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Abstract. We consider a mathematical function that is implemented in a high-level programming language such
as C or Fortran. This function is assumed to be differentiable in some neighborhood of a set of input arguments. For
available local partial derivatives of the arithmetic operators and intrinsic functions provided by the programming
language, the Jacobian of the function at the given arguments can be accumulated by using the chain rule. This
technique is known as automatic differentiation of numerical programs.

Under the above assumptions the values of the local partial derivatives are well defined for given values of the
inputs. A code for accumulating the Jacobian matrix that is based on the chain rule takes these partial derivatives
as input and computes the nonzero entries of the Jacobian using only scalar multiplications and additions. The
exploitation of the associativity of the chain rule or, equivalently, the algebraic properties of the corresponding
field (R, *,+) — in particular, associativity of the multiplication and distributivity — to minimize the number of
multiplications leads to a combinatorial optimization problem that is widely conjectured to be NP-hard. Several
heuristics have been developed for its approximate solution. Their efficiency always depends on the total number of
partial derivatives.

Linearities in the function lead to constant partial derivatives that do not depend on the input values. We present
a specialized constant folding algorithm to decrease the size of the combinatorial problem in order to increase the
efficiency of heuristics for its solution. Moreover, we show that this algorithm preserves optimality in the sense that
an optimal solution for the reduced problem yields an objective value no worse than that of an optimal solution for
the original problem.
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1. The Problem. A given vector function
f(z):R" = R™

is implemented in a numerical program in some higher programming language such as C
or Fortran. For the purpose of automatic differentiation (AD) [9], the numerical programs
are represented by directed acyclic graphs (DAG) with elemental partial derivatives as edge
labels. AD provides a variety of elimination techniques that allow propagation of derivative
information. The choice of the technique is subject to the structure of f and application-
dependent optimization criteria.

Linear parts of the function yield constant partial derivatives. Ignoring this fact leads to
derivative code that performs operations at runtime that could potentially be done at compile-
time. Relying on the constant-folding capabilities [ 13] of the compiler during the compilation
of the derivative code may not be sufficient. Consider, for example, the statement

g = ec1-(C2-sin(a:)+C3-cos(y))
Without taking into account that ¢1, ca, and c3 are constants the elimination techniques dis-
cussed in Section 2 combined with the Lowest-Markowitz-Degree heuristic [11] generate the
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following code for the computation of the local gradient.
h=c¢ -z

For the compiler of this code to recognize that p; = ¢; - ¢2 and pa = ¢; - ¢3 can be computed
at compile-time followed by the generation of code for computing

0z 0z .

Tk - cos(z); 3y —z - py - sin(y)
would require inlining of A in the original derivative code. To our knowledge general-purpose
compilers do not perform this kind of extended static constant folding analysis. Exploitation
of the domain-specific knowledge allows us to generate the optimal code directly.

The second and more significant motivation for the research that led to this paper is the
complexity of static methods for computing efficient elimination sequences. Some of them
are quadratic in the size of the directed acyclic computational graph of f. Their efficiency
(and often their effectiveness too) improves with a decreasing size of the graph.

Generally the code for f contains control flow (loops, branches) that does not allow the
representation with a single DAG. Locally, for example within a basic block, a representative
DAG can be constructed. For the purpose of this paper we assume a scenario where the accu-
mulation of a local Jacobian is beneficial. In practical terms, we may encounter a frequently
executed innermost loop body that has an evaluation cost that is relatively high compared to
the cost of storing a local Jacobian. We find a highly efficient procedure to calculate the local
Jacobians, which are then used in a fashion determined by the context.

The paper is structured as follows. Section 2 presents some essential background in-
formation. Section 3 represents the heart of the paper. We present new algorithms for the
optimality-preserving elimination of linearities in Jacobian accumulation by constant folding.
Numerical results are presented in Section 4 with the help of three case studies. Section 5
concludes the paper with a discussion of how the new algorithms are used in practice.

2. Background. In order to understand the main contribution of this paper we find it
useful to present some background information on the context of preaccumulation of local
Jacobians and the corresponding graph modification techniques. The main target application
is the automatic generation of efficient tangent-linear and adjoint codes by automatic differ-
entiation (AD). As in any static source-transformation approach the objective is to minimize
the amount of computational work that has to be done at run-time by doing as much as pos-
sible at compile-time. For a formal introduction to the mathematical principles underlying
AD, we refer the reader to [9, 20, 7, 4, 6]. A collection of links to ongoing research and tool
development projects can be found on the AD community’s website www . autodiff.org.

