor locality.

As we shall see, the data reuse ratio might be high when one supernode is factored and
low when another is factored, even during the factorization of a single matrix. Therefore,
we bound the ratio for the processing of each supernode separately. In other words, there
is no simple way to characterize a sparse factorization algorithm as cache efficient or cache
inefficient; an algorithm might exhibit good data reuse early in the factorization and poor data
reuse later, for example.

We are now almost ready to analyze the sparse algorithms. The next theorem estimates
the data-reuse ratio in the multifrontal algorithm. The estimate counts both capacity and
compulsory misses (capacity misses are estimated under the cold-cache assumption).

Before we state the theorem, however, we must explain a technical assumption that the

ETNA
Kent State University
etna@mcs.kent.edu

LOCALITY OF REFERENCE IN SPARSE CHOLESKY FACTORIZATIONS 87

proof makes. The theorem below states, in effect, four bounds on data reuse: two upper
bounds and two lower bounds. One of them, the ��q� �J� upper bound, relies on a known
upper bound for data reuse in dense matrix multiplication [13]. This bound only holds for so-
called conventional matrix-matrix multiplication, in which a product ������� is computed
using sums of products, �w�"�f��� d �w��dG�/d>� . In essence, the bound only holds for the data
dependency of this matrix-multiplication algorithm, although any ordering of the summations
is allowed. The bound may not hold for other matrix-multiplication algorithms. Furthermore,
for the theorem below to hold, the data-dependency graph of the factorization of the diagonal
block must include, as a subgraph, a matrix multiplication. This is true for all the conventional
Cholesky elimination methods, but again, may not hold for completely different algorithms.
Hence, the theorem assumes that the processing of the supernode is performed using so-called
conventional algorithms.

The �� � ��� lower bound also depends on the use of conventional algorithms. This data-
reuse bound applies to all the dense-matrix computations that are used during the processing
of a supernode, as long as conventional algorithms are used. In fact, the same bound also
applies to the use of Strassen’s matrix-multiplication algorithm [9]. But in principle, there
might be other ways to perform these computations for which the cache cannot be exploited.

THEOREM 3.1. The data-reuse ratio associated with the processing of supernode � in
the multifrontal algorithm is z��� ¢¡ � �!0 � D � ��£�£@¤
We assume that the processing of the supernode uses conventional Cholesky, triangular solve,
and matrix multiplication algorithms, in the sense that these algorithms follow the data de-
pendency graphs of the conventional algorithms; multiway addition is allowed in these de-
pendency graphs (so the bound holds for any ordering of summations).

We associate the extend-add operation in which a child � updates its parent with the
processing of supernode � , not with the processing of the parent.

Proof. Let us first count the number of floating-point operations performed during the
processing of supernode � . The processing of supernode � also includes a factorization of its
diagonal block, which is 0 � -by- 0 � , solving 5 � independent triangular linear systems with 0 �
unknowns each, and a symmetric rank- 0 � update to a symmetric 5 � -by- 5 � matrix, and later,
an update to the parent of � . The numbers of floating-point operations required to perform the
three dense-matrix computations is z{¥0�¦� � , z{¥0 <� 5 � � , and z{|0 � 5 <� � , respectively. The number
of floating-point operations to perform the parent’s update is 5��GB5�� � +!�>§;9¨�hz{B5 < � .

Now let us count cache misses. Writing out the columns of � back to memory requiresz{|0 � 5 � � cache misses.
The extend-add operation in which a child � updates its parent ����4� generates z{B5 <� �

cache misses. For every element in the update matrix of � , the algorithm may generate up
to 3 cache misses to read the value of the element and its row and column indices, and up
to 4 cache misses to update a destination element in the frontal matrix of the parent. Two
of these 4 may be required to read indirection information that maps the row and column in-
dices to a memory location, a third is a read miss to retrieve an element of the frontal matrix,
and the fourth is a write miss to write the updated value back to the frontal matrix. (These
estimates assume that the algorithm uses a length- � integer array to map -/� and .�� to com-
pressed indices within the frontal/update matrices; this is the standard implementation of the
multifrontal algorithm.) This proves the upper bound on cache misses for the extend-add.
The lower bound is simply due to the cold-cache assumption, which implies that the update
matrix of supernode � is not in the cache when it needs to update its parent.

ETNA
Kent State University
etna@mcs.kent.edu

88 E. ROZIN AND S. TOLEDO

The number of cache misses and floating-point operations associated with reading ele-
ments of � and adding them to the frontal matrix is the same, and bounded by ��|0 � 5 � � . The
number of cache misses to write out elements of � is z{¥0 <� � 0'�L56�!� .

We now prove the lower bounds on data reuse. We assume that the three dense-matrix
computations partition their arguments into ��© -by- ��© square submatrices (possibly with smaller
matrices at the end of the tiling), where � © �,������¥0�� D!ª �_§;A � . For this value of � © , any op-
eration on up to three submatrices can be performed entirely in the cache, so the data-reuse
ratio for these three dense operations is ���������|0��GDLª �_§�AG�M� . This approach is now standard
in dense-matrix algorithms; see, for example, [12, Section 1.4] or [28, Section 2.3].

The lower bounds include not only compulsory misses, but also z{|0���56� � 5 <� � compulsory
misses. Therefore, the lower bounds hold even when we count the z{|0���5b� � 5 <� � cache misses
generated by reading elements of � , writing elements of �\D and updating the parent of � . This
completes the proof of the lower bounds.

We prove the upper bounds on data reuse in two steps. First, we prove that the data-
reuse ratio is ��|0'�;� . This bound is trivial. The total number of floating-point and other
operations is z{¥0�¦� � 0 <� 56� � 0'�L5 <� � , and the number of compulsory misses (under the cold-
cache assumption) is z{¥0 <� � 0 � 5 � � 5 <� � , so the data-reuse ratio is ��¥0 � � .

The case where 0H� is small is somewhat harder to analyze. Our strategy is to show that
if 0 � is large, so that ��¥0 � � does not provide a tight upper bound, then processing the su-
pernode requires multiplying large matrices, which will cause many cache misses due to the
memory size � . We reduce the processing of a supernode to matrix multiplication because
there is a known bound on data reuse in matrix multiplication. The bound is due to Hong and
Kung [13]; a more direct proof, which also specifies the constants involved appears in [30].
There are not known bounds on data reuse for other computations required during the pro-
cessing of a supernode, such as Cholesky factorization and solving triangular linear systems,
so we cannot rely on cache misses performed during these computations.

Assume that 0'��« � K'C�¤"9 ¬ � . If this is not the case, then 0H�{��� � �J� , so the ��|0'�;�
upper bound on data reuse satisfies the theorem. If 0��¨« � K�C'¤ 9G¬ � then 0'�}§�A{« � ¬H¤ 9G¬ � , so0'�}§�A satisfies the condition of Theorem 1 in [30]. By that theorem, any implementation of the
conventional matrix-multiplication algorithm on |0��}§�A4� -by- |0'�!§�A4� matrices must perform��|0 ¦� § � ��� cache misses. Consider a diagonal factor block of a supernode, viewed as aA -by- A block matrix with roughly equal block sizes,®¯ �3°>°±� 	<b° � 	¦ °��<b°±��<><²�¨	¦ <� ¦ °±� ¦ <²� ¦E¦

³´ � ®¯ �/°>°�^<b°µ�^<><� ¦ °µ� ¦ <²� ¦>¦
³´¶®¯ � 	 °E° � 	<6° � 	¦ °��	<E< ��	¦ <��	¦E¦

³´ ¤
During the factorization of this factor block, the algorithm must multiply � ¦ ° by �^	<b° , to
subtract the product � ¦ ° ��	<6° from � ¦ < . These two matrices are each |0 � §;AG� -by- ¥0 � §;AG� , so
to multiply them, the algorithm must perform ��¥0�¦� § � ��� cache misses. If 5b�·�¸��¥0��}� ,
this implies that the data reuse is bounded by �� � �J�bD since in that case the total number
of operations that are performed during the processing of the supernode is z{¥0p¦� � 0 <� 5b� �0 � 5 <� �c��z{|0�¦� � .

