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Abstract. Many applications of scientific computing rely on sparse matrix computations, thus efficient im-
plementations of sparse matrix kernels are crucial for the overall efficiency of these applications. Due to the low
compute-to-memory ratio and irregular memory access patterns, the performance of sparse matrix kernels is often
far away from the peak performance on modern processors. Alternative matrix representations have been proposed,
where the matrix A is split into Ay and Ag, so that A4 contains all dense blocks of a specified form in the matrix, and
Ag contains the remaining entries. This facilitates using dense matrix kernels on the entries of A 4, producing better
memory performance. We study the problem of finding a maximum number of nonoverlapping rectangular dense
blocks in a sparse matrix. We show that the maximum nonoverlapping dense blocks problem is NP-complete by a re-
duction from the maximum independent set problem on cubic planar graphs. We also propose a 2/3-approximation
algorithm for 2 X 2 blocks that runs in linear time in the number of nonzeros in the matrix. We discuss alternatives
to rectangular blocks such as diagonal blocks and cross blocks and present complexity analysis and approximation
algorithms.
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1. Introduction. Sparse matrices lie at the heart of many computation-intensive appli-
cations such as finite-element simulations, decision support systems in management science,
power systems analysis, circuit simulations, and information retrieval. The performance of
these applications relies directly on the performance of the employed sparse matrix kernels.
The poor memory performance of sparse matrix operations on modern processors is arguably
the most crucial problem in high performance computing. To overcome this memory bottle-
neck, alternative, memory-friendly data structures for sparse matrices have been investigated.
One common approach is to exploit the special substructures in a sparse matrix, such as small
dense matrices, to decrease the number of extra load operations. In this paper, we study the
problem of finding a maximum number of nonoverlapping substructures in a sparse matrix,
with the objective of improving the effectiveness of sparse matrix data structures that exploit
dense blocks.

Conventional data structures for sparse matrices have two components: an array that
stores floating-point entries of the matrix and arrays that store the nonzero structure (i.e.,
pointers to the locations of the numerical entries). Exploiting sparsity invariably requires
using pointers, but pointers often lead to poor memory performance. One reason for the
poor memory performance is that pointers cause an irregular memory access pattern and
thus poor spatial locality. Another important reason, which is often overlooked, is the extra
load operations. Each operation on a nonzero entry requires loading the location of that
nonzero before loading the actual floating point number. For instance, sparse matrix vector
multiplication, which is one of the most important kernels in numerical algorithms, requires
three load operations for each multiply-and-add operation. And it has been observed that this
overhead is usually more costly than the floating point operations [9].
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FI1G. 1.1. Matrix splitting.

Recent studies have investigated improving memory performance of sparse matrix op-
erations by reducing the number of extra load operations [9, 11, 13, 15]. Bik and Wijshoff
propose algorithms to detect particular sparsity structures of a matrix, such as banded and
blocked forms [4]. Toledo [13] studies splitting the matrix as A = Aja + A1, where A
includes 1 x 2 blocks of the matrix (two nonzeros in consecutive positions on the same row),
and Ap; covers the remaining nonzeros, as illustrated in Fig. 1.1. Notice that it is sufficient
to store one pointer for each block in A;5. Pinar and Heath study the reordering problem
to increase the sizes of these blocks [11]. They propose a graph model to reduce the matrix
ordering problem to the traveling salesperson problem. Vuduc er al. study various block-
ing techniques to decrease load operations and improve cache utilization [15]. Significant
speedups in large experimental sets have been observed, which motivates searching for larger
blocks in the matrix for better performance. The splitting operation can be generalized to
exploit various substructures. For instance, one can split the matrix into A = A+ A, where
Ay contains all specified substructures, and A, contains the remaining entries. For a specified
substructure, having more entries in A4 merits fewer load operations, thus better memory per-
formance. This calls for efficient algorithms to find a maximum number of nonoverlapping
substructures in a sparse matrix. A greedy algorithm is sufficient to find a maximum number
of nonoverlapping m X n dense matrices when m = 1 or n = 1. However, this problem is
much harder when m,n > 2.