2.1. Preaccumulation of Local Jacobians. Conceptually, AD is based on a decompo-
sition of the evaluation routine for f into a three-address code' of the form

2.1 v = @;(vi,v5)

fork=1,...,.p+mandi,j =1—mn,...,p, k > i,j. The elemental functions ¢y, k =
1,...,p+ m, are assumed to have jointly continuous partial derivatives in a neighborhood of
the current argument. The n independent variables z1, . .., x, correspond to vi_,,...,vg €
X. We consider the computation of the first derivative of the dependent variables y1, ..., ym

'We assume that there are at most binary arithmetic operators and intrinsic functions. The generalization is
trivial.
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represented by m variables vpy1,...,Vp+m € Y with respect to the independents. The
resulting m X n matrix is known as the Jacobian matrix of f. For notational simplicity and
without loss of generality we assume that the dependent variables are mutually independent.
This situation can always be reached by introducing auxiliary assignments.

T x z=(f""y
T T
()T
Y1 U1
Z2 z3 Zo .i'g
(7" (Fp)"
Y2 Y3 P 73
T4 T4
(i)
Ya ’ Ya
y=f(x) ]
(a) (b) (c)

FIG. 2.1. Control flow graph of (a) original code, (b) tangent linear model, (c) adjoint model

If y = f(x) is computed by a sequence of basic blocks Fy, ..., F; and assuming the
availability of the local Jacobians F7, ..., F} the forward mode of AD computes

(2.2) yj:F]fa':j forj=1,...,1
Reverse mode AD propagates adjoints backward through the program flow as
(2.3) z; =(F)"g; forj=1,...,1 ,

where z; = (a:f 2i=1,...,n;) and y; = (yf 14 =1,...,m; ) are the inputs and outputs
of F}, respectively. Figure 2.1 shows the resulting control flow graphs for a simple example
involving a branch containing a loop. As pointed out in [ 18], the cost of the computation of
the Jacobian of f is proportional to the number of edges |E| in the DAG (see next section).
Preaccumulation aims to reduce this number substantially to a number less than or equal to
njm; << |E| at a comparatively low cost. Hence the propagation of bundles of directional
derivatives (2.2) or adjoints (2.3) by vector forward or reverse mode [9], respectively, can

become significantly more efficient.

2.2. Elimination Methods. Let f represent a basic block that is subject to preaccumu-
lation as outlined in the previous section. The DAG G = (V, E) is induced by the code for f
[1]. Following the numbering in the previous section we have with the intermediate variables
v1,...,Up € Z the DAG’s vertex set V. = X U Z UY. The numbering is subject to the
dependence relation <, where v; < v; (and vy, < vj asin (2.1)),and v; < v; = ¢ < j. In
Figure 2.2 (a) we show the DAG for the code list [9]

v1 = v_1 + vg; v2 = sin(vg); vs = v1 + V2; Vg = V1 * U3;

2.4
( ) Vy = \/1)_3; Vg = COS(’U4); V7 = —Us
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F1G. 2.2. (a) Computational graph G for (2.4), (b) elimination of vertex 3 from G, (c) front elimination of
edge (1, 3) from G, (d) back elimination of edge (3, 4) from G

The intrinsics and operators provided by the underlying programming language constitute
the possible elemental operations. Edges (i,j) € E are labeled with partial derivatives
Cj; = %ﬁf € R of the elemental operations associated with vertex j with respect to the
corresponding arguments. For instance, in the example we have cgqs = — sin(vy).

Summarizing results from [11] and [18] we are looking for an elimination sequence o
that transforms G into a bipartite graph o(G) whose edge labels are the nonzero elements of
f'. The graph-based elimination steps are categorized in vertex, edge, and face eliminations.
In G avertex j € V is eliminated by connecting its predecessors with its successors. An edge
(i,k) with 4 < j and j < k is labeled with cg; + cg; * ¢j; if it existed before the elimination
of j. We say that absorption takes place. Otherwise, (4, k) is generated as fill-in and labeled
with ¢ * ¢j; The vertex j is removed from G together with all incident edges. Figure 2.2 (b)
shows the result of eliminating vertex 3 from the graph in Figure 2.2 (a).

