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Abstract. Given a partitioning of a sparse matrix for parallel matrix—vector multiplication, which determines
the total communication volume, we try to find a suitable vector partitioning that balances the communication load
among the processors. We present a new lower bound for the maximum communication cost per processor, an
optimal algorithm that attains this bound for the special case where each matrix column is owned by at most two
processors, and a new heuristic algorithm for the general case that often attains the lower bound. This heuristic algo-
rithm tries to avoid raising the current lower bound when assigning vector components to processors. Experimental
results show that the new algorithm often improves upon the heuristic algorithm that is currently implemented in
the sparse matrix partitioning package Mondriaan. Trying both heuristics combined with a greedy improvement
procedure solves the problem optimally in most practical cases. The vector partitioning problem is proven to be
NP-complete.
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1. Introduction. Sparse matrices from emerging applications such as information re-
trieval, linear programming, and Markov modelling of polymers may have a highly irregular
structure and no underlying three-dimensional physical structure, in contrast to many finite-
element matrices, and this irregularity poses a challenge to parallel computation. Often, the
sparse matrix must be repeatedly multiplied by a vector, for instance in iterative linear system
solvers and eigensystem solvers. In recent years, hypergraph partitioning has become the
tool of choice for partitioning the sparse matrix, delivering good balance of the computation
load and a minimal communication volume during parallel sparse matrix—vector multiplica-
tion. The problem of partitioning the input and output vectors is just as important as the
matrix partitioning problem, since it affects the balance of the communication load, but it has
received much less attention.

Assume that we have an m X n sparse matrix A, which must be multiplied by an input
vector v of length n, to give an output vector u of length m, using p processors of a parallel
computer with distributed memory. The natural parallel algorithm for sparse matrix—vector
multiplication with an arbitrary distribution of matrix and vectors consists of the following
four phases:

1. Each processor sends its components v; to those processors that possess a nonzero
a;; in column j.

2. Each processor computes the products a;;v; for its nonzeros a;;, and adds the results
for the same row index 7. This yields a set of contributions u;s, where s is the
processor identifier, 0 < s < p.

3. Each processor sends its nonzero contributions u;s to the processor that possesses
WUj.
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4. Each processor adds the contributions received for its components u;, giving u; =
Zf:_(} Wit -

Processors are assumed to synchronise globally between the phases. In the language of
the bulk synchronous parallel (BSP) model [21], the phases are called supersteps. This model
motivated the present work, because it encourages balancing communication loads, besides
balancing computation loads. Phases 1 and 3 are communication supersteps. Their costs
include a fixed overhead [ representing the global latency, which lumps together the time
of the global synchronisation and the startup times of an all-to-all message exchange. The
superstep approach allows combining data words destined for the same processor into one
packet and also reordering of packets, both for the purpose of communication optimisation.
Sometimes, we call [ just the synchronisation cost. The BSP model also assumes a cost of g
time units per data word sent or received by a processor. The processor with the maximum
number h of data sent or received determines the overall communication cost. The cost of a
communication superstep can thus be expressed as

(1.1) Tsuperstep = hg +1.

A natural time unit for g and [ in scientific computation is the time of a floating-point opera-
tion.

The synchronisation cost  does not grow with the problem size and it has to be paid only
twice for the matrix—vector multiplication algorithm. The communication cost, however,
grows with the problem size, and depends very much on the data partitioning chosen. We are
mainly interested in large, highly irregular problems, and for this reason we will exclusively
be concerned with the communication cost hg, aiming to minimise it.

We assume that the matrix A has already been partitioned for p processors and that we
have to find a suitable vector partitioning. Thus, each nonzero a;; has been assigned to a
processor and we need to assign vector components v; and u; to processors. We assume
that the vectors can be partitioned independently, which is usually the case for rectangular
matrices, but also for square matrices if the output vector is used as the input for multiplication
by AT. We only treat the partitioning problem for the input vector, because the partitioning
of the output vector is similar and can be done by running the same algorithm applied to A” .
If the matrix A is symmetric and it has been partitioned symmetrically, i.e., with nonzero
elements a;; and aj; assigned to the same processor, then we can partition the input vector
and use the same solution for the output vector as well.

The preceding matrix partitioning can be done by using any of the currently available
matrix partitioners, either based on hypergraph partitioning or graph partitioning. The result
can be: one-dimensional [5], e.g. a row distribution or column distribution; two-dimensional
Cartesian [8], each processor obtaining a submatrix defined by a partitioning of the matrix
rows and columns; two-dimensional non-Cartesian with Mondriaan structure [23], defined
by recursively bipartitioning the matrix in either the row or column direction; or completely
arbitrary [7], each nonzero having been assigned individually to a processor. In all these
cases, it may be beneficial to partition the vector by the methods presented here.

Let P; be the set of processors that own nonzeros in matrix column j and A; = |P;| be
the number of such processors, for 0 < j < n. We make a number of assumptions, all without
loss of generality, to facilitate the exposition. We assume that A; > 2, because columns with
Aj = 0,1 do not cause communication so that they can be removed from the problem. We
assume that all processors are involved in communication, i.e., occur in at least one matrix
column; it is easy to remove the other processors. Furthermore, we assume that duplicate
nonzeros have been removed, i.e., nonzeros a;; that are in the same column and are owned
by the same processor as a nonzero a;;, where i’ > i; a duplicate nonzero does not cause extra
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communication because v; has to be sent only once to the owner of a;;. Since the processor
that owns a nonzero a;; in matrix column j is important, but the row number ¢ is irrelevant, we
can transform the matrix into a p X n sparse matrix A’, which contains a nonzero in position
(s,7),0< s < p, 0<j<mn,ifand only if processor s has a nonzero in column j of A. (The
matrix A’ is introduced in [20] as the communication matrix corresponding to a partitioned
matrix A.) We assume without loss of generality that A has already been transformed into
A’, so that we can drop the prime. In Section 4, however, where we present our experimental
results, we will distinguish between the original matrix A and its communication matrix A’.

Our aim is to assign each input vector component v; to a processor ¢(j) € P;, such that
we minimise the communication cost Cy of the partitioning ¢. This cost is defined as

(1.2) C¢ = Orélsa<xp max{Nsend(s); Nrecv(s)}a
where
(1.3) Neena(s) = > (A —1),
J: ¢(4)=s
and
(1.4) Nrecv(s)zl{j:OSj<n/\ seP; A ¢(])7£5}|

Sometimes we refer to the communication cost of a processor s, which is Cg(s) = max{
Nsend(8) , Nrecv(8) }. Note that the number of sends expressed by Ngend(s) is the number of
data words sent, and not the number of messages in which they are packaged. We will use
the terms ‘send’ or ‘receive’ to denote the communication of a single data word, irrespective
of the way this is done (the data word is most likely sent as part of a larger packet). The total
communication volume is

p—1 p—1
(1.5) V¢> = ZNsend(S) = ZNrer(s)-
s=0 s=0

We will drop the subscript ‘¢’ from Cy, Cy(s), and V3 if the partitioning involved is clear
from the context.