We study the problem of finding a maximum number of nonoverlapping substructures
of a sparse matrix, which we call the maximum nonoverlapping substructures problem. We
focus on m x n dense blocks as a substructure, since they are common in sparse matrices
arising in various applications, and their usage can effectively decrease the number of extra
load operations. We call this problem the maximum nonoverlapping dense blocks problem.
In Section 2, we define the problem formally and investigate its relation to the maximum in-
dependent set problem. We define a class of graphs for which the independent set problem is
equivalent to the maximum nonoverlapping dense blocks problem. In Section 3, we use this
relation to prove that the maximum nonoverlapping dense blocks problem is NP-complete.
Our proof uses a reduction from the maximum independent set problem on cubic planar
graphs and adopts orthogonal drawings of planar graphs. Section 4 presents an approxima-
tion algorithm for the problem. Since our techniques will potentially be used at application
run-time, we are interested in fast and effective heuristics for the preprocessing cost to be
amortized over the speedups in subsequent sparse matrix operations. Our algorithms require
only linear time and space, and generate solutions whose sizes are within 2/3 of the optimal
for 2 x 2 blocks. In Section 5, we discuss alternative patterns to rectangular blocks. We
show how the problems of finding rectangular and diagonal blocks can be transformed to
each other to conclude that finding the maximum number of nonoverlapping diagonal blocks
is NP-hard. We show how to use the approximation algorithm for rectangular dense blocks
to obtain a linear 2/3-approximation algorithm for diagonal blocks. We also discuss cross
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blocks and their variations. We present some open problems in Section 6 and conclude with
Section 7.

This problem has only recently started to draw the attention of the sparse matrix com-
munity, but has been studied under different names as a combinatorial optimization problem.
Fowler et al. [6] study this problem as a geometric embedding problem and prove it is NP-
Complete by reduction from the 3-satisfiability problem (3SAT)'. Berman et al. [3] discuss a
similar problem as the optimal tile salvage problem. In the optimal tile salvage problem, we
are given an /N x v/N region of the plane tiled with unit squares, some of which have been
removed. The task is to find a maximum number of functional nonoverlapping m X n tiled
rectangles. The difference between our problem and the optimal tile salvage problem is that
in the tile salvage problem the tiles are allowed to be in any orientation (m X n or n X m),
whereas in our case the orientation is fixed (only m X n). The NP-completeness proof of
the tile salvage problem by Berman er al. is based on the flexibility in the orientation of the
dense block, and thus is not applicable to our problem. Berman et al. describe a polynomial
time approximation scheme, which for all § > 0, e = O(1/+/dlog M), where M is the
optimal solution value, gives an (1 — €)-approximation. Their algorithm is based on maxi-
mum planar H-matching, which runs in O(NN*9) steps, and can be applied to find square
blocks where the two problems coincide. Baker [2] also has an algorithm for square blocks,
which runs in O(8% N)-time and O(4* N) space and produces a (k — 1)/k-approximation.
Hochbaum and Maass [8] also describe an algorithm for square blocks that gives a (k—1) /k-
approximation, but runs in O(m2k?N k2) time to find m x m blocks on an N x N grid.
Arikati et al. [1] study this problem as the two-dimensional pattern matching problem, and
describe an approximation algorithm that runs in O(N lg N) time and produces solutions that
are only O(1/+/loglog N) away from an optimal solution. They describe another algorithm
that runs in O(kN), and produces solutions that are within (k — 1)/k of the optimal. For
our purposes, we need algorithms that are very fast and do not require auxiliary data struc-
tures. The greedy approximation algorithms we propose are very simple, space-efficient, and
require only a single pass through the matrix.

2. Preliminaries. In this section we define the problems formally, and present defini-
tions and some preliminary results that will be used in the following sections.