An edge (i, 7) is front eliminated by connecting 1 with all successors of j, followed by
removing (¢, j) [15]. The corresponding structural modifications of the DAG in Figure 2.2 (a)
are shown in Figure 2.2 (c) for front elimination of (1, 3). The new edge labels are given as
well. Front elimination of edges eventually leads to intermediate vertices in G becoming
isolated; that is, these vertices no longer have predecessors. Isolated vertices are simply
removed from G together with all incident edges.

Back elimination of an edge (i, j) € E results in connecting all predecessors of ¢ with j
[15]. The edge (3, j) itself is removed from G. The back elimination of (3, 4) from the graph
in Figure 2.2 (a) is illustrated in Figure 2.2 (d). Again, vertices can become isolated as a result
of edge-back elimination because they no longer have successors. Such vertices are removed
from G.

Numerically the elimination is the application of the chain rule, that is, a sequence of fused-
multiply-add (fma) operations

(2.5) Cki = Ckj * Cj; (+cri) < optional

where the additions take place in the case of absorption or fill-in is created as described above.
Aside from special cases a single vertex or edge elimination will result in more than one fma.

Face elimination was introduced as the elimination operation with the finest granularity
of exactly one multiplication’ per elimination step. Vertex and edge elimination steps have
an interpretation in terms of vertices and edges of G, whereas face elimination is performed

2 Additions are not necessarily directly coupled.
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on the corresponding directed line graph G. Following [ 18], we define the directed line graph
G = (V,€) corresponding to G = (V, E) as follows:

V={: i,7) GE}U{:'U]‘EX}U{:'IMEY} and
&= K k) e E}

): UJEX/\ (4, k) € E}
):v; €Y A(i,)) € E}

—~

That is, we add a source vertex (+) and a sink vertex (=) to G’ connecting all independents to
and all dependents to (5). G has a vertex v € V for each edge in the extended G, and G has an
edge e € &£ for each pair of adjacent edges in G. Figure 2.3 gives an example of constructing
the directed line graph in (b) from the graph in (a). All intermediate vertices eV
inherit the labels cj;. In order to formalize face elimination, it is advantageous to move away
from the double-index notation and use one that is based on a topological enumeration of
the edges in G. Hence, G = (V, &) becomes a DAG with )V C IN and £ C IN x IN and
certain special properties. The set of all predecessors of j € V is denoted as P;. Similarly,
S; denotes the set of its successors in G. A vertex j € V is called isolated if either P; = () or
S; = (). Face elimination is defined in [18] between two incident intermediate vertices ¢ and
7 in G as follows:
1. If there exists a vertex k € V such that P, = P; and S = Sj, then setcy, = cp+cjc;
(absorption); else V = V U {k'} with a new vertex k' such that Py = P; and
Sy = 8 (fill-in) and labeled with ¢ = ¢jc;.
2. Remove (i, ) from £.
3. Remove ¢ € V if it is isolated. Otherwise, if there exists a vertex ¢’ € V such that
Py = P; and S; = S;, then
e setc; = ¢; + ¢y (merge);
e remove i’
4. Repeat Step 3 forj € V.
Figure 2.3 (c) shows the elimination of (i,j) € &, where i = @ and j = . A
complete face elimination sequence o yields a tripartite directed line graph o¢(G) that can
be transformed back into the bipartite graph representing the Jacobian f'.

In [18] it was shown that vertex and edge eliminations can be interpreted as groups of face
eliminations and that face elimination sequences can undercut the number of multiplications
of an optimal vertex or edge elimination sequence. We note that any G can be transformed
into the corresponding G but that a back transformation generally is not possible once face
elimination steps have been applied. Therefore, face eliminations cannot precede vertex and
edge eliminations.

A practical measure for the cost of computing f' = o(G) is the count of multiplications
#. of edge labels. In Section 5 we discuss other options for measures of the computational
cost.

3. Linearities and Constant Folding. The edge label multiplications can be catego-
rized into trivial, constant, and variable multiplications ( *;, *., *,) based on the type of
operands as shown in Figure 3.1. For a repeated Jacobian computation (that is, computations
for distinct x), only the *, have to be re-executed. The *; can be transformed into toggling
the sign, and *. can be executed at compile time in constant propagation fashion. Therefore
we take only # ., as our cost measure. No known algorithm produces an optimal elimination
sequence for a general DAG with polynomial complexity. To approximate an optimal & ¢(G)
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(a) (b) (c)

FI1G. 2.3. (a) G extended, (b) G overlaid, (c) face elimination

such that
#4,(07(G)) = min {#., (o)} ,
o7 (9)
we can use heuristics [19].