If 0 � «,� K'C�¤"9 ¬ � but 5 � «¹0 � , the dominant term in the expression z{¥0�¦� � 0 <� 5 � � 0 � 5 <� �
is z{¥0���5 <� � , and then the number of cache misses performed during the factorization of the
diagonal block can not longer provide a useful upper bound on data reuse. If that is the
case, we show that the number of cache misses performed during the computation of the
update matrix is ��|0'�!5 <� § � �J� , which provides an upper bound of �� � �J� on the data
reuse ratio. We again reduce the computation that is actually performed to a general matrix-

ETNA
Kent State University
etna@mcs.kent.edu

LOCALITY OF REFERENCE IN SPARSE CHOLESKY FACTORIZATIONS 89

matrix multiplication. Even though the computation of the update matrix is a matrix-matrix
multiplication, it is not general, because it multiplies a matrix by its transpose; no cache-miss
lower bounds have been proved for this computation. Consider the entire frontal matrix as aA -by- A block matrix, where the first block � corresponds to the factor block and the other two
blocks, of roughly equal size, correspond to rows and columns of the update matrix, which
we denote by

�
:®¯ � ° �¨	< �¨	¦� < % %� ¦ % %

³´ � ®¯ � °� < %� ¦ %º%
³´ ®¯ ��	° �^	< ��	¦% %%

³´) ®¯ % % %% � °>° � 	<b°% � <b° � <><
³´ ¤

The update block
� <b° is formed by the product

� <b°
�_� ¦ �^	< . The computation that produces� <b° multiplies a 0'� -by- �5b�!§;9 � matrix by a �5b�}§;9G� -by- 0'� matrix. By our assumptions on 5`�
and 0'� , we have 5b�}§;9�«¹0��¨« � ¬H¤ 9G¬ � . It is easy to show, by a trivial extension of Theorem 1
in [30], that in that case, the matrix-matrix multiplication must perform ��|0 � 5 <� § � ��� , which
proves the data-reuse ratio bound of �� � ��� .

This concludes the proof.
The analysis of the left-looking algorithm is, again, more complex. The complexity

arises from two factors. The first factor is the same as the one that made the analysis under
the infinite-cache assumption complex: the fact that the number of cache misses depends on
the interaction between the updating and the updated supernodes. The second factor is the
fact that the updated supernode might not fit in the cache.

We again make the same assumption concerning the use of conventional dense-matrix
algorithms.

THEOREM 3.2. The data-reuse ratio associated with the update from supernode S to
supernode � in the left-looking algorithm is at most� � f¡ � � 0'�>d'D � � £T£
and at least �¹�� f¡ � �!0�d�D>0'�>d'D � ��£T£@D
where 0'�>d��2 .cd
e¢-c�G2 .

We assume that the update uses a conventional matrix multiplication algorithm.
Proof. Let 56�>d$��2 .cd
e·¥-c�c�f.��!��2 . To perform the update, the algorithm must read

into the cache 0�d}5b�>d values of supernode S , due to the cold-cache assumption. The operation
updates 0'�>d;56�>d values of supernode � . These might be resident in the cache, or they might
not, depending on the size of supernode � relative to the size of the cache and depending on
previous updates to � . Therefore, the total number of cache misses during the update, even
with an infinite cache, must be in the range between 0 d 5 �>d and 0 d 5 �>d � 9 0 �>d 5 �>d . The number
of floating-point operations is 9 0 d 0 �>d 5 �>d . Therefore, if 0 �>d�» 0 d , the data-reuse ratio for an
infinite cache is z{|04��SH�^�hz{B������|0 �>d D>0 d �M� . If 0 �>d «,0 d , the data-reuse ratio for an infinite
cache is ��|04��S�� and ��¥0�S��w�����������¥0 �>d D60 d �M� . These expressions, together with the fact
that the data-reuse ratio for the update is always bounded by z{ � ��� , prove the theorem.

The data reuse in final operations in the processing of supernode � , the Cholesky factor-
ization of the diagonal block and the triangular solve that produces the subdiagonal block,
is z{�������|0'�GD6� �J�E� , since these are dense operations. The data-reuse ratio in this phase is
comparable to the ratio in the multifrontal algorithm; but the updates from supernodes to the
left may exhibit dramatically different data-reuse ratios.

ETNA
Kent State University
etna@mcs.kent.edu

90 E. ROZIN AND S. TOLEDO

FIG. 4.1. On the left, an example of a matrix on which the left-looking algorithm suffers from poor data reuse.
Here ¼�½¿¾`À and Á�½�¾ . When factored, this matrix (and any other matrix from the family discussed in the text)
does not fill at all. On the right, the elimination tree of this matrix. Every group of ¾ vertices (consecutive columns)
forms a fundamental supernode.

4. An Example of Poor Data Reuse in the Left-Looking Algorithm. In this section
we show that the left-looking algorithm can sometimes perform asymptotically more cache
misses then the multifrontal algorithm. Our analysis uses a family of matrices that cause
poor locality of reference in the left-looking algorithm, but good locality in the multifrontal
algorithm. Later in the paper we experimentally substantiate the theoretical analysis presented
here.

When does the left-looking algorithm suffer from poor data reuse? By Theorem 3.2, the
data reuse is poor when 0H�>d is small. That is, when only one or few columns in supernodeS update supernode � . When we update supernode � , we read supernode S into the cache,
but perform relatively few arithmetic operations, because we only update few columns of
supernode � . The matrices that we construct in this section cause this situation to happen
during most of the supernode-supernode updates.

The nonzero structure of the matrices that we analyze is completely determined by their
dimension � and by the width 0 of all the supernodes (all the supernodes have exactly the
same width). We assume that 0 divides � . A matrix from this family is shown in Figure 4.1.
The structure of the matrices is given by the expressions- d ����SH0 � + D>S�0 � 9'D�¤L¤�¤`D6SH0 � 0p&Â �Ã� #�h% iff ¡6D¥�RQf- d for some S or ¡��aSH0 � + for some S¢� �9G0 ¤
It is easy to see that such matrices do not fill at all when factored. The supernodal elimination
tree of these matrices consist of � §;9G0 leaves, all of which are connected to a single supernode,
which is connected by a simple path to the root.

To simplify the analysis, we select specific values of � , and 0 , as a function of the cache
size � . The analysis can be generalized to other values of � and 0 but our selection shows the
essential behavior. We place two constraints on � and 0 . First, we require that any supernode

ETNA
Kent State University
etna@mcs.kent.edu

LOCALITY OF REFERENCE IN SPARSE CHOLESKY FACTORIZATIONS 91

plus a single column from its update matrix fit within the cache. Formally,0�|0 � +}�9 � 0 �9 0 � �9G0 » �Ä¤
We will later show that this ensures a high level of data reuse in the multifrontal algorithm.
Second, we require that at most a quarter of the nonzeros in the ¥9'DL+!� block of the matrix,
when viewed as a 9 -by- 9 block matrix with square blocks, fit in cache simultaneously. For-
mally, +K�Å � <K40 � � <+LNG0 �,�Ä¤
We will show later that this ensures that the left-looking algorithm suffers from poor data
reuse. It remains to show that there are values of � and 0 that satisfy both constraints. We
select � �h�_§;9 and 0¢� � � . For the first constraint we have0�|0 � +!�9 � 0 �9G0 � �9 0 � � � � �9 � � K � �K � �� AK � � AK � �
which is at most by � for any �Ä�Æ: . For the second constraint we have� <+!NG0 � � <K Å ++LN�� � � � °bÇ ÈN;K
which is at least � for any �Ä�,K4% : N . We conclude that our two constraints can be met for
any �É��KG%G: N . (A more detailed analysis could bring down the value of � for which our
analysis holds.)

In the multifrontal algorithm, the level of data reuse in the factorization of each supern-
ode is at least 0 , even under the cold cache assumption. The constraint on the value of� ensures that for each supernode, the diagonal and subdiagonal blocks can be factored in
cache, and that the update matrix can be computed and written to main memory column by
column without causing the eviction of already factored supernode elements. Therefore, the
computation of the update matrix requires 0�5 <d multiply-add operations, but the number of
capacity misses is at most 5 <d write misses plus 5 <d read misses when update matrix is read
from memory. Since there are � §;0 supernodes and since 5�d » � §;9 0 , the total number of
capacity misses is at most � 0 Å 9Ê��Ë�Ìd 5 <d � � ¦9 0 ¦ ¤

To analyze the left-looking algorithm, we view the matrix as a K -by- K block matrix with
square blocks. The entire BK�D�+}� and BK�D69 � blocks update all the supernodes in the �K�DEA4� block.
That is, all of the nonzeros in the BK�DL+!� and BK�D69 � blocks update each supernode in the BK�DEA4�
block. Since at most half of these nonzeros fit in cache, at least half of them must be read
from main memory during the updating of each supernode (the other half may reside in cache
from the update of the previous supernode). There are � §�K40 supernodes in the BK�D>AG� block.
Therefore, the total number of capacity misses in the left-looking algorithm is at least�K40 Å � <+LNG0 � � ¦N;K�0 < ¤

ETNA
Kent State University
etna@mcs.kent.edu

92 E. ROZIN AND S. TOLEDO

FIG. 5.1. On the left, an example of a matrix on which the multifrontal algorithm suffers from poor data reuse.
Here ¼�½�ÍbÎ , Ï�½$ÐMÍ and Á{½�Í . When factored, this matrix (and any other matrix from the family discussed in
the text) does not fill at all. On the right, the elimination tree of this matrix. Grouped vertices (consecutive columns)
represent fundamental supernodes.