2.1. Problem Definition. We investigate the problem of finding a maximum number of
nonoverlapping matrix substructures of prescribed form and orientation.
DEFINITION 2.1. Anm xn pattern is a 0-1 m xXn matrix . An oriented o-substructure of
a matrix A is an m X n submatrix Ay in A so that A1(i,5) Z0ifo(i,j) = 1for1 <i <m,
and 1 < j < n. Two substructures Ay and Ay overlap if they share nonzero entry in Ay with
coordinates (i1, j1) in Ay and (ia, j2) in Az and o (i1, j1) = o(i2, j2) = 1.
Given a particular pattern o, we define the maximum nonoverlapping o-substructures
(MNS) problem as follows.
Given an M x N matrix A and integer K, does A contain K disjoint
o-substructures?
In this paper, we mostly focus on dense blocks due to their simplicity and their effectiveness
in speeding up sparse matrix operations. A dense block of a matrix is a submatrix of specified
size, all of whose entries are nonzero, i.e., it is a o-substructure where ¢ is the all 1s matrix.
We associate a dense block with its upper left entry. Two blocks overlap if they share a matrix
entry. Formally,
Given an M x N matrix A = (a;j), we say b;; is an m x n dense block
inAiffagg # 0 for all k and | such thati < k < i+ m < M and

!"This has been pointed to us by a reviewer after the completion of this work.
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J <1< j+n<N.Twom xnblocks b;; and b overlap iff |k — i| < m
and |l — j| < n.
We define the maximum nonoverlapping dense blocks (MNDB) problem, which restricts
the MNS problem to dense blocks as follows.
Given an M x N matrix A, positive integers m and n that define the block
size, and a positive integer K, does A contain K disjoint m X n dense
blocks?

2.2. Intersection Graphs. Although it is easy to find all specified patterns in a matrix,
what we seek is a subset of nonoverlapping blocks. In this sense, the MNS problem is related
to the maximum independent set (MIS) problem, which is defined as finding a maximum
cardinality subset of vertices I of a graph G such that no two vertices in I are adjacent. We
reveal the relation between the independent set and the nonoverlapping blocks problems using
intersection graphs defined below.

DEFINITION 2.2. A graph G is an intersection graph of the a-substructures of a matrix
A if there is a bijection ¢ between the vertices of G and the substructures of A, such that
there is an edge in G between ¢(s1) and ¢(s2) if and only if s1 and s overlap in A.

We use G(A, m,n) to refer to the intersection graph of dense m x n blocks in matrix
A. A maximum independent set on G(A, m,n) gives a maximum number of nonoverlapping
blocks in A. Thus the MNDB problem can be reduced to the maximum independent set
problem, which is not even constant factor approximable. However, MNDB is not as hard as
the general MIS problem, and some block intersection graphs have special structures, which
can be exploited for efficient solutions. For instance, a greedy algorithm is sufficient to find a
maximum number of nonoverlapping 1 x n and m X 1 blocks, since these problems reduce
to a family of disjoint maximum independent set problems on interval graphs.

We will now define the class of graphs that constitute block intersection graphs. An
intersection graph of a set of 2 x 2 dense blocks is an induced subgraph of the so called X -
grid which consists of the usual 2 dimensional grid, and diagonals for each grid square. In
general, the intersection graph of a set of m x n dense blocks is an induced subgraph of the
Xmn grid. Below, we first define an X,,,,, grid, and then restrict the definition to define the
graph class XT',,,, that represent graphs that can be intersection graphs for matrices.

DEFINITION 2.3. An M X N X, grid is a graph with vertex set V and edge set E, so
that

o V={v;; :1<i<M-m+11<j<N-n+1}
o E = {(vij,vm) : vij,vm € V; |i—k| <m and |j -] <n}

In an X, grid, vertex v;; corresponds to the block b;; in the matrix, and edges corre-
spond to all possible overlaps between blocks. However, not all induced subgraphs of the
Xmn grid are intersection graphs of a matrix. For example, if b;; and b;, ; are blocks in
the matrix, then b;41 j, .. ., bi+m—1,; should also be in the intersection graph to ensure the
intersection graph represents all blocks. Therefore, we define a graph class XT',,,,, which
adds a closure property to an X,,,, grid to cover such cases.