Ckj

constant
variable

ji
+1 *g
constant:  Cj; = const | *
variable: cji:cji(w) kg Ky

[¢]
<

*
o+

*
o+

trivial: Cji

*
*
S

*
e

FIG. 3.1. Categories of multiplications cyj * cj;

One can argue that code optimization via constant propagation and constant folding algo-
rithms built into compilers is already capable of optimizing *; and %, away. Therefore, an
AD source transformation tool would not necessarily have to be concerned with the explicit
removal of the nonvariable multiplications. However, we need to be concerned with the cost
of the heuristic approximation of &, which makes any reduction of the initial problem size by
constant folding desirable, even though the approximation time is absorbed into compile time,
not run time. For sufficiently large problems this cost is a critical hurdle, as is particularly
evident for face elimination. The directed line graph G is a much larger data structure than G,
which translates into a vast search space for any face elimination heuristic. A heuristic that is
aware of the edge label categories and maintains those correctly for fill-ins and updates is even
more complex and costly. Therefore, a viable heuristic may not distinguish label categories,
and one can easily construct cases where #.(01) = #.(02) but #., (61) < #+«,(02). Con-
stant folding can shrink the size of G (and G) significantly for codes with large linear portions.
We concentrate on the following issues:
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1. Reduction of the problem size through constant folding in G

2. Constant folding and preservation of optimality

3. Implementation
As a starting point we consider a transformation of G = (V, E) using a sequence o, of
constant edge eliminations,’ that is, #., (o, (G)) = 0. This yields G' = (V', E') = 0..(G)
such that |E'| < |E|, which reduces the search space. An optimality preserving o, satisfies

#a, (07(9") # #4.(6£(9))-

3.1. Single Expression Use Graphs. Similarly to Section 2.2 we denote the set of direct
successors of a vertex v; by S; = {v;|(i,j) € E}; the set of direct predecessors of v;
is denoted by P; = {v;|(é,j) € E}. G has the single expression use (seu) property if
|S;| = 1 Vuv; € Z. This is true, for instance, for any set of right-hand sides of assignments
that can be computed independently from each other. For such G there exists a polynomial
algorithm that constructs an optimal elimination sequence ¢ s first introduced in [17]. It uses
the notion of an X — v separating set defined as a set of vertices whose removal from G
satisfies the condition that there be no path from any vertex in X to v. The separating set may
contain a subset of X.

ALGORITHM 1 (optimal seu elimination). For a given seu graph G perform vertex
elimination steps in the following order, Vv;,i = 1,...,p:

(1) Find a minimal X — v; separating set P; .

(2) If |P;| < |P;| perform vertex elimination of all vertices {vj : v; < v; A vg <

vV, € P;} reverse ordered by index j.
After these steps have been performed for all v;,

(3) perform vertex elimination of all remaining vertices reverse ordered by index j.

If G is a tree, then this algorithm yields the reverse mode of AD. Because of the seu property
there is no advantage to be gained from face elimination over edge or vertex elimination; that
is, 6 can be written as 6.. The construction of &, attains the lower bound of operations

3) (4)

FIG. 3.2. Four steps in Algorithm 2; labels ¢ are constant, and c(x) are variable

required for each v € Z which can be defined by the size of the smallest X — v separating
vertex sets. The following algorithm creates a o, that reduces (steps 1-3) or maintains (step
4) the edge count; see also Figure 3.2.

ALGORITHM 2 (seu constant folding). For a given G create o, with the following steps
in order:

(1) Back eliminate all trivial edges.

(2) Back eliminate (j, k) if (j, k) and (i, j) are constant Vi € P;.