The following theorem summarizes this analysis.
THEOREM 4.1. For any large enough cache size � , there is a matrix on which the left-

looking algorithm incurs at least a factor of � �§�A49 more cache misses than the multifrontal
algorithm.

In terms of constants, this analysis is fairly crude. It can be tightened using more elab-
orate arguments of the same type, but it already shows the essential issue as is. The issue is
that the supernodes are fairly wide, but each supernode updates only one column in subse-
quent supernodes. We note that partitioning the matrix into narrower supernodes would not
improve the data-reuse ratio of the multifrontal algorithm.

Furthermore, in both algorithms we only counted capacity cache misses that occur in
the context of supernode-supernode updates. The total amount of arithmetic operations in
these updates is z{ � ¦ § 0 < � . The multifrontal algorithm achieves here a data reuse of at leastz{|0��R�¸z{ � �J� , which is optimal even for dense-matrix computations [13, 29]. On the
other hand, the left-looking algorithm enjoys no asymptotic data reuse at all.

We experimentally show later in the paper that the multifrontal algorithm indeed per-
forms much better than the left-looking algorithm on this class of matrices.

5. An Example of Poor Data Reuse in the Multifrontal Algorithm. We now show
that there are also matrices on which the multifrontal algorithm incurs asymptotically more
cache misses. These results, too, will be verified experimentally later in the paper. The
analysis in this section is fairly similar to the analysis in the previous section, so we present
it more tersely.

The family of matrices that we construct here are designed to have narrow supernodes.
By Theorem 3.1, narrow supernodes lead to poor data reuse.

The nonzero structure of the matrices that we analyze here is determined by their dimen-
sion � , by the width 0 of all the supernodes except the last, and by the width Ñ of the last
supernode. We assume that 0 divides �)�Ñ . A matrix from this family is shown in Figure 4.1.
The structure of the matrices is given by the expressions- d ���}SH0 � +GD>SH0 � 9'DL¤�¤L¤`D>SH0 � 0l& for S » �)·Ñ0- °qÒ k�Ó�Ô�Õ mBÖ6× ��� �)·Ñ � +GD�¤L¤�¤`D � &

ETNA
Kent State University
etna@mcs.kent.edu

LOCALITY OF REFERENCE IN SPARSE CHOLESKY FACTORIZATIONS 93Â �Ã� #�h% iff ¡6DØ��Q*- d for some S
or ��Q�- d and ¡��@|S � +!�E0 � + for some S » �)�Ñ0 or ¡c« �)�Ñ;¤

Again, these matrices do not fill when factored. The supernodal elimination tree of these
matrices is a simple path.

We select � , Ñ , and 0 so that the last supernode plus one other supernode fit tightly into
the cache: Ñ �Ñ � +!�9 � ÑL0Ù�a�
(more formally, we maximize Ñ and 0 so that the expression on the left is bounded by �).
We also assume that Ñ is much larger than 0 .

In the left-looking algorithm, there are no capacity misses until we factor the last su-
pernode. Each individual width- 0 supernode fits into cache, and it remains in cache until we
load its parent and update it. When we reach the last supernode, we might need to reread the
last Ñ rows in all the previous supernodes into the cache, so the number of capacity misses is
bounded by Ñ �)rÑL� . In this case, the number of capacity misses is bounded by the number
of compulsory misses.

The multifrontal algorithm suffers roughly Ñ < § 9 capacity misses for every width- 0 su-
pernode. Each frontal matrix fills the cache almost completely, so by the time a frontal matrix
is allocated and cleared, the update matrix of the child is no longer in cache, and reading
it to perform the extend-add operation will generate about Ñ < § 9 misses. Therefore, in the
multifrontal algorithm the number of capacity misses is at least�)·Ñ0 Å Ñ <9 ¤
This number is a factor of Ñ!§;9G0 larger than the number of misses in the left-looking algorithm.
For 0 much smaller than Ñ , this is a factor of about� �� 9;0 D
and in particular, for 0Ù�+ the ratio is ª �_§;9 . This ratio is asymptotically the inverse of the
ratio in the example of the previous section.

The number of compulsory misses (the size of � and its factor) is roughly Ñ �)�ÑL� . The
total amount of arithmetic operations is z{ÚÑ < �)1ÑL�M� . Since the total number of cache misses,
both compulsory and capacity, in the left-looking algorithm is only z{ÚÑ �)�ÑL�E� , it achieves
a data-reuse level of about z{ÚÑL����z{ � �J� . In contrast, the multifrontal algorithm achieves
only a data-reuse level of about z{|0�� , or almost no data use for small 0 .

The reader might be concerned that if frontal matrices were only half the size of the
cache (smaller Ñ), the multifrontal algorithm could achieve perfect data reuse. For the given
class of matrices, the multifrontal algorithm could maintain two in-cache arrays that can each
hold one frontal matrix, and simply assign one of them to each supernode. Since the etree is
a path, we never need more than two frontal matrices. However, if we delete one row in each
supernode so that all the width- 0 supernodes are children of the width- Ñ supernode, no such
optimization would be possible.

The preceding discussion proves the following theorem:
THEOREM 5.1. For any large enough cache size � , there is a matrix on which the

multifrontal algorithm incurs at least a factor of �� � �J� more cache misses than the left-
looking algorithm.

ETNA
Kent State University
etna@mcs.kent.edu

94 E. ROZIN AND S. TOLEDO

6. Memory Requirements for Sparse Cholesky Algorithms. The previous two sec-
tions proved that for some matrices the data locality in the multifrontal algorithm is better
than in the left-looking one, while for other matrices left-looking does better. Is the left-
looking algorithm superior in any other way? In this section we show that the answer is yes:
the multifrontal algorithm uses more memory, sometimes by a significant amount.

The left-looking algorithm uses essentially no auxiliary memory beyond the memory that
is required to store the factor � . It does need an integer array of length � to assist in indirect
access to sparse columns, and it needs a temporary array in order to perform the updates
using a dense matrix-multiplication routine. These two auxiliary arrays are never larger than� and are typically much smaller. Therefore, the algorithm uses z{E2 �I2 � storage, usually with
a constant very close to + ¤

We will show below that the multifrontal algorithm sometimes uses much more thanz{E2 �I2 � memory. This reduces the memory available to other programs running on the same
computer, it may cause failure when there is not enough memory, and it may cause worse
data locality. When � fits in cache (or in main memory), the left-looking algorithm works
solely with data structures in the cache (main memory), but the multifrontal algorithm may
experience cache misses (virtual-memory page faults).

The exact amount of storage that is used by a sequential multifrontal algorithm (parallel
algorithms use more) depends on three factors: the nonzero structure of the factor, the order in
which supernodes are factored, and the allocation schedule that is used. The nonzero structure
determines the size of supernodes and the dependencies among them, which are captured in
the elimination tree. The ordering of the factorization determines when update matrices must
be allocated. The allocation schedule determines when they can be freed: when a frontal
matrix is allocated, all the update matrices of its children can update it and be deallocated.
From that point on, any child that is factored can immediately update the frontal matrix.
But when a frontal matrix is allocated later, the update matrices of its children must be kept
allocated until the parent is allocated.

Existing multifrontal algorithm use one of two allocation strategies, or slight variants
thereof. One strategy is to allocate the parent’s frontal matrix as soon as possible, to ensure
that at most one update matrix of one child is allocated at any given time. There is no point
in allocating the parent before the first child is factored, but to prevent two update matrices
of two children from being allocated simultaneously, the parent is allocated just after the first
child is factored. This is the strategy that we analyze first. Another common strategy is to
allocate the parent only after all the children have been factored. We analyze this variant near
the end of the section.

We start with the allocate-parent-after-the-first-child strategy. The analysis again uses
a class of synthetic matrices of size � �Û¥9 d)h+!� � � Û)a+}� for some integers S and .
The elimination tree of these matrices consists of a complete binary tree with 9 d)�+ vertices,
and a linear chain with vertices, one of which is the root of the binary tree. Each column
in the binary-tree portion of the matrix except the last is a separate fundamental supernode.
The vertices in the chain part of the tree form a single supernode. Each column in the tree
portion updates the entire training supernode. Figure 6.1 shows an example of a matrix from
this class.