DEFINITION 2.4. A graph G = (V, E) is in the graph class XT p,,, if and only if it is an
induced subgraph of an X .., grid and has the closure property so that

v EVIHVI<E<i+m,j<I<j+miIvg:s<k<s+mandt<I<Il+n
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FIG. 2.1. Planar orthogonal drawing

The closure property enforces that there is a vertex in the graph for each dense block
in the matrix. Being an induced subgraph of an X,,,, grid guarantees that there is an edge
for each overlap. The graphs in this class are exactly the intersection graphs of the m X
n blocks in a matrix, thus finding a maximum independent set of a graph in this class is
equivalent to solving the MNDB problem of the corresponding dense matrix blocks. This
claim is formalized by the following lemma.

LEMMA 2.1. An instance of the MNDB problem for finding m X n nonoverlapping dense
blocks in a matrix A is equivalent to an instance of MIS for a graph in XT ..

Proof. We show a one-to-one correspondence between intersection graphs, and graphs
in XT',,,,. Each dense block b;; corresponds to the vertex v;; in G(A, m,n). By definition
of the class XTI, G(A,m,n) € XT',,,, and thus any instance of an MNDB problem can
be reduced to an independent set problem in a graph in XT,,,,,.

Given a graph G in XT'p,,,, define A = (a;;), so that a;; is anonzero iff k < i < k+m
and [ < j < I+ n for some vertex vy in G. Observe that any dense block in A must be
represented by a vertex in G due to the closure property. Also, for any two adjacent vertices
in G, corresponding blocks intersect in A, and no other blocks overlap, due to the definition
of edges in X,,,,;. Thus, a maximum cardinality subset of nonoverlapping blocks in matrix A
corresponds to a maximum independent set in G € X T, O

The following lemma shows that removing a subset of the vertices along with their neigh-
bors preserves the characteristics of the graph, providing the basis for greedy approximation
algorithms as will be presented in Section 4.

LEMMA 2.2. Let G = (V,E) be a graph in XUy, S C V a subset of vertices, and
N(S) ={u]| (u,v) € E, v €S, u ¢ S} be the neighborhood of S in G. Then the graph G’
induced by V' \ (SU N(S)) is still in XT .

Proof. Removing a vertex and its neighbors in G corresponds to removing all nonzeros
in a block in the corresponding matrix. The remaining graph is the intersection graph of the
resulting matrix. d

2.3. Planar Graphs and Orthogonal Drawings. A graph G is planar if and only if
there is an embedding of G on the sphere such that no two edges have a point in common
besides possibly common end points. G is cubic planar if every vertex has degree 3.

An orthogonal drawing of a graph G is an embedding of G onto a 2-dimensional rect-
angular grid such that every vertex is mapped to a grid point and every edge is mapped to
a continuous path of grid line segments connecting the end points of the edge. When G is
planar, the edge paths do not cross. An example of orthogonal embedding of a planar graph
is illustrated in Fig. 2.1. No two edges share a grid point, and no edge path can go through
a vertex unless this vertex is an end point of the edge corresponding to the path and is an
end point of the path itself. Kant [10] showed that every planar graph G with n vertices and
maximum degree 3 can be drawn orthogonally on an O(n) x O(n) grid in polynomial time.
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(a) (b) (c)

FI1G. 3.1. Transformation to preserve closure properties

The NP-completeness proof in the next section uses a reduction from the maximum in-
dependent set (MIS) problem on cubic planar graphs and adopts orthogonal drawings.

3. Complexity. This section proves that the MNDB problem is NP-complete using a re-
duction from the independent set problem on cubic planar graphs, which is NP-complete [7].
The same result has been reported by Fowler et al. [6], by using a reduction from 3-satisfiability.
The technique used here is significantly different than Fowler ef al.’s. In this section, we will
use XTI to refer to XI'so for simplicity. The next lemma explains how we can retain inde-
pendent set characteristics of the problem after transformations.

LEMMA 3.1. Let G = (V, E) be a graph, and u, v be two adjacent vertices in G, so that
all neighbors of u besides v are also neighbors of v. Let G' = (V', E') be the graph G after
vertex v is removed. The size of the maximum independent set in G is equal to the size of the
maximum independent set in G'.