2. Related work. Catalyiirek and Aykanat [5] present a one-dimensional matrix parti-
tioning method for square matrices based on hypergraphs. The method is also applicable to
rectangular matrices, see [4]. They partition the input and output vectors conformally with
the matrix partitioning; for a rowwise matrix partitioning, this means that matrix row %, v;,
and u; are all assigned to the same processor. Thus, no specific effort is made to balance the
communication by finding a better vector partitioning. This may be beneficial for the output
vector u, but for the input vector v this leaves no choice in the partitioning, and it might in-
crease the communication volume V. Catalyiirek and Aykanat [5] do report results, however,
on their vector partitioning. For instance, experiments with rowwise partitioning by the HCM
variant of their partitioner PaToH [6] on a set of square, structurally nonsymmetric matrices
show for p = 64, on average, a scaled volume of 0.92 and a maximum scaled volume per
processor of 0.025 (only counting the sends, not the receives), which is not too far from the
theoretical optimum of 0.0143. The scaling is by matrix size, i.e., the scaled volume is V/n.
The maximum scaled volume per processor would probably be somewhat higher if receives
were included in the metric as well.

Vastenhouw and Bisseling [23] pose the problem of minimising the cost in the metric we
use here. They present a vector partitioning algorithm which is the default in version 1.0 of
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the Mondriaan package. The algorithm works as follows. First, it handles the components
with A; > 2 in random order, trying to minimise maxo<s<p(Nsend(s) + Nrecv(s)). The
algorithm assigns v; to the processor with the current lowest sum. The sum of processor
s is initialised at ncols(s) = |J(s)|, where J(s) = {j : 0 < j < n A s € P;}, in an
attempt to give the greedy algorithm at least a partial view of the future. The initial sum
can be seen as the number of inevitable communication operations: a processor must either
send or receive at least one data word if it occurs in a column. If v; is assigned to processor
s, this increases the sum of s by A; — 2. Second, the algorithm handles the components
with A; = 2 in an arbitrary order, trying to balance the number of sends with the number
of receives. The components with A; = 2 do not increase the sums any more. Let s and
s’ be the two processors in a column j. The algorithm chooses s as owner of column j if
Nsend(8) + Nrecv(8") < Nsend(s') + Nrecev(s); otherwise, it chooses s’. This gives rise
to one data word being sent in the least busy direction. The numerical experiments in [23]
for the five rectangular matrices show reasonable communication balance, with the largest
problem instance (matrix tbd1linux, p = 64) showing a normalised cost of 3.06 (relative to
the average volume V/p). A disadvantage of this algorithm is that matrix partitionings with
few two-processor columns have little opportunity to optimise the send/receive balance; in
the worst case, this may double the communication cost. In the present work, we investigate
the performance of this algorithm further and try to improve it; in the remainder of the paper,
we denote the original Mondriaan vector partitioning algorithm by ‘Mon’.

Ucar and Aykanat [20] treat the problem of vector partitioning given a certain matrix par-
titioning, with the objective of minimising the total number of messages and hence the sum of
the message latencies while satisfying a balancing constraint on the maximum communica-
tion volume per processor, measured in sends. This enables a trade-off between latency and
maximum volume. To find a solution, they formulate the problem in terms of a hypergraph
with p hyperedges and n vertices, and then try to partition the vertices into p sets using a
multilevel hypergraph partitioner, in this case PaToH. Each vertex gets a weight of A; — 1,
representing the number of sends for the corresponding vector component v;. A cut hyper-
edge s, 0 < s < p, with vertices on different processors, means that processor s has to receive
a message from these processors, except from itself. For comparison, Ugar and Aykanat also
implemented a method which they call the naive method, which assigns components in order
of decreasing J;, trying to balance the sends. The hypergraph method significantly reduces
the total number of messages, by about a factor of two compared to the naive method, but it
doubles the maximum number of sends per processor and it also increases the total volume by
up to 41%. (An increase in communication volume may occur if a component v; is moved to
a processor outside P; to reduce the number of messages.) The time of the vector partitioning
by the hypergraph method is usually less than that of the matrix partitioning, but it is much
more than that of the naive method. The difference between the present work and the work
of Ucar and Aykanat is that we try to achieve the utmost in communication balance, ignoring
latency, and that we also try to balance the receives of the processors.

A different area, related to the present work, is that of computation load balancing. View-
ing communication as just another type of work that has to be balanced among the processors,
we may be able to benefit from methods developed to balance computation work. Pinar and
Hendrickson [17] propose a general framework for balancing work in complex situations,
such as overlapping subdomains in domain decomposition, or computation and communi-
cation without synchronisation in between (where work represents the sum of computation
time and communication time). They diffuse data and associated work from overloaded pro-
cessors to others, starting from an initial partitioning, and improving the balance until it is
satisfactory. In different work, Pinar and Hendrickson [18] present a method for assigning
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computation tasks to processors in situations where this can be done flexibly, i.e., without
consequences for the communication in a parallel computation. Each task is of unit size and
can be assigned to one processor from a set of processors. An optimal task assignment is
found by solving a maximum network-flow problem. In principle, such a method can also be
applied to assign communication tasks. The restrictions of the problem formulation mean that
the method can be applied to balance the sends or the receives, but not both simultaneously,
in the case that A\; = 2 for all 5.

The best sparse matrix partitioning methods for parallel sparse matrix—vector multiplica-
tion are those based on hypergraph partitioners, since these reflect the communication volume
accurately in their objective function; graph partitioners only approximate the volume. Cur-
rently, a variety of hypergraph partitioners are available: PaToH [4, 5, 6], which was the first
hypergraph partitioner to be used for sparse matrix partitioning; hMetis [16], a hypergraph
version of the Metis graph partitioner; Mondriaan [23], a two-dimensional hypergraph-based
sparse matrix partitioner, which can also be used to solve hypergraph partitioning problems by
running it in one-dimensional mode; MONET [15], a hypergraph-based matrix ordering pack-
age, which permutes the rows and columns of a matrix to obtain a bordered block-diagonal
form; Zoltan [10], a dynamic load balancing library for a wide range of parallel applications,
which has recently been extended by a serial hypergraph partitioner [2]; MLpart [3], a mul-
tilevel hypergraph partitioner developed for circuit design, a traditional application area of
hypergraph partitioning. Parkway [19] is a parallel k-way hypergraph partitioner that has
been developed for very large Markov transition matrices (n = O(107)) from voting models.