These matrices do not fill during elimination (as in Section 4, we could have constructed
these synthetic matrices so that they start up sparse and fill to the pattern shown). The number
of nonzeros in them, and in the factor � , is �Ü¥9 d)Æ+!Ý � 9¨Ü¥9 d)Æ+!ÝÞ)Æ+ � �� �)$+}�9 �hz�ß�9 d � <9¹à ¤

ETNA
Kent State University
etna@mcs.kent.edu

LOCALITY OF REFERENCE IN SPARSE CHOLESKY FACTORIZATIONS 95

FIG. 6.1. On the left, an example of a matrix on which the multifrontal algorithm suffers from excessive memory
usage. Here á\½�¾ and â_½�ÐMÍ , so ¼1½�ã�Í`äcåRÐEæ'çfã|ÐMÍcåRÐEæ . When factored, this matrix (and any other matrix
from the family discussed in the text) does not fill at all. On the right, the elimination tree of this matrix. In the firstÐq¾ columns, every column is a fundamental supernode; the last ÐMÍ form a fundamental supernode.

For è«Æ9 dbÒ�° , the second term inside the z notation is larger.
When the multifrontal algorithm factors the last leaf column (the rightmost one), a frontal

matrix must be allocated in every vertex from that leaf to the root of the binary tree. This is
true because each vertex é along that path (except the leaf) has one child ê that was already
factored, so either ê ’s update matrix or é ’s frontal matrix must be currently allocated. Each of
these S frontal or update matrices is at least -by- , so the total amount of memory currently
allocated is S' < . For Û«Æ9 dbÒ�° , this is a factor of at least S larger than the size of � .

We chose this particular family of matrices because even memory-optimized versions of
the multifrontal algorithm require S� < memory to factor them. Two optimizations can reduce
the amount of memory used by the multifrontal algorithm. The first is to allocate a frontal
matrix for vertex é only after the update matrix from the first child ê of é has been factored.
This eliminates the need to keep é ’s frontal matrix in memory while the subtree rooted at é
is factored. The second optimization, due to Liu [17], reorders the children of é so that the
child whose subtree requires the most memory is factored first. Since in our example the tree
is binary and is completely symmetric with respect to child ordering, these optimizations do
not reduce the maximal memory usage.

Practitioners have found that the size of the stack of update and frontal matrices in the
multifrontal algorithm is typically small relative to the size of � . This synthetic example
shows that there are matrices for which this rule of thumb does not hold. This was also
observed by Rothberg and Schreiber [24] on a real-world matrix, which caused excessive I/O
activity in an out-of-core multifrontal code.

We note that for large values of , the matrices in our example are fairly dense, and
some codes would treat them as dense. This can be achieved either by noticing the number of
nonzeros is a large fraction of the total number of elements, or by an automatic amalgamation
algorithm that might, in this case, amalgamate the entire matrix into a single supernode.
However, even such codes would treat the matrix as sparse for some lower value of , for
which the multifrontal algorithm could still use much more memory than the left-looking
algorithm.

We also note that an aggressive amalgamation strategy that amalgamates vertices with
multiple children would be beneficial on matrices similar to our synthetic matrices, since it is
exactly the multiple-child condition that causes excessive memory usage.

We now show that a similar result holds for the allocate-parent-last strategy, and even
for codes that select the best of the two strategies based on the nonzero structure of the matrix

ETNA
Kent State University
etna@mcs.kent.edu

96 E. ROZIN AND S. TOLEDO

TABLE 7.1
The test matrices from the PARASOL test-matrix collection. The table shows, for each matrix, the dimension

of the matrix, the number of nonzero entries in the matrix, the number of nonzero entries in the Cholesky factor
under METIS ordering and without supernode amalgamation, and the number of floating-point operations required
to compute the factor (again assuming no amalgamation). The third column is used as the horizontal axis in the
plots that follow.

Matrix dim B�I� nnz B�w� nnz B�/� flops B�/�
bmw7st-1 1.41e5 3.74e6 2.55e7 1.08e10
crankseg-1 5.28e4 5.33e6 3.34e7 3.19e10
crankseg-2 6.38e4 7.11e6 4.36e7 4.58e10
inline-1 5.04e5 1.87e7 1.76e8 1.52e11
ldoor 9.52e5 2.37e7 1.43e8 7.39e10
m-t1 9.74e4 4.93e6 3.38e7 2.14e10
msdoor 4.16e5 1.03e7 5.30e7 1.77e10
oilpan 7.38e4 1.84e6 9.21e6 2.81e09
ship-003 1.22e5 9.73e6 6.08e7 8.23e10
shipsec1 1.41e5 3.98e6 3.91e7 3.70e10
shipsec5 1.80e5 6.15e6 5.35e7 5.62e10
thread 2.97e4 2.25e6 2.45e7 3.60e10
vanbody 4.70e4 1.19e6 5.89e6 1.30e09
x104 1.08e5 5.14e6 2.72e7 1.42e10

and the elimination tree.
The analysis below relies on the fact that we can modify the example shown in Figure 6.1

so that the first � §;9 columns form an elimination tree of any form. We can do so while
maintaining the invariants that each one of these columns forms a separate supernode and its
update matrix is q+ � � § 9 � -by- M+ � � § 9 � , updating its parent and the entire � § 9 � -by- � §;9 �
trailing submatrix.

If the allocation strategy always allocates the parent only after all its children have been
factored, they by making all the first � §;9 columns siblings (children of column � §;9 � +), then
we force the algorithm to store � §;9 update matrices, each M+ � � § 9 � -by- M+ � � §;9 � . The total
storage required for this tree and this allocation strategy is approximately � ¦}§�F , a factor ofz{ � � more than that required for the Cholesky factor itself.

If the algorithm can choose between the two strategies discussed above, then the worst
elimination-tree structure is one in which the first � §;9 columns form a tree whose depth is
similar to the degree ë of tree vertices. This happens when the degree ë is approximatelyì�í î � § ì�í î3ì�í î � . In such a tree, allocating the parent after the first child is factored or allocat-
ing it after all children have been factored, both require storage proportional to z{ � < � timesë . In this case, the total amount of storage required is a factor of z{ ì�íGî � § ì�í î3ì�í î � � more
than required for the Cholesky factor.

Finally, we note that due to the cold-cache assumption, the allocation schedule has no
influence on the cache-miss bounds that we proved in Section 3. In practice, the cache is
not flushed after every supernode, so the allocation and extend-add schedule does have an
influence on the actual number of cache misses. It is not clear, however, which allocation
strategy exploits the cache better, and whether the difference is significant.

7. Results. This section presents experimental results that compare the multifrontal and
the left-looking algorithms on two sets of matrices. We used two classes of matrices for
testing our algorithm, matrices from the PARASOL test-matrix collection, and the synthetic
matrices that were described in Section 4. The PARASOL matrices are described in Table 7.1.

ETNA
Kent State University
etna@mcs.kent.edu

LOCALITY OF REFERENCE IN SPARSE CHOLESKY FACTORIZATIONS 97

The experiments were designed to resolve one practical question and to demonstrate
several aspects of our analysis. The question that the experiments resolve (to the extent
possible in an experimental analysis), is whether the left-looking algorithm exhibits poorer
data locality than the multifrontal one on matrices that arise in practice. Our analysis indicates
that this is not the case: the two algorithms exhibit similar cache-miss rates on matrices
from the PARASOL collection, and the left-looking algorithm is usually faster. This result is
consistent with the experimental results of Ng and Peyton [22].

The experiments also validate the theoretical analysis that we presented in Section 4, and
shows that cache misses can have a dramatic effect on the performance of these algorithms.

7.1. Test Environment. We performed the experiments on several machines. One ma-
chine, which we used for assessing the differences between the left-looking and the multi-
frontal algorithm on a set of real-world matrices, is an Intel-based workstation. This machine
has a 2.4 GHz Pentium 4 processors with a 512 KB level-2 cache. This machine has 2 GB
of main memory (dual-channel with DDR memory chips). Due to the size of main memory,
paging is not a concern on this machine: the entire address space of a process can reside in
the main memory.

This machine runs Linux with a 2.4.22 kernel. We compiled our code with the GCC
C compiler, version 3.3.2, and with the -O3 compiler option. We used ATLAS1 Version
3.4.1 [31] by Clint Whaley and others for the BLAS. This version exploits vector instructions
on Pentium 4 processors (these instructions are called SSE2 instructions). Using these BLAS
routines on this machines, our in-core left-looking sparse factorization code factors real-world
matrices at rates of up to 9'¤"9�ï¿+!% = flops (e.g., the matrix THREAD from the PARASOL test-
matrix collection). The same sparse code factors a dense matrix of dimension K4% % % at a rate
of approximately 9'¤ F�ïr+L% = .