Proof. If vertex v is in a maximum independent set I, then none of its neighbors are in
I. Thus I' = T U {v} \ {v} is an independent set in G and in G’, and |I'| = |I|. O

The following corollary will be used in our NP-completeness proof, as the structures in
Fig. 3.1(a) arise in our construction.

COROLLARY 3.2. Let G € XT contain the graph H in Fig. 3.1(a) as an induced
subgraph so that all vertices except for possibly vi,vy and vs have all of their neighbors in
H. Then any instance (G, K) of MIS is equivalent to the instance (G', K) of MIS for the
graph G' = G\ {wy,w2}.

Proof. By Lemma 3.1, we can remove w; from the graph since all neighbors of x;
are neighbors of w; as well. The reduced graph is illustrated in Fig. 3.1(b). Again using
Lemma 3.1, we can remove ws since it covers all neighbors of x5. Furthermore, we can
apply the same transformation in reverse order to add vertices w; and ws to the graph in
Fig. 3.1(c). O

The following lemma describes how edges of a graph can be replaced by even length
paths, while preserving independent set characteristics.

LEMMA 3.3. Let G = (V, E) be a graph and e = (v;,v;) € E be an edge. Let G,
be the graph G with the edge e substituted by a simple path v;, w1, ws, ..., Wak,v; where
k € ZT and w; are new vertices not in the original graph. Then there exists an independent
set of size K in G iff there exists an independent set of size K + k in G .

Proof. We present the proof for k = 1, and the result follows by induction.

Sufficiency: Let I be an independent set in G, then either v; € I or v; & I. Without loss of



ETNA

Kent State University
etna@mcs.kent.edu

FINDING NONOVERLAPPING SUBSTRUCTURES OF A SPARSE MATRIX 113

F1G. 3.2. Enlargement operation on Fig. 2.1 (right) for k = 1.

generality, assume v; & I, then I' = I U {w } is an independent set in G k.

Necessity: Let I' be an independent set in G . If wy € I', thenv; € I',and I = I' \ {w1}
is an independent set in G. Symmetrically, if wo € I', thenv; ¢ I',and I = I' \ {w5} is an
independent set in G. If wy,wy & I', then I = I' is an independent set in G. |

We first analyze the complexity for 2 x 2 blocks for clarity of presentation, and then
extend our result to m x n blocks for m,n > 2.

THEOREM 3.4. Problem MNDB is NP-complete for 2 X 2 blocks.

Proof. MNDB is clearly in NP since it is equivalent to a special case of MIS.

To show NP-hardness, we use a reduction from the independent set problem on cubic
planar graphs, which is NP-complete [7]. We first embed a cubic planar graph orthogonally
onto a grid as discussed in Section 2.3. Then we transform the embedded graph so that it is in
XT'. Our transformations preserve independent set characteristics so that an independent set
in the transformed graph can be translated to an independent set in the original graph. Finally
we use Lemma 2.1 to relate the independent set problem on a graph in XT', to the MNDB
problem.

Our transformations are local. We first enlarge the grid to make room for these trans-
formations by inserting k new grid points between adjacent points in the original grid. An
example is illustrated in Fig. 3.2 for ¥ = 1. After the enlargement, each edge is now re-
placed by a path of k vertices (which we distinguish from the original vertices by calling
them marks). Two adjacent vertices in the original graph are now at a distance k£ + 1, which
generates a k/2 x k/2 area around each vertex for local transformations. This enlargement
guarantees that different transformations do not interfere with each other. In this proof, it is
sufficient to use k£ = 100.

Our transformations consist of 2 steps. The first step guarantees that the transformed
graph is in XT, to satisfy Definition 2.4. The second step ensures that each edge in the
original graph is replaced by an even length path after the orthogonal embedding and trans-
formations. Together, these steps transform the independent set problem on the cubic planar
graph to an independent set problem on a graph in XT', and we can then conclude the NP-
completeness of the MNDB problem using Lemma 2.1.