(3) Front eliminate all trivial edges (i, j) if | Pj| = 1

(4) Front eliminate all trivial edges (i, j) if S; CY.
One can easily see that none of the steps suggested here increases the minimal separating
vertex set size and therefore o, _ is optimality preserving. Note that this may leave trivial and

3 View a vertex elimination as a group of edge eliminations.
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(a) (b)

F1G. 3.3. (a) and (b) situations not covered by Algorithm 2, (c) choosing a X — v separating set

constant edges in G’ that cannot be eliminated with any of the steps given in this algorithm;
see Figure 3.3 (a,b). While step 4 does not reduce the edge count, it is the result of considering
the possibility of executing elimination steps that necessarily have to be part of the optimal
elimination sequence. The application of the constant folding to seu graphs is a theoretical
exercise as the optimal solution is constructed and does not require a search space reduction.
However, Figure 3.3 (c) illustrates a case not covered by the purely structural information used
in the construction of the optimal elimination sequence. Considering step 1 in Algorithm |
there is a choice in picking a minimal separating set that may lead to a suboptimal elimination
sequence. The X —v separating set indicated by the gray filled vertices in Figure 3.3 (c) yields

t1 =bxd;to =axc;tg =axty;ty = 1xtajty =to + 145t = 1% to
as part of the computation, whereas picking all independents as separating set yields
t1 =bxdjto =1xcitz3 =1xc+ty;ty =axts;ty =axts

If, however, a, b, d are all constant and c is not, we have two versus one constant multiplica-
tions. Fortunately, an addition of minimal vertices is the only case exhibiting such a problem,
and it can be overcome simply by choosing the P; such that it leaves the elimination of the
vertex in question for step 3.

3.2. Directed Acyclic Graphs. In Section 3 we mentioned the lack of an algorithm that
exactly determines 6(G) with polynomial complexity. Algorithm 2 was motivated by the
construction of 6 in Algorithm 1 and the condition |E’| < |E|. The latter is the actual mo-
tivation here as the implied search space reduction permits computationally more expensive
heuristics. Between seu graphs on the one side and generic DAGs on the other side there
are currently no other, more generic structural properties of DAGs known to imply anything
about the optimal elimination sequences. Therefore, a plausible starting point for generic
DAGs is to require the seu property for subgraphs. We hypothesize that we preserve optimal-
ity through affecting the respective elimination subsequences only.

ALGORITHM 3 (DAG constant folding). For a given G do the following steps in order:

(1) IfVi € PNk €S : cj;,crj are constant,

then eliminate® j if |S;| = 1 or |Pj| = 1.
(2a) Back eliminate all trivial edges (i, 7) if |S;| = 1.
(2b) Front eliminate all trivial edges (i, j) if | P;| = 1.

4 interpreted as edge-front or edge-back elimination, respectively
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Section 2.2 mentions the potential of face elimination in the corresponding directed line graph
to undercut the operations count of vertex and edge eliminations. Therefore, we have to prove
optimality preservation in terms of face elimination sequences.

PROPOSITION 1. Back elimination of trivial edges with |S;| = 1 (step 2a) preserves
optimality.

Proof. Assume c¢;; = 1, and consider an optimal face elimination sequence o for G. We
can construct ¢’ for G’ the directed line graph for G' = G — (i, j) with an iteration over o.
In each step k we construct a subsequence o, and a remainder o1. Let r denote the vertex

ingG.
initialize: k=1, o1:=0, G1: =G, G :=¢
while oy, # 0 split oy, into (X, (p, q), Ok+1),
where (p, q) is the first face in o, withp or ¢ € P. U S,

o, =X

if(q # ) A (p £ 7) then o}, = o, U (p,) )
G'rt1 :=01,(G'%), Gry1:=(X,(p,q))(Gr) (apply eliminations)
k=k+1

There are three scenarios for (*).
1. If ¢ € S, (p # r is implied), then P, and S, are identical between Gy, and G;,. That
means the potential fill-ins are identical Fg, (p,q) = Fg; (p,q) = ({v},{(v,?)[t €
Sy} U{(s,v)|s € P,}); see Figure 3.4. Therefore, this case does not induce any
further distinction between o and o”.

FIG. 3.4. Scenario 1: a subgraph of G overlaid over the corresponding subgraph of G before (left) and after
(right) face elimination of (p, q)

2. If ¢ € P,, then there may be a fill-in Fg, (p,q) = ({v},{(v,7)} U {(s,v)|s €
Pp}), which differs from Fg: (p,q) = ({v}, {(v,t)|t € S;} U{(s,v)[s € F,}). A
subsequent elimination of (v, r) will be skipped according to the condition in (*).
This coincides with the fact that the resulting edges are identical to the (v,t) that
have already been created in G'f41; see Figure 3.5. The sets {(s,v)|s € P,} are
identical, and subsequent eliminations of the (s, v) fall under (*).