3. Algorithms for vector partitioning.

3.1. Special case: two processors per matrix column. A special case arises if A\; = 2
for all 5. This will happen if p = 2, but it can also happen for larger p. For instance, if
the matrix partitioning first splits the columns into two sets of columns, and then splits each
set independently in the row direction, the resulting matrix partitioning over four processors
satisfies the condition both for rows and columns.

In the special case, every assignment of a vector component v; to one of the two proces-
sors in matrix column j causes one processor to send a data word and the other to receive one.
Let ncols(s) be the number of columns in which processor s occurs. Therefore, processor
s will have to perform a total of ncols(s) send and receive operations. A lower bound on
the communication cost of processor s is thus [ncols(s)/2]. This bound is attained if s is
assigned (nearly) half of the vector components corresponding to the columns it shares. A
lower bound on the overall communication cost is

_ ncols(s)

We now present an algorithm, Opt2, that assigns the vector components corresponding
to the matrix columns in three phases. For brevity, we say that the algorithm assigns matrix
columns. Let By; be the number of columns shared by processors s and ¢, where 0 < s,t <
p; note that Bg; = 0. In Phase 1, the algorithm assigns columns shared by s and ¢ in
pairs, assigning one column to s and the other to ¢, until no such pair of columns is left.
After these assignments, the remaining number of columns shared by processors s and ¢ is
B!, = Bs;mod 2. We can view B’ as the adjacency matrix of the graph G = (V, E), where
YV ={0,...,p—1}and E C VxVisdefined by (s,t) € E if and only if B], = 1. Fig. 3.1(b)
presents this graph; Fig. 3.1(a) presents a weighted graph corresponding to B.

In Phase 2, the algorithm walks paths in the graph G, each time starting at a vertex with
odd degree. After an edge (s,t) is traversed in the direction from s to ¢, it is removed from
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F1G. 3.1. Path-walking algorithm for the graph that represents the communication of the input vector in
parallel sparse matrix—vector multiplication. (a) Weighted undirected graph, where each vertex s represents a
processor; each edge (s,t) a set of columns shared by processors s and t, and each edge weight By the number of
columns shared. (b) The unweighted graph obtained by assigning pairs of shared columns to processors, each time
one column to s and the other to t. The adjacency matrix of this graph is B', defined by Bl,, = Bsz mod 2. (c)
The graph is traversed by walks starting at an odd-degree vertex, walking along the edges while removing them on
the way, until a dead end is reached. This phase contains three such walks; the first two are shown. Start and end
points are shown in black. (d) The graph is traversed by walks starting at an even-degree vertex.

E, and the corresponding column is assigned to s. A path is finished when the walk reaches
a dead end, i.e., when the vertex reached has no more edges left. After the degree of a vertex
becomes zero, the vertex is removed. This phase ends when all remaining vertices have even
degree. Phase 2 is illustrated by Fig. 3.1(c). In Phase 3, the algorithm walks paths in the
remaining graph until the graph is empty. Phase 3 is illustrated by Fig. 3.1(d). We will prove
optimality of the algorithm by using the following lemma.

LEMMA 3.1. Let G = (V, E) be a graph and (sg, $1, - - -, Sr) be a path in G with all
edges distinct. Let deg(so), the degree of so, be odd. Assume that the path cannot be extended
any more by adding an edge from E that is distinct from the edges already contained in the
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path. Then: sg # s, and a traversal of the path with edge removal changes deg(so) from
odd to even and deg(s,) from odd to zero, and it does not change the parity of deg(s) for
s # 50, Sy

Proof. The removal of the first edge (sg, s1) makes deg(so) even. If deg(so) becomes
zero, the walk cannot reach s¢ any more; otherwise, if the walk enters sq, it will leave. Thus,
the end vertex s, must differ from the start vertex sg and deg(sg) remains even. Furthermore,
deg(s;) becomes zero since no edges remain. The parity of deg(s;), i = 1,...,7 — 1, does
not change when the path reaches an intermediate vertex s;, because one edge is removed on
entry and one on exit. Note that vertices may occur more than once on a path; our statements
still hold then. Just before the last edge is removed, we have deg(s,) = 1; at the start of the
walk, deg(s,) must have been odd. Vertices not on the path are not affected by the traversal.
O

THEOREM 3.2. Letp,n € N, withp > 2,n > 1. Let P; C {0,...,p—1} with|P;| = 2

represent the pair of processors that share column j, for j = 0,...,n — 1. Then algorithm
Op12 produces a vector partitioning ¢ : {0,...,n — 1} — {0,...,p — 1} with minimal cost
Cy.

Proof. The algorithm terminates because the number of columns and edges is finite and
because each walk in Phases 2 and 3 removes at least one edge. Each column is assigned to
a processor at some time during the algorithm, either in Phase 1 or when its corresponding
edge is removed in Phase 2 or 3. At the end of the algorithm, a complete vector partitioning
¢ has been obtained.

After Phase 1, Ngend(s) — Nrecv(s) = 0 for all vertices s. The value Ngend(s) — Nrecv ()
does not change for an intermediate vertex s in a walk in Phase 2. The value can change,
however, if s is a start or end vertex in Phase 2. This can happen only once for every s,
0 < s < p, because a vertex can only once be a start or end vertex of a walk. This is because
a start vertex so has an odd degree, which becomes even after the walk, see Lemma 3.1.
Therefore, sg cannot become a start vertex again in this phase. Furthermore, it cannot become
an end vertex of a walk, because of its even degree. An end vertex has no edges left, is
removed, and hence does not occur again in further walks.

In Phase 3, the first walk starts at a vertex sp with even degree. After traversal and
removal of the first edge (sg, 51), the two vertices sq and s; have odd degree, but all other

vertices have even degree. We can apply Lemma 3.1 to the path (sy, ..., s,) representing the
remainder of the first walk. The lemma says that s, # s; and that deg(s,.) is odd at the start
of the remaining walk, so s, = sp must hold. Thus, the path (so, ..., s,) must be a cycle.

After walking a complete path, all vertices have even degree again, and further walks can be
carried out in the same way. Because each path is a cycle, the value Ngend () — Nrecv(8)
does not change for the vertices s on the paths.