Since the underlying graph is cubic, its orthogonal embedding can be decomposed into
paths, bends (illustrated in Fig. 3.3 (left)), and T- junctions (illustrated in Fig. 3.4 (left)).
Bends are marks for which an edge changes direction, and T-junctions are the actual vertices
of the cubic planar graph. While bends and T-junctions require transformations to convert the
embedded graph into a graph in XT', paths will not cause such problems.

Consider a bend v;; connected to two other marks v;_1; and v;j41. In a graphin XT,
there must be an edge between v;1; and v;;1. We can remove v;;, and connect v;_1; and
Viza as in Fig. 3.3 (right).
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FIG. 3.3. Bend transformation

FI1G. 3.4. T-junction transformation

Now consider a T-junction with vertex v;; at the center, as illustrated in Fig. 3.4. The
neighborhood of v;; consists of (up to a rotation) v;j_1, v;j41, and v;_1 j, none of which is
a vertex in the original graph. As in the case of a bend, the problem is the absence of edges
between v;j_1 and v;_1 j, and between v;_1 ; and v;;41, for which the associated blocks
overlap. Also, v;; must be a vertex of the original graph, and cannot be eliminated. We can
make the transformation illustrated in Fig. 3.4. However, the resulting graph is still notin X T,
since it has missing vertices and does not satisfy the closure property. We use Corollary 3.2
to add vertices to the graph as depicted in Fig. 3.1 (in reverse order, from (c) to (a)), so that
the resulting graph is in XT'.

By Lemma 3.3, we need each path replacing an edge of the planar graph to have even
length. Because of the extra space we created for our local transformations, for each edge
going through an odd number of marks there is a straight line segment going through at least
7 marks. We replace this 7 vertex segment with an 8 vertex segment, as illustrated in Fig. 3.5,
to guarantee that each edge is replaced with an even length path.

These polynomial time transformations reduce the independent set problem for cubic
planar graphs to an independent set problem in a graph in class XI'. By Lemma 2.1, the
independent set problem on a graph in XT' is equivalent to a MNDB problem in a matrix,
thus concluding our proof. O

Our proof is a template for the NP-completeness proofs of alternative substructures. Be-
low, we generalize our result for arbitrary m x n blocks. In Section 5, we will use the same
template to prove NP-completeness of the MNS problem for cross and diagonal blocks.

THEOREM 3.5. Problem MNDB is NP-complete for m X n blocks for m,n > 2.

Proof. We give a reduction from MIS on cubic planar graphs. Without loss of generality,
we assume n > max{m,3}. Given a cubic planar graph Gp = (Vp, Ep), we first embed
the graph onto an |Vp| x |Vp| grid and then enlarge this grid by £ = 100 to get Gs. This
allows our local transformations to be mutually disjoint. For clarity of presentation, in this
proof we use v(3, j) to refer to v;;. In G, we transform each T-junction that has two vertical
edges to a T-junction with two horizontal edges, as illustrated in Fig. 3.6(a). Then by using
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FIG. 3.5. Odd-to-even length transformation to preserve independent set characteristics.
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(a) (b)

F1G. 3.6. Transformations on Gs. (a) replace a T-junction with two vertical edges with another with two
horizontal edges. (b) add a horizontal edge to each path in G p.

the transformation in Fig. 3.6(b), we make sure that each path replacing an edge in G p has at
least one horizontal edge away from bends and T-junctions.

In the next step, we map G, to a larger 4mM x 4nN grid G, so that (3, j) on the small
grid is mapped to v(i(4m — 2),44(n — 1)) on the larger grid. This second enlargement allows
us to control the overlaps, and thus define the paths of the graph. For each horizontal edge
(v(Z,7),v(i,j + 1)) in the enlarged G4, we add vertices v(i(4m —2) + m —1, (45 + 1)(n —
1)),0(i(dm—2)+2(m—1),(4j+2)(n—1)),and v(i(4m — 2) + (m — 1), (4j+ 3)(n — 1)),
as illustrated in Fig. 3.7(a). A similar transformation is illustrated in Fig. 3.8 (a) for vertical
edges. We use different transformations for horizontal and vertical edges, since m might
be 2. To avoid problems due to bends, we use the mirror images of the transformation in
Figs. 3.7(a) and 3.8(a), as illustrated in, respectively, Figs. 3.7(b) and 3.8(b).