3. The scenario of p € S,. is symmetric to g € P,.

The condition in (*) excludes some elimination steps (p, g). For the entire elimination se-
quence o' = |J o}, we therefore have |o'| £ |o|. O
k

The proof for the respective statement for | P;| = 1 (step 2b) follows from symmetry.
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Gr — (p,9) Gr — (p,9)

FIG. 3.5. Scenario 2: face elimination before (left pair) and after (right pair) constant folding

PROPOSITION 2. Vertex elimination of j with (i,j) and (j, k) constant for all i € P;
and k € Sj and (|Sj| = 1V |P;| = 1) preserves optimality (step 1)

Proof. Assume the case with |S;| = 1. We follow the same argument as the proof for
Proposition 1 where we skip all elimination steps (p, ¢) for which p = @ orq = @
|P;] = 1 follows from symmetry. O
All steps in Algorithm 3 reduce the edge count. Similarly to Algorithm 2 trivial and constant
edges are left in the graph, and we can look for further reductions by adding the following
steps to Algorithm 3:

(3a) Back eliminate all trivial edges (i, j) if | P;| = 1.

(3b) Front eliminate all trivial edges (4, j) if |S;| = 1.
This implies |P;| > 1 and |S;] > 1. Otherwise we would have used steps 2a or 2b, respec-
tively.

PROPOSITION 3. Front eliminating all trivial edges with |S;| = 1 preserves optimality
(step 3b).

Proof. Again we use the same approach of skipping all elimination steps (p, ¢) with

g g

FI1G. 3.6. Trivial labels c;; = £1
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p= orq= ; see Figure 3.6. O

Note that there is no reduction in the edge count unless (i, k) € G,S; = {k}, that is, we
have absorption. In either case optimality is preserved. There are, however, two issues. First,
even with absorption we have to account for the extra addition cx; = cg; + cg; when either
Ckj or c; or both are variable; see also Section 5. Second, without absorption we duplicate
the potentially variable label c;; by removing the trivial label c;j;. This is contrary to the idea
of preserving scarcity mentioned in Section 5. The proof for step 3a follows from symmetry.
Similar to steps 3a/3b we can also extend for constant labels with the following two steps:
(4a) Back eliminate (4, §) if | P;| = 1, P; = {h} and (h, ), (i, j) constant.
(4b) Front eliminate (i, j) if |S;| = 1, S; = {k} and (¢, j), (j, k) constant.
Considering step 4b we observe that in case of absorption there will be no extra addition as
long as (4, k) is constant. Even without absorption these steps preserve scarcity as there is no
variable fill-in.

3.3. Constant Face Elimination. The suggested Algorithm 3 even with the extension
steps 3 and 4 does not preeliminate all constant or trivial labels from G. Since we already
pointed to the advantage face elimination may yield over vertex and edge elimination, we
should consider the possibility of preeliminating constant faces. The search space for the
directed line graph, is vastly larger than that for vertex or edge elimination. Still, the edge
count in G, that is, the number of intermediate vertices in G is a reasonable, although crude,
indicator for the search space size.

Any elimination of an (7, j) in G where | S;| = 1 or | P;| = 1 leads to the removal of i or j,
respectively. It can be written as an edge elimination and would therefore already be covered
by Algorithm 3. We consider scenarios that cannot be interpreted as edge eliminations. The
least amount of structural change is therefore the removal of an edge in G by face elimination
with absorption. That is, we consider an edge (7, j) with constant labels on 4 and j that has
an absorbing vertex k (that is, P, = P; and S, = §;) and k has a constant label as well.
Consider the example in Figure 2.3. If both c3; and c43 are constant and none of the other
edge labels are, then the previously introduced algorithm would not fold these two constants.
One might expect that, similarly to the DAG, it was safe to preeliminate this face in the
directed line graph because the result is absorbed in c4; and we basically just remove an edge
from G at no cost. Somewhat surprising it turns out that such an edge removal may actually
increase elimination cost, as the example in Figure 3.7 illustrates. The original graph has an
optimal elimination sequence of length 3, for instance, ((2,4), (6, 8), (3, 7)). Now we assume
that both 3 and 7 have constant labels, and we eliminate (3, 7) and absorb into 5, thereby just
removing (3,7). One can perform an exhaustive search and see that there is no complete
elimination sequence in the resulting graph G — (3, 7) with a length < 3.