We also performed experiments on a slower Pentium 3 computer. On this machine we
were able to directly count cache misses and other processor events. (The software that we
used to measure these events does yet not support the Pentium 4 processor.)

This machine is an Intel-based server with two 0.6 GHz Pentium 3 processors. One
processor was disabled by the operating system in order to avoid measurement errors. These
processors have a 16 KB 4-way set associative level-1 data cache with 32 bytes cache lines
and a 256 KB 8-way set associative level-2 cache, also with 32 byte lines. There is a separate
level-1 instruction cache, but the level-2 cache is used for both data and instructions. In our
experiments, the use of the level-2 cache for storing instructions is insignificant. We explain
later how we came to this conclusion. The processor also has a transaction-lookaside buffer
(TLB), which is used to translate virtual addresses to physical addresses. The TLB has 32
entries for mapping 8 KB data pages and is 4-way set associative. TLB misses, like cache
misses, can also degrade performance, but we did not count them in these experiments.

This machine also has 2 GB of main memory consisting of 100 MHz DRAM chips.
This machine runs Linux with a 2.4.20 kernel. We compiled our code with the GCC C

compiler, version 3.3.2, and with the -O3 compiler option and we used a Pentium-3-specific
version of ATLAS. We also performed limited experiments with another implementation of the
BLAS, the so-called Goto BLAS, version 0.92. The results, which are not shown in the paper,
exhibited similar performance ratios between the different sparse factorization algorithms.
The results that we present, therefore, are not highly dependent on the implementation of the
BLAS.

We measured cache misses and other processor events using the PERFCTR kernel module

1http://math-atlas.sourceforge.net
2http://www.cs.utexas.edu/users/flame/goto/

ETNA
Kent State University
etna@mcs.kent.edu

98 E. ROZIN AND S. TOLEDO

and using the PAPI library, which provides unified access to performance counters on several
platforms. We used version 2.3.4.1 of PAPI and the version of PERFCTR that came bundled
with PAPI. Together, these tools allowed us to instrument our code so that it counts one
specific processor event during the numerical factorization phase (or none). We measured
multiple events by running the same code on the same input matrix with the same parameters
several times. The running times of these multiple runs were very close to each other, which
implies that this method of measurements is robust.

The graphs and tables use the following abbreviations: TAUCS (our sparse code), MUMPS
(MUMPS version 4.3), LL (left-looking), and MF (multifrontal).

7.2. Baseline Tests. To establish a performance baseline for our experiments, we com-
pare the performance of our code, called TAUCS, to that of MUMPS version 4.3 [4, 2, 3].
MUMPS is a parallel and sequential in-core multifrontal factorization code for symmetric and
unsymmetric matrices. We used METIS3 [14] version 4.0 to symmetrically reorder the rows
and columns of the matrices prior to factoring them. We tested the sequential version, with
options that tell MUMPS that the input matrix is symmetric positive definite and that instruct it
to use METIS to preorder the matrix. We used the default values for all the other run-time op-
tions. This setup result in a multifrontal factorization that is quite similar to TAUCS’s in-core
multifrontal factorization.

TAUCS’s multifrontal factorization allocates the parent’s frontal matrix after the first child
has been factored.

We compiled MUMPS, which is implemented in Fortran 90, using Intel’s Fortran Com-
piler for Linux, version 7.1, and with the compiler options that are specified in the MUMPS-
provided makefile for this compiler, namely -O. We linked MUMPS with the same version
of the BLAS that are used for all the other experiments, and verified the linking by calling
ATL buildinfo, an ATLAS routine that prints ATLAS’s version.

We compared the two codes on matrices from the PARASOL test-matrix collection. The
matrices were selected arbitrarily from the test-matrix collection. TAUCS was able to factor
all of the matrices in our test suite, but MUMPS ran out of memory on the two largest matrices.

The results of the baseline tests, which are presented in Figure 7.1, show that the perfor-
mance of TAUCS is quite similar to the performance of MUMPS. TAUCS’s relaxed-supernode
multifrontal factorization is usually slightly faster on these matrices. This test is not a com-
prehensive comparison of these codes, and we do not claim that TAUCS is faster in general.
The differences can be due to the different compilers that were used, to different supernode
amalgamation strategies, or to different ways of using the BLAS and LAPACK (our code fac-
tors dense matrices of dimension KG% %G% in a little over 7.6 seconds, whereas MUMPS factors
the same matrices in about 23.6 seconds; in our case the factorization is performed by a single
call to LAPACK’s factorization routine DPOTRF, so MUMPS clearly uses LAPACK differently).
However, the results do indicate that the performance of TAUCS, which we use compare the
performance of the left-looking and the multifrontal algorithms, is representative of high-
quality modern sparse Cholesky factorization codes.

7.3. Relative Performance on Real-World Matrices. Figure 7.1 shows that on real-
world matrices arising from finite-element models, the left-looking algorithm performs better.
This is true for both amalgamated/relaxed supernodes, and for exact fundamental supernodes.
(Although there can be fairly significant differences between relaxed and exact supernodes;
this is well known.) In this family of matrices, there are actually no exceptions to this ob-
servation. The difference in running times is often more than 10% and sometimes more than
20%. The matrices were all ordered using METIS version 4.0 prior to factoring them.

3http://www-users.cs.umn.edu/˜karypis/metis/

ETNA
Kent State University
etna@mcs.kent.edu

LOCALITY OF REFERENCE IN SPARSE CHOLESKY FACTORIZATIONS 99

0 2 4 6 8 10 12 14 16 18

x 107

100

101

102

nnz(L)

N
um

er
ic

al
 F

ac
to

riz
at

io
n

Ti
m

e
in

 S
ec

on
ds

MUMPS 4.3
TAUCS Multifrontal, Relaxed Supernodes

0 2 4 6 8 10 12 14 16 18

x 107

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

nnz(L)

Fa
ct

or
iz

at
io

n
Ti

m
e

R
at

io
 (o

ve
r M

F
R

el
ax

ed
)

MUMPS 4.3
TAUCS MF Exact
TAUCS MF Relaxed
TAUCS LL Exact
TAUCS LL Relaxed

0 2 4 6 8 10 12 14 16 18

x 107

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4
x 109

nnz(L)

Fl
oa

tin
g−

P
oi

nt
 O

pe
ra

tio
ns

 p
er

 S
ec

on
d

MUMPS 4.3
TAUCS MF Exact
TAUCS MF Relaxed
TAUCS LL Exact
TAUCS LL Relaxed

0 1 2 3 4 5 6 7 8

x 107

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

nnz(L)

Fa
ct

or
iz

at
io

n
Ti

m
e

R
at

io
 (o

ve
r M

F
R

el
ax

ed
)

MUMPS 4.3
TAUCS MF Exact
TAUCS MF Relaxed
TAUCS LL Exact
TAUCS LL Relaxed

FIG. 7.1. Numerical factorization times of matrices from the PARASOL test-matrix collection on a 2.4 GHz
Linux machine. MUMPS failed to factor the two largest matrices (the code ran out of memory). The plot on the
top left shows the factorization times, in seconds, as a function of the number of nonzeros in the Cholesky factor.
The plot shows the factorization times of two codes, MUMPS and our multifrontal code with relaxed supernodes (of
all our codes, this one is the most similar to MUMPS). The plot on the top right shows the factorization times of
four of our codes and MUMPS. In this plot the factorization times are shown as ratios to the factorization time of
our multifrontal code with relaxed supernodes, as a function of the number of nonzeros in the factor. Lower marks
indicate better performance. The lower-right plot shows the same data, but excluding the two largest matrices, in
order to present more clearly the performance on the smaller matrices. The lower-left plot shows the performance
in floating-point operations per second; this plot uses the number of floating point operations that are required to
factor the matrices without amalgamating supernodes.

7.4. Examples of Poor Data Locality in the Left-Looking Algorithm. The next set
of experiments demonstrates that on some matrices, the left-looking algorithm can perform
significantly poorer than the multifrontal algorithm, due to a higher cache-miss rate. The
matrices that we use in these experiments are the matrices analyzed theoretically in Section 4.