As aresult of the algorithm, | Nsend (8) — Nrecv(8)| < 1 forall s, and equality | Nsend (8) —
Nrecv(8)| = 1 only happens if deg(s) is odd at the start of Phase 2. Because deg(s) =
2145 By, this is equivalent to ncols(s) = 3, Bst being odd. This proves that the result-
ing assignment is optimal. d

3.2. General lower bounds on the communication cost. A simple lower bound on the
communication cost based on the communication volume is

(3.2 Lyo = [K-‘ .
p

This bound occurs because not all processors can have a communication cost below the aver-
age V/p, so that in every vector partitioning there must exist a processor s with C(s) > V/p.
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Because costs are integers, we even have C(s) > [V/p]. Therefore, C > [V/p], which
shows that the cost C' must be at least L.

A different lower bound can be obtained by considering the vector components that a
processor would like to possess in order to minimise its cost. Assume that a processor s
can freely choose its components. Every vector component v; that the processor obtains will
decrease its number of receives by one, irrespective of the size of the corresponding matrix
column. At the same time, this will increase the number of sends by A; — 1. Thus, a processor
would prefer to obtain vector components corresponding to small columns, i.e., with low A;.
If given a free choice, a processor would take components in order of increasing column size,
stopping when adding another component would give a larger number of sends than receives.
This leads to the lower bound expressed by the following theorem.

THEOREM 3.3. Let p,n,s € N, withp > 2,n > 1, and 0 < s < p. Let P; C
{0,....,p— 1} and \j = |Pj|, for j = 0,...,n — 1. Assume that X\; > 2 for all j, and
Aj < Ay if j < j'. Define

Jk={j:0§j<k/\S€P]‘},

fork =0,...,n. Let k be the largest integer with k < n for which

D>y = 1) < |Ta\Ji-

JE€JIk

Define L(s) = |Jo\Ji|- Then for every vector assignment ¢ with ¢(j) € P; for all j, we
have

Cy > L(s).

Proof. Let J}, be the set defined in the theorem and let J = J,, be the set of all indices j
with s € P;. Let ¢ be a vector assignment with ¢(j) € P; for all j, and J' C J be the set of
indices j with ¢(j) = s. We will transform J' into J, by changes that do not increase the cost
for processor s. This will prove that the cost of Jy, is less than or equal to that of J'. First, we
transform J' into a J,. by adding jmin, the smallest j € J\J' to J', and removing jmax, the
largest j from J', and repeating this procedure as long as jmin < jmax- Each change reduces
the cost, or keeps it the same, because it replaces an index j with a larger size A; by one with
a smaller size, or a lower numbered one of equal size. The changes fill the holes in J' until it
contains all the indices from J up to a certain size, i.e., J' = J, for a certain r. If J C J,.,
we have 37 ; (Aj —1) > [J\J;[, by the definition of k. Thus, we can remove the largest
4 from J,. while not increasing the cost. (This is because the number of sends decreases, and
the number of receives increases by one, but it will not exceed the number of sends before
the change.) We can repeat this until » = k. If J, C J,. does not hold, we have J, = J,, or
Jr € Ji. If Ji, = J,., we are done, but otherwise we can add the smallest element of J\ J;. to
Jr. This does not increase the cost, because the number of receives decreases and this number
determines the cost. We have proven that the cost for processor s in an assignment ¢ is at
least the cost incurred by assigning all components from Jj, to s, which is L(s) = |J\Jk|.
|

By using Theorem 3.3 we can determine a local lower bound L(s) for each processor s.
The resulting lower bound for the overall communication cost is

(3.3) L = max L(s).
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We call this bound the local lower bound because it is based on a local assignment of vector
components, not taking other processors into account. In contrast, the volume-based bound
L represents a global view, but it does not take local details into account. Combining the
two lower bounds, we have max{Lyo1, L} as the best lower bound.

The bound L(s) for processor s can be generalised to the situation where a processor
does not start from scratch, but instead already has some communication obligations (for
instance for vector components that have already been assigned). Let Ngeng be the number of
data words the processor has to send already, and N,y the number it has to receive. Choose
k as large as possible, while ensuring that

(3.4) Neena + > (Aj = 1) < Nyeey + [J\Jk|-
JETk

The lower bound for processor s then equals

(3.5) L(s) = Nrecv + |J\ k|
The number of data words the processor has to send to attain the lower bound is
3.6) Lsend(s) = Nsend + Z (A = D).

JEJk

The number of data words it has to receive to attain the lower bound equals L(s).

3.3. Vector partitioning by the local-bound algorithm. We can use the local lower
bound as the basis for a heuristic algorithm. The heuristic is to choose the processor Spyax
that has the highest local bound L(s) for its current index set J(s), and let this processor
choose a vector component v;. It chooses a component with minimal A;, and thus will not
increase its lower bound. This heuristic tries to avoid increasing the highest lower bound L(s)
and hence raising L. The algorithm then updates the number of sends and receives incurred,
removes j from all the index sets J(s), and updates the lower bounds L(s) and the associated
number of sends Lsenq(s) needed to attain the lower bound.

A processor stops accepting new components when its number of sends Ngenq(s) equals
the current optimal number of sends Lgend(s). (By definition, Ngend(s) < Lgend(s).) Ac-
cepting more components would only increase L(s), so that instead it is better to stop and let
other processors accept components. The algorithm terminates when no processor is willing
any more to accept new components. It may be possible that some (large) components are
left over at the end of the algorithm; these can be handled by greedy assignment, see the next
subsection. Algorithm 3.1 presents the details of the local-bound based partitioning. The
notation ‘argmax’ used in Algorithm 3.1 means an index for which the maximum is obtained,
and similarly for ‘argmin’. An efficient implementation of the algorithm would use the com-
pressed column storage (CCS) data structure (see e.g. [1]) for the communication matrix A’
to facilitate access to the processors in each column, and compressed row storage (CRS) with
the nonzeros of each row stored in increasing order to enable direct access for processor s to
the next local component v; with minimal ;.