An attempt to prove the preservation of optimality of a face elimination step that modifies
G to G' would assume an optimal elimination sequence for G and then try to show that this
elimination sequence contains a subsequence that is complete for G'. This requires that all
fill-in generated in G’ is a subset of the fill-in generated in G. With the current rule for merging
of vertices in the face elimination definition, this is not necessarily the case once a single edge
is removed.

4. Case Studies. The algorithms proposed in the previous section have been applied
successfully to a large number of test problems. In Section 4.1 we introduce the format of
the output graph generated by OpenAD’ and we illustrate the effect of constant folding at
the level of local partial derivatives. Two larger test cases are considered in Section 4.2 and
Section 4.3. The linearized computational graphs are obtained by applying the flattening

S www.mcs.anl.gov/OpenAD
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FIG. 3.7. Removing (3, 7) by constant face elimination
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FIG. 4.1. Oceanographic Box Model

1

algorithms from [25] to the abstract internal representation of scalar assignments within Ope-
nAD. The size of the graphs in terms of the number of intermediate vertices can often be
reduced by up to 50% while decreasing the number of edges by about one third.

4.1. Oceanographic Box Model. The following single assignment is taken from a sim-
plified box model [24] of the so-called ’thermohaline’ circulation. This refers to the contri-
bution to the ocean circulation which is driven by density gradients and thus controlled by
temperature and salinity properties and its associated fluxes [5].

dF1dDt (1)= ( extForLoc(l)+gammaLoc* (fldStar (1)-f1ldNow(1l))*vol(1l)

+

uVelLoc* (f1dNow (3)-f1dNow (1)) )

/ vol(1l)

A representation of the linearized DAG is shown in Figure 4.1. OpenAD uses the graphviz
utility® to plot graphical representations of its internal representation. In the context of elim-
inating linearities the edge label '+’ denotes local partial derivatives ¢j; = £1. All the
remaining variable ¢;; do not have any label. Incidentally none of the examples used in this
section exhibit any non trivial constant edge labels at the initial stage. In Figure 4.1, the
diamond shaped vertex corresponds to the addition w = u + v of the two subexpressions
from the first and third line of the assignment statement above. According to Algorithm 2

6www.graphviz.org
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FIG. 4.2. Roe Flux

both predecessors of this vertex can be eliminated at compile time. They are blackened in
Figure 4.1. For most applications the rules in Algorithm 2 are responsible for nearly all the
reductions that are possible.

4.2. Roe Flux. Our second test problem defines the numerical fluxes of mass, energy,
and momentum across a cell face in a finite volume compressible flow calculation. Roe’s
numerical flux [21] takes n = 10 inputs describing the flow on either side of a cell. It returns
m = 5 outputs for the numerical flux. The 5 x 10 Jacobian is computed a large number of
times during in the solution process justifying additional effort to optimize the accumulation
procedure (see, for example, [22, 23, 8]).
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F1G. 4.3. Flow in a Driven Cavity

The biggest subgraph that could be obtained by the currently implemented version of
the static flattening algorithm contains 131 vertices (20 minimal, 5 maximal). A graphical
representation is shown in Figure 4.2. When relating the code fragment

mu = alpl5p / cave+nxhat * alp2 + nyhat * alp3 + nzhat * alp4

dssl = mu * thtave+ (cave * gmlinv * alpl5p - uhat * alplSm)

+ utilde * alp2 + vtilde * alp3 + wtilde * alp4

dss2 = mu

dss3 = mu * uave-nxhat * alpl5m + nzhat * alp3 - nyhat * alp4

dss4 = mu * vave-nyhat * alplbm + nxhat * alp4 - nzhat * alp2

dss5 = mu * wave-nzhat * alpl5m + nyhat * alp2 - nxhat * alp3
to the graph one realizes that, for example, the diamond shaped vertex corresponds to mu.
Both its predecessors can be eliminated.

In total 70 out of the 106 intermediate vertices can be eliminated at compile-time. All re-
ductions are due to Algorithm 2 (1). Consequently, the number of edges is reduced by 70 too.
The benefit for the runtime of local heuristics such as Lowest-Markowitz [ 11] or others [ 14, 2]
is obvious. The savings become even more significant in the context of costly combinatorial
optimization methods such as simulated annealing [16]. The number of configurations that
can be checked is increased by more than a factor of two.