Figure 7.2 shows that the left-looking algorithm often performs significantly poorer than
the multifrontal algorithm, sometimes by more than a factor of A . The figure also shows that
for every fixed matrix dimension � , the left-looking-to-multifrontal ratio first rises with the
supernode size 0 , than falls, eventually to a value close to + . This is not surprising. For very
small 0 , the cache-miss rate of both algorithms is so high, that both perform very poorly.
This is shown clearly in the plot on right, which indicates a low flop/s rate for small 0 . For
very large 0 , most of the work during the numerical factorization step is performed in the
context of factoring dense diagonal blocks, not in the context of updates. In such cases,
the performance of both algorithms is governed by the performance of a sequence of dense
Cholesky factorizations that they perform in exactly the same way. This behavior was not
analyzed in Section 4 (we only analyzed rigorously the behavior for specific values of � and

ETNA
Kent State University
etna@mcs.kent.edu

100 E. ROZIN AND S. TOLEDO

101 102
1

1.5

2

2.5

3

3.5

4

4.5

lambda

Le
ft−

Lo
ok

in
g/

M
ul

tif
ro

nt
al

 F
ac

to
riz

at
io

n−
Ti

m
e

R
at

io

n=1000
n=5000
n=10000
n=20000
n=40000
n=80000

101 102
2

4

6

8

10

12

14

16
x 108

lambda

Fl
oa

tin
g−

P
oi

nt
 O

pe
ra

tio
ns

 p
er

 S
ec

on
d

(M
ul

tif
ro

nt
al

)

n=1000
n=5000
n=10000
n=20000
n=40000
n=80000

FIG. 7.2. The performance of the left-looking and the multifrontal algorithms on matrices from the family
described in Section 4. The plot on the left shows the ratio between the numerical factorization times of the left-
looking algorithm and the multifrontal algorithm. Higher marks mean that the left-looking algorithm is slower. The
plot on the right shows the computational rate of the multifrontal algorithm on these matrices. The horizontal axis
in both plots corresponds to the width Á of supernodes.

10
1

10
2

10
30.4

0.5

0.6

0.7

0.8

0.9

1

ell

Le
ft−

Lo
ok

in
g/

M
ul

tif
ro

nt
al

 F
ac

to
riz

at
io

n−
Ti

m
e

R
at

io

n=1000
n=5000
n=10000
n=20000
n=40000

10
1

10
21.6

1.8

2

2.2

2.4

2.6

2.8

3
x 10

8

ell

Fl
oa

tin
g−

P
oi

nt
 O

pe
ra

tio
ns

 p
er

 S
ec

on
d

(M
ul

tif
ro

nt
al

)

n=1000
n=5000
n=10000
n=20000
n=40000

FIG. 7.3. The performance of the left-looking and the multifrontal algorithms on matrices from the family
described in Section 5. The plot on the left shows the ratio between the numerical factorization times of the left-
looking algorithm and the multifrontal algorithm. Lower marks (below Ð) mean that the left-looking algorithm is
faster. The plot on the right shows the computational rate of the multifrontal algorithm on these matrices. The
horizontal axis in both plots corresponds to the width Ï of the last supernode. In all cases, the width Á of all the
other supernodes is ð . Experiments with ÁÙ½aÐ and ÁÙ½aÐMñ exhibit similar ratios; the computational rates are
generally higher for larger values of Á .

0 as a function of the cache size), but it is evident from the experiments.

7.5. Examples of Poor Data Locality in the Multifrontal Algorithm. The next set
of experiments demonstrates that on some matrices, the multifrontal algorithm can perform
significantly poorer than the left-looking algorithm, due to a higher cache-miss rate. The
matrices that we use in these experiments are the matrices analyzed theoretically in Section 5.

Figure 7.3 shows that the left-looking algorithm can also perform significantly better than
the multifrontal algorithm, sometimes by more than a factor of 9 . The figure shows that the
performance difference grows with the size Ñ of the last supernode. In experiments with other
values of 0 , + and +L% , which are not shown here, we observed that the performance ratios do
not vary much with 0 , but the overall computational rate rises with 0 . This rise is consistent
with our analysis of both the left-looking and the multifrontal algorithms.

ETNA
Kent State University
etna@mcs.kent.edu

LOCALITY OF REFERENCE IN SPARSE CHOLESKY FACTORIZATIONS 101

0 2 4 6 8 10 12 14 16 18

x 107

0.75

0.8

0.85

0.9

0.95

1
PARASOL Matrices on Pentium 3

nnz(L)

Le
ft−

Lo
ok

in
g/

M
ul

tif
ro

nt
al

 F
ac

to
riz

at
io

n−
Ti

m
e

R
at

io

0 2 4 6 8 10 12 14 16 18

x 107

1.5

2

2.5

3

3.5

4
x 108 PARASOL Matrices on Pentium 3

nnz(L)

Fl
oa

tin
g−

P
oi

nt
 O

pe
ra

tio
ns

 p
er

 S
ec

on
d

TAUCS MF Exact
TAUCS LL Exact

101 102
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6
Synthetic Matrices on Pentium 3

lambda

Le
ft−

Lo
ok

in
g/

M
ul

tif
ro

nt
al

 F
ac

to
riz

at
io

n−
Ti

m
e

R
at

io

n=1000
n=5000
n=10000
n=20000
n=40000
n=80000

101 102
0.5

1

1.5

2

2.5

3
x 108 Synthetic Matrices on Pentium 3

lambda

Fl
oa

tin
g−

P
oi

nt
 O

pe
ra

tio
ns

 p
er

 S
ec

on
d

(M
ul

tif
ro

nt
al

)

n=1000
n=5000
n=10000
n=20000
n=40000
n=80000

FIG. 7.4. Numerical factorization performance of matrices from the PARASOL test-matrix collection (top)
and of synthetic matrices (bottom) on a 0.6 GHz Pentium 3 Linux machine. These results are without supernode
amalgamation.

7.6. Experimental Results with Hardware Performance Counters. Figure 7.4 shows
the overall performance of the TAUCS on the Pentium 3 machine. The plots show that qualita-
tively the behavior of the multifrontal and left-looking algorithms is similar to their behavior
on the Pentium 4 machine. The absolute performance is lower, of course. On the PARASOL
matrices, the left-looking is roughly 10–20% faster than the multifrontal algorithm. On the
synthetic matrices of Section 4, the left-looking is consistently slower, and it runs up to 2.6
times slower. The overall performance of both codes improve with 0 , and the worst left-
looking/multifrontal ratios are observed for medium values of 0 (the peak is at higher 0 ’s for
higher � ’s).

Figure 7.5 presents processor-event information for the PARASOL matrices. The plots
show factorization times and five key processor events: the total instructions executed, the
number of floating-point instructions executed, the number of accesses to the level-1 data
cache, the number of level-1 data-cache misses, and the number of level-2 cache misses. The
plot on the left shows ratios of left-looking-to-multifrontal event counts. Values below + indi-
cate fewer instructions/accesses/misses in the left-looking algorithm than in the multifrontal
algorithm. The plot on the right shows the number of events as a fraction of the total instruc-
tion count in the multifrontal factorization. This plot shows mainly the importance of various
events. For example, if the number of level-2 cache misses is tiny, it does not matter much
whether one algorithm generates more misses than the other.

We also measured the total number of level-2 accesses. That number, which is not shown
in the plots, is always slightly higher but very close to the number of level-1 data cache

ETNA
Kent State University
etna@mcs.kent.edu

102 E. ROZIN AND S. TOLEDO

0 2 4 6 8 10 12 14 16 18

x 107

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2
PARASOL Matrices on Pentium 3

nnz(L)

Le
ft−

Lo
ok

in
g/

M
ul

tif
ro

nt
al

 R
at

io
s

Factorizatio Time
Total Instructions
Floating−Point Instructions
L1 Data−Cache Accesses
L1 Data−Cache Misses
L2 Cache Misses

0 2 4 6 8 10 12 14 16 18

x 107

10−3

10−2

10−1

100

101

PARASOL Matrices on Pentium 3

nnz

Fr
ac

tio
n

of
 M

ul
tif

ro
nt

al
 In

st
ru

ct
io

n
C

ou
nt

(full=MF hollow=LL) Total Instructions
(full=MF hollow=LL) Floating−Point Instructions
(full=MF hollow=LL) L1 Data−Cache Accesses
(full=MF hollow=LL) L1 Data−Cache Misses
(full=MF hollow=LL) L2 Cache Misses

FIG. 7.5. Results of the hardware-performance-counters measurements on the PARASOL matrices on the
Pentium 3 machine. The plot on the left shows left-looking/multifrontal ratios of specific measurements, and the plot
on the right shows each measurement as a fraction of the instruction count in the multifrontal factorization.

misses. This implies that the number of instruction-cache misses is insignificant, so most of
the level-2 traffic is due to data, not instructions. We have observed the same behavior in all
the experiments, not only those on the PARASOL matrices.