3.4. Greedy assignment. Vector partitioning by greedy assignment (GA) is done by
handling vector components in an arbitrary order, each time assigning a component v; to a
processor ¢(j) that would have the minimum current cost if it were to obtain the component.
This assignment is determined by first incrementing Nyecv (s) forall s € P;, and then finding
a processor s from P; with minimal value max{Nsenda(s) + Aj — 1, Nyecv(s) — 1}. The
current send and receive counts are then updated by decrementing Nyecy(¢(5)) and adding
Aj — 1 to Ngend(#(j)). GA can also be applied when part of the components have already
been assigned by a different method.
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input: Ais ap X n sparse matrix,
Pi={i:0<i<pA aj; #0},for0<j<n.

output: ¢ = distr(v): vector distribution over p processors,
such that ¢(j) € P;,for0 < j < n.

foralls:0<s <pd0

send(s)

recv(s)
J(s) ={j: 0<J<n/\s€’P}
ki=max{k:0<k<nA Y ;-1 <|[J(s)\Jk(s)[}

where Jiy(s) ={j :j € J(s) A 0<j<k};
L(s) == |J(s)\ Tk (s);
Lsend(S) = EjEJk(s) ()‘J - 1)’
if Lsena(s) = 0 then active(s) := false;
else active(s) := true;

while (35 : 0 < s < p A active(s)) do
Smax = argmax{L(s) : 0 < s < p A active(s)} ;
J = argmin{\; : j € J(Smax)};
¢(]) ‘= Smax>
Nsend(sma.x) = Nsend(smax) + /\j -1
foralls: s € P; A s # Smax do
Nrecv(s) = Nrecv(s) +1;
foralls: s € P;do
J(s) == J(s)\{i}:
foralls:s € P; A s # Smax do
k :=max{k : Nsena(s) + 2 iz, (5)(A = 1) < Nreev(s) + [J(s)\Jk ()]},
where Ji(s) ={j: 7€ J(s) N0<j <k}
L(s) 1= Nrecv(s) + [J(s)\ k(s
Lgena(s) := Ngena(s) + ZjEJk(s)(/\j - 1);
forall s: s € P; A Ngend(s) = Lgsena(s) do
active(s) := false;

ALGORITHM 3.1
Local-bound based vector partitioning.

3.5. Greedy improvement of a given partitioning. A given partitioning ¢ can be im-
proved by a simple greedy improvement (GI) procedure, as follows. A vector component v;
is chosen at random, and for each processor s € P;, s # ¢(j), the change in cost caused by
reassigning v; to s is computed. If there is a change that reduces the cost, it is carried out and
the vector component is reassigned. In case of several possible changes, the best one is taken
by using a secondary criterion. Often, the size of the cost reduction is the same for all cost-
reducing reassignments, so the size is less suitable for breaking ties. (It could be used together
with a ternary criterion.) We break ties by reassigning the component to the processor in P;
with the current least number of sends. The reason is that the number of sends of a processor
is affected most by a reassignment, more than the number of receives. Any remaining ties are
resolved arbitrarily. After that, another component j is randomly chosen, and the same proce-
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dure is executed. This is repeated until no more improvement can be obtained. Note that GI
is based on moves, like the well-known Fiduccia-Mattheyses algorithm [13] which is at the
heart of today’s successful hypergraph partitioners, but GI is less sophisticated (and cheaper)
since it does not accept cost increases and does not select a move with largest possible gain.

This procedure can be implemented efficiently by organising it in passes. A new pass
starts every time a reduction has been obtained, or at the start of the GI algorithm. The
indices j are stored in an array, initially in the natural order. The first part of the array stores
the indices of the columns that have not been tried yet in the current pass and the second part
the indices of the remaining columns. The number Ny,ieq is used to keep track of the number
of components tried in the current pass. If reassigning a vector component v; cannot reduce
the cost, the index j is swapped with the last untried index, and Nyjeq is incremented. If
reassignment succeeds, Nyyieq iS reset to 0. Thus, a random index can always be chosen from
a contiguous subarray of untried indices.

4. Results. The algorithms presented in the previous section have been implemented
within the sparse matrix partitioning package Mondriaan'. First, the matrices were parti-
tioned on a 375 MHz Sun Enterprise 420 computer at Sandia National Laboratories in Albu-
querque, NM, which has four Sparc-2 processors, 4 Gbyte RAM, 64-bit hardware arithmetic,
and which runs the Solaris 8 operating system. Since the Mondriaan program itself is serial,
only one processor is used per program run. Second, numerical experiments with differ-
ent vector partitioning methods were performed for the partitioned matrices on an 867 MHz
Apple PowerBook G4 computer with 768 Mbyte RAM, 32-bit hardware arithmetic, and a
PowerPC G4 processor, which runs the Mac OS 10.2 operating system.

We have checked the quality of the vector partitioning by using a test set of sparse ma-
trices from publicly available collections, supplemented with a few matrices from Sandia
applications and a few matrices from our own applications. Table 4.1 presents the matrices;
the matrix bcsstk32 was obtained from the Rutherford—Boeing collection [ 11, 12]; the ma-
trices 1hr34 and nug30 were obtained from the University of Florida collection [9]. The
matrix rhpentium_new provided by Robert Hoekstra represents a circuit simulation by the
Sandia package Xyce for part of a Pentium processor. The matrix polyDFT originates in a
polymer self-assembly simulation by the Density Functional Theory package Tramanto from
Sandia. The matrix tbdlinux is a term-by-document matrix describing the documentation
of the SuSE Linux 7.1 operating system. The matrix cage13 [22] (available through [9])
is a stochastic matrix describing transition probabilities in the cage model of a DNA poly-
mer of length 13 moving in a gel under the influence of an electric field. Each matrix has
been partitioned using the Mondriaan matrix partitioner with default parameters, allowing a
computational load imbalance of 3%.

Table 4.2 presents the partitioned sparse matrices. We can view the resulting vector
partitioning problem (for a vector v) as a sparse m' x n' matrix A’, where the m' = Peomm
rows represent the processors that are active in communication and the ' columns represent
the columns from the original matrix with A; > 2. (For a vector u, we can transpose the
partitioned matrix A and proceed in the same way.) From now on, we distinguish between
A and A’, and between peomm and p. Table 4.2 presents several properties of A’ such as the
communication volume, two lower bounds on the communication cost, the optimal solution
for the special case A; < 2, if applicable, and a balance ratio, for the seven matrices from the
test set and for p = 4, 16, 64. Note that

4.1) V>n,

IThe new vector partitioning algorithms will be made available in version 2.0 of Mondriaan, see
http://www.math.uu.nl/people/bisseling/Mondriaan,to be released soon.
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TABLE 4.1
Properties of the test matrices. For each matrix, we give: the number of rows m, the number of columns n, the
number of nonzeros nz(A), and the origin.

Matrix m n nz(A) Application area
rhpentium.new 25187 25187 258265 circuit simulation
lhr34 35152 35152 764014 chemical engineering
nug30 52260 379350 1567800 linear programming
bcsstk32 44609 44609 2014701 structural engineering
tbdlinux 112757 20167 2157675 information retrieval
polyDFT 46176 46176 3690048 polymer simulation
cagel3 445315 445315 7479343 DNA electrophoresis

because every column in A’ has two or more processors and hence causes at least one com-
munication. If V' = n/, this means that all columns have two nonzeros, so that our optimal
algorithm Opt2 from Subsection 3.1 is applicable. Furthermore, we have

4.2) V +n' = nz(4"),

because the number of communications caused by a column in A’ equals its number of nonze-
ros minus 1. It is easily verified that Eqns (4.1) and (4.2) are indeed satisfied for the data given
in Table 4.2. The bounds given in the table are the volume-based bound Lo = [V/Peomm |
and the local lower bound L, see Eqn (3.3). The ratio max{Lye1, L}/(V/p) gives the balance
of the communication load in case we manage to attain the best lower bound. Perfect balance
corresponds to a ratio of 1.