Due to our transformation in G's, we only have T-junctions with two horizontal edges. For
a T-junction with a “downward” vertical edge, we can use transformation in Fig. 3.8(a) and
mirror images of transformations in Figs. 3.7(a), as illustrated in Fig. 3.9(a). For a T-junction
with an “upward” vertical edge, we use the transformations in Figs. 3.8(b) and 3.7(a), as
illustrated in Fig. 3.9(b). Due to our initial enlargement to obtain G 4, all these transformations
will be mutually disjoint.

We define the edge set of G, so that it is an induced subgraph of X,,,. The closure
property is satisfied by construction, thus G, is in XT'y,,,. The reduction will be complete
when we guarantee that each edge in the original 3-planar graph G p is replaced by an even-
length path in G'r,. If an edge in G p is replaced by an odd-length path in Gr,, we replace
a horizontal edge transformation in Fig. 3.7(a) with the one in Fig. 3.10, which inserts four
vertices, instead of three. We can choose this edge to be far from a bend or a T-junction to
avoid unwanted overlaps. o

4. Approximation Algorithms. In this section, we discuss approximation algorithms
for the maximum nonoverlapping dense blocks problem. This problem has been studied un-
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X,y X,y+4(n-1) x—2(m-1),y+2(n-1)

x+m—1,y\t3(n—1 x—m+1,y+n-1 x—m+1,y+3(n—-1)

X,y+4(n-1)

x+m-1,y+n—-1

X,y

x+2(m-1),y+2(n-1)

(a) (b)

F1G. 3.7. Replacing horizontal edges in G s with (a) regular transformation and (b) its mirror image. Dark
nodes are for original vertices, and shaded nodes correspond to auxiliary vertices to replace an edge between them.
Dark edges correspond to edges in Gr,, and rectangles are also drawn to illustrate overlaps.
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x+3m-1,y+n-1 x+3m-1,y-n+1

x+4m-2,y

(@) (b) ()

F1G. 3.8. Two transformations to replace vertical edges in G s. (a) The regular vertical edge transformation,
(b) its mirror image and (c) version only used for an upward edge of a T-junction. Dark nodes are for original
vertices, and shaded nodes correspond to auxiliary vertices to replace an edge between them. Dark edges correspond
to edges in G r,, and rectangles are also drawn to illustrate overlaps.
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F1G. 3.9. Transforming T-junctions (a) with an upward edge, (b) with a downward edge.
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F1G. 3.10. Even to odd length transformation.
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der different names in the literature. The optimal tile salvage problem is defined as follows.
Given a VN x VN region in the plane tiled with unit squares, some of which are disfunc-
tional, find a maximum number of functional m X n rectangles (in any orientation). This
problem is equivalent to MNDB for square dense blocks. Berman et al. [3] describe a poly-
nomial time approximation scheme for the optimal tile salvage problem, i.e. for any § > 0,
€ = O(1/+/8log M), an (1 — €)-approximation algorithm running in time polynomial in N
and exponential in §. Here M is the optimal solution value. Their algorithm is based on
maximum planar H-matching which runs in O(N1*?) steps for § > 0. Baker [2] also has
an algorithm for square dense blocks, which runs in O(8% N)-time and O(4F N) space and
produces a (k — 1)/k-approximation. Hochbaum and Maass also describe an algorithm for
square blocks that gives an (k — 1)/k-approximation, but runs in O(m?k*N kQ) time to find
m xm blocks onan N x N grid [8]. While these algorithms are asymptotically efficient, their
practicality will be limited for our purposes. We need algorithms that are extremely fast and
require very limited extra memory, since our methods will be used in a preprocessing phase,
which may appear as late as the application runtime, and their runtimes need to be amortized
by the speedup in subsequent operations.