The data shows that the left-looking algorithm issues fewer instructions, accesses the
level-1 cache fewer times, and generates significantly fewer level-2 cache misses. On the
other hand, it often generates more level-1 cache misses. This indicates that the data reuse
in registers is better in the left-looking algorithm, hence the reduced instruction count (fewer
loads/stores) and the reduced number of level-1 accesses. The facts that the number of level-1
misses is higher in the left-looking algorithm and that the number of level-2 misses is lower
probably imply that the exact cache miss rate has little effect on the algorithm. The differences
in cache miss counts are usually less than 15% in either direction, and these differences are
probably too small to make a difference. It seems that the superior performance of the left-
looking algorithm on these matrices is due to lower instruction counts, which is probably a
result of the way sparse indexing operations are implemented.

The corresponding results for the synthetic matrices of Section 4 are presented in Fig-
ures 7.6 and 7.7. These results show dramatic differences in cache-miss counts between the
left-looking and the multifrontal algorithms. The most dramatic differences are in the level-2
miss counts, where the left-looking sometimes generate 12 times more level-2 misses than
the multifrontal algorithm. The number of level-1 data-cache misses is sometimes more than
4 times higher in the left-looking algorithm than in the multifrontal algorithm. The most dra-
matic differences occur at medium 0 values, where we also observe the highest differences
in factorization times. In some cases the factorization-time ratios peak at the highest level-1
miss ratio (e.g., � �Û+L%�DE%G% % and 0Æ��9 ¬) and sometimes at the highest level-2 miss ratio
(e.g., � �y9 %HDE%G% % and 0���¬ %). This implies that misses in both caches have a significant
effect on performance. We also observe that the number of cache misses in both algorithms
drops with increasing 0 . Since performance improves with increasing 0 , this again suggests
that cache misses are a major determinant of performance on these matrices. At small 0 , the
left-looking algorithm performs a higher number of instructions (this is shown most clearly
on the right plots). This is highly correlated with the higher number of level-1 data accesses,
which implies that the increase is due to poor reuse of data in registers.

We did not perform similar experiments on the synthetic matrices of Section 5.

ETNA
Kent State University
etna@mcs.kent.edu

LOCALITY OF REFERENCE IN SPARSE CHOLESKY FACTORIZATIONS 103

101 102
0

1

2

3

4

5

6

7
Synthetic (n=1,000) Matrices on Pentium 3

lambda

Le
ft−

Lo
ok

in
g/

M
ul

tif
ro

nt
al

 R
at

io
s

Factorizatio Time
Total Instructions
Floating−Point Instructions
L1 Data−Cache Accesses
L1 Data−Cache Misses
L2 Cache Misses

101 102
10−3

10−2

10−1

100

101

Synthetic (n=1,000) Matrices on Pentium 3

lambda

Fr
ac

tio
n

of
 M

ul
tif

ro
nt

al
 In

st
ru

ct
io

n
C

ou
nt

(full=MF hollow=LL) Total Instructions
(full=MF hollow=LL) Floating−Point Instructions
(full=MF hollow=LL) L1 Data−Cache Accesses
(full=MF hollow=LL) L1 Data−Cache Misses
(full=MF hollow=LL) L2 Cache Misses

101 102
0

1

2

3

4

5

6

7

8

9

10
Synthetic (n=10,000) Matrices on Pentium 3

lambda

Le
ft−

Lo
ok

in
g/

M
ul

tif
ro

nt
al

 R
at

io
s

Factorizatio Time
Total Instructions
Floating−Point Instructions
L1 Data−Cache Accesses
L1 Data−Cache Misses
L2 Cache Misses

101 102
10−3

10−2

10−1

100

101

Synthetic (n=10,000) Matrices on Pentium 3

lambda

Fr
ac

tio
n

of
 M

ul
tif

ro
nt

al
 In

st
ru

ct
io

n
C

ou
nt

(full=MF hollow=LL) Total Instructions
(full=MF hollow=LL) Floating−Point Instructions
(full=MF hollow=LL) L1 Data−Cache Accesses
(full=MF hollow=LL) L1 Data−Cache Misses
(full=MF hollow=LL) L2 Cache Misses

101 102
0

2

4

6

8

10

12
Synthetic (n=40,000) Matrices on Pentium 3

lambda

Le
ft−

Lo
ok

in
g/

M
ul

tif
ro

nt
al

 R
at

io
s

Factorizatio Time
Total Instructions
Floating−Point Instructions
L1 Data−Cache Accesses
L1 Data−Cache Misses
L2 Cache Misses

101 102
10−3

10−2

10−1

100

101

Synthetic (n=40,000) Matrices on Pentium 3

lambda

Fr
ac

tio
n

of
 M

ul
tif

ro
nt

al
 In

st
ru

ct
io

n
C

ou
nt

(full=MF hollow=LL) Total Instructions
(full=MF hollow=LL) Floating−Point Instructions
(full=MF hollow=LL) L1 Data−Cache Accesses
(full=MF hollow=LL) L1 Data−Cache Misses
(full=MF hollow=LL) L2 Cache Misses

FIG. 7.6. Results of the hardware-performance-counters measurements on the synthetic matrices (¼�½ÐMñbñbñ!òMÐMñbñbñbñ!òØ¾`ñbñbñbñ) on the Pentium 3 machine. The plot on the left shows left-looking/multifrontal ratios of spe-
cific measurements, and the plot on the right shows each measurement as a fraction of the instruction count in the
multifrontal factorization. Figure 7.7 shows similar results for other matrix dimensions.

8. Discussion and Conclusions. Supernodes were identified in the 1980’s as a key in-
gredient in high-performance sparse-factorization algorithms [5, 8]. Their initial role was to
enable vectorization and to reduce indexing overhead in the multifrontal algorithm. In the
1990’s, researchers recognized that supernodes can also reduce cache misses in these algo-
rithms, and that supernodes can be exploited not only in multifrontal algorithms, but also in
left-looking algorithms [6, 22, 23]. It was implicitly assumed that wider supernodes lead to
fewer cache misses.

ETNA
Kent State University
etna@mcs.kent.edu

104 E. ROZIN AND S. TOLEDO

101 102
0

2

4

6

8

10

12

14
Synthetic (n=5,000) Matrices on Pentium 3

lambda

Le
ft−

Lo
ok

in
g/

M
ul

tif
ro

nt
al

 R
at

io
s

Factorizatio Time
Total Instructions
Floating−Point Instructions
L1 Data−Cache Accesses
L1 Data−Cache Misses
L2 Cache Misses

101 102
10−3

10−2

10−1

100

101

Synthetic (n=5,000) Matrices on Pentium 3

lambda

Fr
ac

tio
n

of
 M

ul
tif

ro
nt

al
 In

st
ru

ct
io

n
C

ou
nt

(full=MF hollow=LL) Total Instructions
(full=MF hollow=LL) Floating−Point Instructions
(full=MF hollow=LL) L1 Data−Cache Accesses
(full=MF hollow=LL) L1 Data−Cache Misses
(full=MF hollow=LL) L2 Cache Misses

101 102
0

2

4

6

8

10

12
Synthetic (n=20,000) Matrices on Pentium 3

lambda

Le
ft−

Lo
ok

in
g/

M
ul

tif
ro

nt
al

 R
at

io
s

Factorizatio Time
Total Instructions
Floating−Point Instructions
L1 Data−Cache Accesses
L1 Data−Cache Misses
L2 Cache Misses

101 102
10−3

10−2

10−1

100

101

Synthetic (n=20,000) Matrices on Pentium 3

lambda

Fr
ac

tio
n

of
 M

ul
tif

ro
nt

al
 In

st
ru

ct
io

n
C

ou
nt

(full=MF hollow=LL) Total Instructions
(full=MF hollow=LL) Floating−Point Instructions
(full=MF hollow=LL) L1 Data−Cache Accesses
(full=MF hollow=LL) L1 Data−Cache Misses
(full=MF hollow=LL) L2 Cache Misses

101 102
0

2

4

6

8

10

12

14
Synthetic (n=80000) Matrices on Pentium 3

lambda

Le
ft−

Lo
ok

in
g/

M
ul

tif
ro

nt
al

 R
at

io
s

Factorizatio Time
Total Instructions
Floating−Point Instructions
L1 Data−Cache Accesses
L1 Data−Cache Misses
L2 Cache Misses

101 102
10−3

10−2

10−1

100

101

Synthetic (n=80,000) Matrices on Pentium 3

lambda

Fr
ac

tio
n

of
 M

ul
tif

ro
nt

al
 In

st
ru

ct
io

n
C

ou
nt

(full=MF hollow=LL) Total Instructions
(full=MF hollow=LL) Floating−Point Instructions
(full=MF hollow=LL) L1 Data−Cache Accesses
(full=MF hollow=LL) L1 Data−Cache Misses
(full=MF hollow=LL) L2 Cache Misses

FIG. 7.7. Results of the hardware-performance-counters measurements on the synthetic matrices (¼�½ðbñbñbñ!òóÍbñbñbñbñ!ò¥Àbñbñbñbñ) on the Pentium 3 machine.