For each matrix, both the input vector v and the output vector u are partitioned. A prob-
lem instance is thus a triple mat r 1 x/p/vector. The instances nug30/p/v and bcsstk32/4/v
are omitted because the preceding matrix partitioning produces a one-dimensional column
partitioning, so that no communication is needed for v. The number of communicating pro-
CessSOrs Peomm can be less than the available number of processors p: for instance, pcomm =
38 for rhpentium new/64/v and 1hr34/64/u. A processor does not communicate if all
the components j that it owns satisfy A; = 0 or A; = 1; for A\; = 0, the corresponding matrix
column j must be empty, but for A; = 1 it may have many nonzeros. Table 4.2 shows that
the lower bound L is the best (highest) bound for 34 out of 38 instances, that L = Ly, for
three instances, and that the bound L. is best for only one instance, namely nug30/4/u.
The table also shows that applicability of Opt2 is not restricted to the case pcomm < 2; €.g.,
1hr34/16/v with peomm = 10 can be solved by the optimal algorithm. The ratios given in
the last column of Table 4.2 show that even if the balancing problem can be solved optimally,
this does not mean that the resulting balance is perfect. For 17 problem instances out of 38,
the ratio exceeds 2, meaning that one processor has to communicate at least twice the aver-
age amount based on V' and p; the maximum ratio observed is 4.02 for 1hr34/64/u. This
imbalance is inevitable and is caused by the preceding matrix partitioning.

Table 4.3 presents results of Mon, the algorithm from [23] implemented in the origi-
nal Mondriaan package, version 1.0, which has been explained in Section 2, and of LB, the
local-bound algorithm presented in Subsection 3.3, with and without the greedy improvement
procedure presented in Subsection 3.5. The matrix partitioning was fixed by using Mondriaan
once with a fixed random number seed, giving the partitioned matrices presented in Table 4.2.
The vector partitioning was performed a hundred times, each time with a different seed. Like
the Mondriaan matrix partitioning, the Mondriaan vector partitioning is a randomised algo-
rithm. Still, there may be some dependence on the input ordering. The LB vector partitioning
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TABLE 4.2
Properties of the m' x m! communication matrix A’ for various processor numbers p and for both the input
vector v and the output vector u. For each problem instance, we give: the communication volume V'; the number of
active processors m' = pcomm, the number of columns n' that cause communication; the number of nonzeros of
A'; the lower bounds Lyq), L on the communication cost; the ratio max{Lyq1, L}/(V/D). The values in boldface
in the column of L show the cases where the optimal algorithm Opt2 is applicable; in all these cases, Opt2 attained
the lower bound L.

Matrix p  Vector | vV om n nz(A) [ Lya L | Ratio
RHPentium.-new 4 v 13791 4 12656 26447 3448 5822 1.69
u 5614 2 5614 11228 2807 2807 | 2.00

16 v 9888 10 9215 19103 989 1722 | 2.79

u 18519 16 14469 32988 1158 1941 1.68

64 v 10108 38 7930 18038 266 517 | 3.27

u 26223 64 17317 43540 410 621 1.52

lhr34 4 v 1172 4 1171 2343 293 381 1.30
u 253 2 253 506 127 127 | 2.01

16 v 1069 10 1069 2138 107 234 | 3.50

u 2694 15 2512 5206 180 344 | 2.04

64 v 8372 64 7813 16185 131 270 | 2.06

u 2008 38 1946 3954 53 126 | 4.02

nug30 4 u 56348 4 39413 95761 | 14087 12435 1.00
16 u 136712 16 47237 183949 8545 8823 1.03

64 u 247032 64 51413 298445 3860 5816 1.51

bcsstk32 4 u 1986 4 1968 3954 497 718 1.45
16 v 4872 16 4750 9622 305 741 2.43

u 3106 12 3094 6200 259 456 | 2.35

64 v 11839 64 10759 22598 185 366 | 1.98

u 8001 56 7474 15475 143 378 3.02

tbdlinux 4 v 27800 4 15740 43540 | 6950 9149 1.32
u 3263 2 3263 6526 1632 1632 | 2.00

16 v 44179 16 15871 60050 | 2762 5906 | 2.14

u 30299 14 15194 45493 2165 2900 | 1.53

64 v 76914 64 16261 93175 1202 3407 | 2.83

u 66564 58 21652 88216 1148 1832 | 1.76

PolyDFT 4 v 5352 4 5352 10704 1338 1410 1.05
u 3636 4 3636 7272 909 1135 | 1.25

16 v 19756 16 17571 37327 1235 2274 1.84

u 16405 14 14820 31225 1172 2346 | 2.29

64 v 41625 64 30083 71708 651 1281 1.97

u 37541 64 28604 66145 587 1454 | 248

cagel3 4 v 57054 4 57054 114108 | 14264 19497 1.37
u 58804 4 58804 117608 | 14701 16466 | 1.12

16 v 95032 16 86329 181361 5940 12313 | 2.07

u 160761 16 139624 300385 | 10048 15152 | 1.51

64 v 236759 64 194172 430931 3700 5456 1.47

u 208314 64 172388 380702 3255 5457 1.68
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is deterministic, since it uses the natural vector ordering. To remove any possible dependence
on the input ordering, the columns of A’ were randomly permuted before each run, both
for Mon and LB. This makes the average results more meaningful, but it also enhances the
chances of encountering a good solution in one of the runs. The greedy improvement proce-
dure is terminated if a pass through all the vector components shows that no improvement can
be found any more, or if a preset maximum number of tries is reached, 10n for partitioning
of v and 10m for u. Thus, the maximum number of tries is of the order of the size of the
original matrix A.

The average communication costs given in Table 4.3 show that LB is better than Mon
for 18 out of 38 problem instances, equal to Mon for 12 instances, and worse for 8§ instances.
With greedy improvement (GI) switched on, LB is better for 11 instances, equal for 24, and
worse for 3. All instances with equal performance (with or without GI) correspond to cases
where both algorithms solve the problem to optimality in every run of the algorithm. LB+GI
solves the problem to optimality in every run for 34 instances; Mon+GI does this for 25
instances. We may conclude that LB is superior to Mon. Furthermore, it is clear that GI is
useful, since it improves the average result in most cases for Mon, and in 9 cases for LB.
Although LB is better than Mon, we need not discard the latter: Mon+GI performs better on
average than LB+GI for nug30/4/u, cage13/16/u, and cage13/64/v. This means that it is
worthwhile to try both LB+GI and Mon+GlI, instead of just using the better method LB+GI.
For nug30/4/u, with ratio 1.00 in Table 4.2, Mon+GI managed to achieve an optimal solution
and hence a perfect balance in at least one run.