4.3. Flow in a Driven Cavity. The third test problem is from the MINPACK-2 test
problem collection [3]. The 2D flow in a driven cavity is formulated as a boundary value
problem, which is discretized by standard finite difference approximations to obtain a system
of nonlinear equations. The value of the flow is computed at each grid point as

fvec(k) = (prlap-two*plap+pllap)/hx2 +
(ptlap-two*plap + pblap)/hy2 -
r* (dpdy* (prlap-pllap)/ (two*hx)-dpdx* (ptlap-pblap)/ (two*hy))
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This value is represented by the maximal (diamond shaped) vertex in the graphical view of
the linearized DAG shown in Figure 4.3. Obviously, both predecessors of this vertex can be
eliminated at compile-time as arguments of a subtraction operation within an seu-subgraph.
The original total number of 70 intermediate vertices can be reduced by 40. Again, the
number of edges is reduced by the same amount.

5. Conclusion: Practical Use and Further Observations. Constant folding as pre-
sented here is implemented in the OpenAD’ framework of the Adjoint Compiler Technology
& Standards (ACTS) project. We mentioned in Section 1 that heuristics may be unaware
of the label categories, as is the case with the face elimination heuristics currently used in
OpenAD. The target application of OpenAD within the ACTS project is the MIT general cir-
culation model. Since large portions of the model code are linear, one has a convincing case
for using constant folding on G’ and creating a directed line graph only for the nonlinear core.

The choice of the number of multiplications as an optimality measure ignoring additions
and memory access appears rather arbitrary when considering the raw execution time of a
given Jacobian computation. We are well aware of the impact of data locality, pipelined
operations, and so forth, since minimizing the execution time is the ultimate goal. OpenAD
contains heuristics that address these practical aspects. For theoretical investigations it is
certainly possible to count the individual multiplications and additions separately, as well as
memory reads and writes. Additions occur optionally in conjunction with multiplications
for vertex and edge elimination. For face elimination, however, one can easily construct
cases where a single elimination step entails more than one addition. This is due to the
current face elimination merge rule, where the elimination of a face enables the merging of
up to two additional vertex pairs in G. Most results on face elimination optimality ignore
these additions altogether. It has been conjectured, however, that there is always an optimal
elimination sequence that completely avoids additions through merging. This is subject of
ongoing research. We also mentioned the issue of extra additions possibly introduced by
steps 3 and 4 of Algorithm 3. In practice there is a principal dominance of the execution time
of a multiplication over an addition which makes ignoring additions plausible. For data read
and write operations there is no such generic statement and their execution times are highly
hardware and context dependent. Including these timings would make general assumptions
and optimality statements impossible. Moreover, the generated elimination code is itself
subject to subsequent compiler optimization. Therefore, we consider the suggested optimality
measure sufficient for this compiler and hardware-independent optimization.

In Algorithm 3, step 3, we mentioned the issue of scarcity preservation. There are func-
tions f that have a dense f' but have graph representations with far fewer edges than the final
bipartite graph. In [12, 10] the term scarcity was introduced to denote this property. Scarcity-
preserving eliminations have the narrower objective of reducing or maintaining the number
of edges with nontrivial labels. Despite the similarity to the objective of constant folding,
there are some differences. With constant folding we eventually want to minimize operations
for the computation of the Jacobian, whereas scarcity-preserving eliminations minimize the
operations for repeated Jacobian vector products. A o considered here for constant folding
is complete, whereas a scarcity-preserving o will generally be an incomplete elimination se-
quence. Moreover, the set of scarcity-preserving graph modifications suggested in [12, 10]
contains a rerouting operation that can be interpreted as an inverse face elimination. This
prevents an easy integration of both objectives. However, one can exploit the idea of cutting
an elimination sequence short if there is an intermediate directed line graph representation
with fewer vertices than the final tripartite directed line graph. Therefore, we note that the

7 www.mcs .anl.gov/OpenAD
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proposed constant folding steps 1, 2a/2b and 4a/4b in Algorithm 3 preserve scarcity as well.
Steps 3a/3b preserve scarcity only for absorbed fill-in and if the absorbing label is variable.
We can modify the heuristics to represent label categories in the directed line graph to enable
a scarcity-preserving face elimination. The investigation of such a modified optimization
criterion is the subject of ongoing research.
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