We show in this paper that wider supernodes do, indeed, lead to better cache efficiency
in the multifrontal algorithm. But wider supernodes do not automatically lead to high cache
efficiency in the left-looking algorithm. In fact, there are matrices where one algorithm ex-
ploits the cache effectively while the other does not, and vice versa. The issue, therefore, is
more complex than was originally thought.

To provide a concrete recommendation to practitioners, we compared the two algorithms
on a set of real-world matrices arising from finite-element analysis. On these matrices, the
left-looking is usually faster. These results are consistent with the recommendations of Ng
and Peyton from about a decade ago [22].

ETNA
Kent State University
etna@mcs.kent.edu

LOCALITY OF REFERENCE IN SPARSE CHOLESKY FACTORIZATIONS 105

We also show that on some classes of matrices, the multifrontal algorithm may require
asymptotically more storage than the left-looking algorithm. This may cause failure due to
lack of memory (or lack of virtual addresses), and this may push the multifrontal algorithm
into slower layers of the memory hierarchy.

These two last conclusions suggest that implementors should prefer the left-looking algo-
rithm. However, the fact that the cache efficiency of the multifrontal algorithm depends only
on the width of supernodes makes it more predictable. In particular, supernode amalgamation
is more predictable under the multifrontal algorithm.

Our theoretical analyses focus only on intra-supernode data reuse in the cache. Inter-
supernode data reuse, which occurs on subtrees with small supernodes, also favors the left-
looking algorithm, since it does not need a stack of update matrices. This issue, along with
sophisticated schedules to maximize inter-supernode data reuse, are discussed in the papers
on out-of-core sparse factorization algorithms [11, 24, 25].

Acknowledgements. Thanks to Didi Bar-David for configuring the computers to sup-
port PAPI. Thanks to the two anonymous referees for helpful comments and suggestions.

REFERENCES

[1] A. AGGARWAL AND J. S. VITTER, The input/output complexity of sorting and related problems, Comm.
ACM, 31 (1988), pp. 1116–1127.

[2] P. R. AMESTOY, I. S. DUFF, J. KOSTER, AND J. L’EXCELLENT, A fully asynchronous multifrontal solver
using distributed dynamic scheduling, SIAM J. Matrix Anal. Appl., 23 (2001), pp. 15–41.

[3] P. R. AMESTOY, I. S. DUFF, J. L’EXCELLENT, AND J. KOSTER, MUltifrontal Massively
Parallel Solver (MUMPS version 4.3), user’s guide, July 2003, available online at
http://www.enseeiht.fr/lima/apo/MUMPS/doc.html.

[4] P. R. AMESTOY, I. S. DUFF, AND J.-Y. L’EXCELLENT, Multifrontal parallel distributed symmetric and
unsymmetric solvers, Comput. Methods Appl. Mech. Engrg., 184 (2000), pp. 501-520.

[5] C. ASHCRAFT AND R. GRIMES, The influence of relaxed supernode partitions on the multifrontal method,
ACM Trans. Math. Software, 15 (1989), pp. 291–309.

[6] J. W. DEMMEL, S. C. EISENSTAT, J. R. GILBERT, X. S. LI, AND J. W. H. LIU, A supernodal approach to
sparse partial pivoting, SIAM J. Matrix Anal. Appl., 20 (1999), pp. 720–755.

[7] I. S. DUFF, A. M. ERISMAN, AND J. K. REID, Direct Methods for Sparse Matrices, Oxford University
Press, 1986.

[8] I. S. DUFF AND J. K. REID, The multifrontal solution of indefinite sparse symmetric linear systems, ACM
Trans. Math. Software, 9 (1983), pp. 302–325.

[9] P. C. FISCHER AND R. L. PROBERT, A note on matrix multiplication in a paging environment, in ACM ’76:
Proceedings of the Annual Conference, 1976, pp. 17–21.

[10] A. GEORGE AND J. W. H. LIU, Computer Solution of Large Sparse Positive Definite Systems, Prentice-Hall,
1981.

[11] J. R. GILBERT AND S. TOLEDO, High-performance out-of-core sparse LU factorization, in Proceedings of
the 9th SIAM Conference on Parallel Processing for Scientific Computing, San-Antonio, Texas, 1999,
10 pages on CDROM.

[12] G. H. GOLUB AND C. F. V. LOAN, Matrix Computations, Johns Hopkins University Press, 3rd ed., 1996.
[13] J.-W. HONG AND H. T. KUNG, I/O complexity: the red-blue pebble game., in Proceedings of the 13th Annual

ACM Symposium on Theory of Computing, 1981, pp. 326–333.
[14] G. KARYPIS AND V. KUMAR, A fast and high quality multilevel scheme for partitioning irregular graphs,

SIAM J. Sci. Comput., 20 (1998), pp. 359–392.
[15] A. LAMARCA AND R. E. LADNER, The influence of caches on the performance sorting, J. Algorithms, 31

(1999), pp. 66–104.
[16] J. W. H. LIU, On the storage requirement in the out-of-core multifrontal method for sparse factorization,

ACM Trans. Math. Software, 12 (1986), pp. 249–264.
[17] , The multifrontal method and paging in sparse Cholesky factorization, ACM Trans. Math. Software,

15 (1989), pp. 310–325.
[18] J. W. H. LIU, The role of elimination trees in sparse factorization, SIAM J. Matrix Anal. Appl., 11 (1990),

pp. 134–172.
[19] J. W. H. LIU, The multifrontal method for sparse matrix solution: Theory and practice, SIAM Rev., 34

(1992), pp. 82–109.

http://www.enseeiht.fr/lima/apo/MUMPS/doc.html

ETNA
Kent State University
etna@mcs.kent.edu

106 E. ROZIN AND S. TOLEDO

[20] J. W. H. LIU, E. G. NG, AND B. W. PEYTON, On finding supernodes for sparse matrix computations, SIAM
J. Matrix Anal. Appl., 14 (1993), pp. 242–252.

[21] A. C. MCKELLER AND E. G. COFFMAN, JR., Organizing matrices and matrix operations for paged memory
systems, Comm. ACM, 12 (1969), pp. 153–165.

[22] E. G. NG AND B. W. PEYTON, Block sparse Cholesky algorithms on advanced uniprocessor computers,
SIAM J. Sci. Comput., 14 (1993), pp. 1034–1056.

[23] E. ROTHBERG AND A. GUPTA, Efficient sparse matrix factorization on high-performance workstations—
exploiting the memory hierarchy, ACM Trans. Math. Software, 17 (1991), pp. 313–334.

[24] E. ROTHBERG AND R. SCHREIBER, Efficient methods for out-of-core sparse cholesky factorization, SIAM
J. Sci. Comput., 21 (1999), pp. 129–144.

[25] V. ROTKIN AND S. TOLEDO, The design and implementation of a new out-of-core sparse Cholesky factor-
ization method, ACM Trans. Math. Software, 30 (2004), pp. 19–46.

[26] R. SCHREIBER, A new implementation of sparse gaussian elimination, ACM Trans. Math. Software, 8 (1982),
pp. 256–276.

[27] S. SEN, S. CHATTERJEE, AND N. DUMIR, Towards a theory of cache-efficient algorithms, J. ACM, 49
(2002), pp. 828–858.

[28] G. W. STEWART, Matrix Algorithms, Volume 1: Basic Decompositions, SIAM, 1998.
[29] S. TOLEDO, Locality of reference in LU decomposition with partial pivoting, SIAM J. Matrix Anal. Appl., 18

(1997), pp. 1065–1081.
[30] , A survey of out-of-core algorithms in numerical linear algebra, in External Memory Algorithms,

J. M. Abello and J. S. Vitter, eds., DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, American Mathematical Society, 1999, pp. 161–179.

[31] R. C. WHALEY AND J. J. DONGARRA, Automatically tuned linear algebra software, tech. re-
port, Computer Science Department, University Of Tennessee, 1998, available online at
http://www.netlib.org/atlas.

http://www.netlib.org/atlas