The best communication costs given in Table 4.3 show that all problems, except nug30/
16/u, can be solved to optimality by one of the methods in at least one of the runs. The cost
8935 of the best solution for nug30/16/u is 1.3% higher than the best bound L = 8823. We
tried to improve the solution in 10,000 additional runs, but only obtained a marginal reduction
of the cost to 8931.

In an actual application, it is possible to perform several runs of the vector partitioner
and keep the best solution, because vector partitioning by our methods is cheap and takes
much less time than the preceding matrix partitioning. Our largest problem cagel13/64/v
took about 9 s for both Mon+GI and LB+GI on the PowerBook computer, whereas the corre-
sponding matrix partitioning took 1123 s on the same machine.

5. Conclusion and future work. We have presented two new algorithms and a new
lower bound for solving the vector partitioning problem for parallel sparse matrix—vector
multiplication. We have concentrated on the input vector, since the partitioning of the output
vector is a similar problem. The first algorithm, Opt2, is optimal and can be applied in the
special case that every matrix column is owned by at most two processors. This situation
occurs in particular for small p, but also if the preceding matrix partitioner has been highly
successful, which often limits the number of processors that own a column. The second
algorithm, LB, is a heuristic that in practice often finds the optimal solution, in particular if
it is post-processed by greedy improvement. The lower bound L helps to steer the use of
the different vector partitioners; in particular, it tells us when we can stop attempts at further
improvement. The lower bound seems sharp, since it could be attained in all practical cases
we tested, except one. Still, we have to realise that practical communication matrices A’ are
very special, since they typically contain many columns with a small number of nonzeros, and
in most cases two nonzeros. For other types of matrices, other heuristics may be needed. The
general vector partitioning problem presented in this paper is NP-complete, which is proven
by Ali Pinar in Appendix A.

A good vector partitioning must have a good balance of the communication load, for in-
stance in iterative linear system solvers. The balance is measured by the maximum amount of
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TABLE 4.3

Communication cost for different vector partitioning methods. The value given is the percentage by which
the cost exceeds the best known lower bound, max{Lye1,L}. A value ‘0’ means exactly 0, and hence an optimal
solution. For each problem, we give the average over 100 runs of the vector partitioning by: Mon, the algorithm im-
plemented in the original Mondriaan package, version 1.0; Mon+Gl, which is Mon followed by greedy improvement;
LB, the local-bound algorithm; LB+GI. Furthermore, we give the best result obtained in the runs by the methods

61

with GI.
Matrix p Vector Average (%) Best (%)
Mon Mon+GI LB LB+GI | Mon+GI LB+GI
RHPentium_new 4 v 0 0 0 0 0 0
u 0 0 0 0 0 0
16 v 0 0 0 0 0 0
u 3.4 0.03 0 0 0 0
64 v 1.5 0.2 0 0 0 0
u 12.6 0.3 0 0 0 0
lhr34 4 v 0 0 4.0 0 0 0
u 0 0 0 0 0 0
16 v 0.004 0 7.9 0 0 0
u 0.03 0 0.1 0 0 0
64 v 0 0 0 0 0 0
u 0.02 0 3.0 0 0 0
nug30 4 u 0.003 0.003 0.6 0.6 0 0.6
16 u 15.7 7.6 8.4 1.4 7.2 1.3
64 u 32.7 12.0 0 0 11.6 0
bcsstk32 4 u 0 0 0 0 0 0
16 v 0.001 0 0 0 0 0
u 0.02 0 0 0 0 0
64 v 0.006 0 0.7 0 0 0
u 0.07 0 0 0 0 0
tbdlinux 4 v 31.8 0 0 0 0 0
u 0 0 0 0 0 0
16 v 34.9 5.6 0 0 5.3 0
u 6.0 1.7 0 0 1.5 0
64 v 22.5 7.3 0 0 6.8 0
u 30.0 9.8 0.09 0 9.0 0
PolyDFT 4 v 0 0 0 0 0 0
u 0 0 0 0 0 0
16 v 1.0 0 0 0 0 0
u 0.003 0 0 0 0 0
64 v 14.1 0.8 0 0 0.5 0
u 3.7 0.4 0 0 0.1 0
cagel3 4 v 0 0 0 0 0 0
u 0 0 0 0 0 0
16 v 0 0 0 0 0 0
u 0.001 0 3.0 0.4 0 0.4
64 v 0.07 0.02 3.7 0.9 0 0.8
u 3.0 0 0 0 0 0
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communication per processor, which is an important metric, perhaps second only to the met-
ric of total communication volume. As communication will become more important when
applications scale up to thousands of processors, balancing communication will become cru-
cial. This gives rise to a class of new and interesting optimisation problems.

A promising avenue of research may be trying to generalise computation balancing meth-
ods, such as by Pinar and Hendrickson [18], so that they can be applied to communication
balancing as well. Here, it is crucial that both sends and receives are balanced; to complicate
matters, these two objectives depend on each other. Another issue is that communication
tasks can vary in size; for the algorithm in [18], this would mean that the assumption of unit
task size must be dropped.

Our problem originated in parallel sparse matrix—vector multiplication, but it has a wider
range of applicability, within the field of parallel computing and beyond. One way of viewing
the problem is as follows. We have to distribute items among a group of people. For each
item, a specific subgroup is interested in owning it. One member of the subgroup wins and
becomes the owner. This winner has to compensate all the losers, each with the same amount
of money, say 1 dollar or euro. The problem is to distribute the items such that the maximum
amount of money any person has to pay or receive is minimised. (Note that this problem is
not about minimising the net amount of money paid or received.)

The problem for the special case that could be solved optimally by algorithm Opt2 may
also have wider application, for instance in parallel molecular dynamics simulations. Because
of Newton’s Third Law of Motion, each 2-atom force at the boundary between two processors
can be computed by either of the processors involved. The processor that computes the force
must send the result to the other processor, which must receive it. Algorithm Opt2 can be
used to balance such communication obligations.

Several open research questions remain, such as: can the general vector partitioning
problem be solved optimally under less restrictive assumptions? Can the methods be gen-
eralised to the situation where the vector components have communication weights, so that
sending component v; to a processor costs w; time units; this occurs sometimes in the context
of hypergraph partitioning for circuit simulation. Can we extend the methods to the situation,
not uncommon for square matrices, where we require the same partitioning for the input and
output vectors? If the matrix is symmetric and has been partitioned symmetrically, this is
easy, but otherwise it is a two-objective optimisation problem, which is much harder to solve.
(The original Mondriaan package contains an option distr(u) = distr(v), but often the com-
munication load is out of balance for this option, because there is not much choice in the
assignment of vector components to processors.)

The existence of a lower bound L > V//p points to unavoidable imbalance in the commu-
nication for a given matrix partitioning. An optimal solution to the vector partitioning prob-
lem may still have imperfect balance. Another indicator of such imbalance iS pcomm < P,
meaning that not all processors participate in the communication. This leads to a bound
Lyoi = [V/peomm| > V/p. To reduce this imbalance, we must modify the preceding matrix
partitioning. The challenge is to do this without increasing the communication volume. We
are currently investigating lower-bound based tie-breaking in the matrix partitioner as one
means of achieving perfect communication balance.

Appendix. Vector partitioning is NP-complete. Proof provided by Ali Pinar, Lawrence
Berkeley National Laboratory.

We can formulate the vector partitioning problem as the following decision problem,
which we call the Column Assignment problem.
INSTANCE: Positive integers p,n, a p x n matrix A with elements a;; € {0,1} and with
Aj=Hi:0<i<pAay =1} >2forj=0,...,n—1,and a positive integer maximum
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F1G. A.1. 10 X 11 matrix of column assignment problem obtained by reducing the bin packing problem with
values |U| = 3, s(uo) = 3, s(u1) = 3, s(u2) = 5, C = 4, and P = 2. Zero matrix elements are represented by
a dot.

communication load C.

QUESTION: Does there exist an assignment ¢ : {0,...,n — 1} — {0,...,p — 1} of the
columns of the matrix such that: (i) ag(;),; = 1, for j = 0,...,n — 1; (ii) Nsena(i) =
Zj: ¢>(j):i()‘j —1) < C,fori=0,...,p—1;and (iii) Nrecy(i) = [{j: 0< j<n A a5 =
1A 6(j) #i}| < C?

The column assignment problem can be related to the Bin Packing problem, defined as
follows by Garey and Johnson [14].

INSTANCE: A finite set U of items, a positive integer size s(u) for each item u € U, a
positive integer bin capacity C, and a positive integer P.
QUESTION: Does there exist a partition of U into disjoint sets Uy, Uy, ..., Up—_1 such that
the sum of the sizes of the items in each U; is at most C'?

Bin packing is NP-complete in the strong sense, which means that there is no pseudo-
polynomial time solution unless P=NP [14].

THEOREM A.l. The column assignment problem is NP-complete.

Proof. We will prove the NP-completeness of the column assignment problem by reduc-
tion from the bin packing problem. Our reduction is not polynomial, but pseudo-polynomial.
The reduction still proves NP-completeness, since the bin packing problem is NP-complete
in the strong sense. Observe that for any instance of the bin packing problem, multiplying the
size of each item and the bound C' by a constant will not change the original problem. Let
¢ = [max{P, |U|}/umin], Where umin is the minimum size among items in U. Multiply
each size s(u), Umin, and C by c. In the rest of the proof, we assume that s(u), Umin, and C
denote the numbers after this multiplication, so that %, > max{P, |U|}. Without loss of
generality, we assume that C' > U4, and Ui, > 3.

Given an instance of the bin packing problem, the column assignment problem will have
p = P+ Q processors and n = |U| + Q columns, where Q = > _; s(u) — |U|(P —1).
The first P processors correspond to the bins of the bin packing problem, and the remaining
@ are auxiliary processors. Similarly, the first |IU| columns correspond to items in U and the
remaining () are auxiliary columns.

An A

Let A = ( Aoy Ag
ter reduction, where the P x |U| submatrix A;; is defined by the bin processors and item
columns, and the () x @ submatrix Ags is defined by the auxiliary processors and auxiliary
items. The matrix A is defined as follows and is illustrated by Fig. A.1.

) be the p X n matrix of the column assignment problem af-
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e All elements of Ay; are 1, which means that each column representing an item can
be assigned to any processor representing a bin.

e A5 = 0, which means that auxiliary columns cannot be assigned to a processor
representing a bin.

e We define As5 such that each row and each column in A5 has C nonzeros. This
can be achieved by assigning nonzeros to the C' positions on and below the main
diagonal in each column (continuing with the first row, if the last row is reached). In
other words, a;; = 1in Ay fori = j,(j +1) mod@,...,(j +C —1)mod Q. All
other elements are 0. We assume without loss of generality that ) > C. (Otherwise,
@ can be suitably enlarged.)

e We define Ao; such that each row has a single nonzero, and such that the ith column,
which represents the ith item w;, has s(u;) — P + 1 nonzeros. This can be achieved
by putting nonzeros in the first s(ug) — P + 1 rows and the first column, the next
s(u1) — P + 1 rows and the second column, and so on. Altogether this requires

Z (s(u;) —P+1) = Z s(u;) — |[U|(P — 1) = @ rows, which are exactly the
u; €U u; €U
auxiliary rows.
We claim that there is a solution to the reduced column assignment problem with no
processor loaded more than C, if and only if there is a solution to the bin packing problem.
The proof is based on the following observations on the reduced column assignment problem.

1. Each auxiliary column has to be assigned to an auxiliary processor. This will load
every auxiliary processor with C' — 1 sends and C' — 1 receives for an auxiliary
column. No auxiliary processor can obtain two (or more) auxiliary columns, since
the number of sends 2C' — 2 would then exceed C. Since each of the remaining
columns has at least u.,;, + 1 > 4 nonzeros, representing at least three sends, they
cannot be assigned to an auxiliary processor without exceeding C'. Therefore, each
column representing an item needs to be assigned to a processor representing a bin.

2. The receiving load of every processor that represents a bin is at most |U|. Recall
that |U| < C because of the initial scaling operation. Every auxiliary processor has
a receiving load of C, including one receive operation for the columns representing
an item. Whether the communication load of a processor satisfies the bound C is
thus solely determined by its sending load.

3. Each column representing an item u has s(u) + 1 nonzeros and hence assigns s(u)
send operations to its owner.

By the first observation, each item must be assigned to a bin for the communication load
to remain below C. By the second observation, distribution of remaining receives does not
affect the feasibility of the solution. Only the assignment of sends is important. By the final
observation, each column representing an item assigns a number of sends equal to the size
of the item to its processor (bin). By construction, any item-column can be assigned to any
bin-processor. As a result, the problem reduces to the bin packing problem.

Based on these observations, there will be a solution to the column assignment problem,
if and only if there is a solution to the bin packing problem. d
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