Arikati et al. [1] study this problem as the two-dimensional pattern matching problem,
and describe an approximation scheme inspired by the Lipton-Tarjan method of comput-
ing approximate independent sets in graphs. Their algorithm runs in O(N lg N) time and
produces solutions that are only O(1/+/loglog N') away from an optimal solution. They
describe another algorithm that uses the shifting strategy of Baker [2] and Hochbaum and
Maas [8]. Their algorithm decomposes the matrix into supercolumns of width n — 1, and
then for each ¢, 0 < ¢ < k, the problem is separated into disconnected subproblems by re-
moving supercolumns with numbers congruent to 4 mod (k + 1). Each subproblem can be
solved optimally in linear time, by algorithms that find a maximum independent set in tree-
width bounded graphs [5, 12]. Arikati ef al. show that using this they can obtain a solution

k

which is within 77 of the optimal.

The special case for k& = 2 of the Arikati ef al. algorithm was also pointed out to us
by one of the reviewers. The algorithm can be summarized as follows. Given an input I
to (2,2)—MNDB, construct three new instances I, I, I> such that instance I; contains all
blocks from I except those with upper row index j mod 3. Each instance I; can then be
solved optimally in linear time. Consider an optimal solution B to I. Every subset of B
included in I is a solution to I;, and since each block from B is removed from exactly
one of the three new instances, some instance I; must include at least 2/3 of the blocks in
B. Therefore returning the maximum of the optimum solutions to Iy, I;, I> gives at least a
2/3—approximation. This elegant algorithm gives the same running time and approximation
ratio as the algorithm presented in this paper. Nevertheless, our 2/3—approximation algo-
rithm can be implemented to use slightly less extra space since it only needs to maintain one
independent set instead of three.

We begin by presenting a simple linear time 1/2-approximation to the MNDB problem
with 2 x 2 blocks which can be generalized for all o-substructures we present. The algorithm
proceeds by finding the leftmost block in the topmost row, adding it to the current independent
set, and then repeating the same operation after removing this vertex and all its neighbors.
At most two of the vertices can be independent among those removed from the graph, and
so we have a 1/2-approximation algorithm. In this section we show how to improve this
approximation result by looking at an extended neighborhood of the leftmost vertex in the
uppermost row. Our algorithm is based on choosing a set of vertices in the neighborhood of
the leftmost vertex in the uppermost row, so that the size of this set is no less than 2/3 of a
maximum independent set in the induced subgraph of those vertices removed from the graph.
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FIG. 4.1. Decision tree for algorithm MNDB-APX. v corresponds to the leftmost vertex in the uppermost row,
and the neighboring vertices in the X -grid are marked in Fig. 4.2. We take the left branch if the label vertex isin V,

and the right branch otherwise. We proceed until we reach a leaf, which contains the set S that will be added in the
independent set.

/\x\xfxwx
X\g\xm

XX

FIG. 4.2. Vertex neighborhood considered for each call to BinTreeDecision. The positions v; are used in the
decision tree, while the positions w; are only used in the analysis.

Q‘Q‘m

This generates a final solution that is 2/3 of the optimal, since all greedy decisions are at least
2/3 of the local optimal. By Lemma 2.2, the graph after removing a vertex along with all its
neighbors still has the intersection graph characteristics of the original by Lemma 2.2.

We present the pseudocode of our algorithm below. The algorithm is based on the pro-
cedure BinTreeDecision, which is depicted as a binary decision tree in Fig. 4.1. In this tree,
internal nodes indicate conditions, and the leaves list the vertices added to the independent
set. Our algorithm traverses this decision tree from the root to a leaf, taking the left branch if
the label vertex is in V, and the right branch otherwise. For instance, at the root of the tree,
we will take the left branch vy is in the graph, and the right branch if it is not. The leaves
contain the sets S that will be added in the independent set.

LEMMA 4.1. Algorithm MNDB-APX runs in linear time in the number of blocks in the
matrix.

Proof. Each iteration of the algorithm requires a traversal of the binary decision tree
from the root to a leaf, which takes at most 8 steps, thus O(1) time. Also at least one vertex is
removed from the graph at each iteration. Thus the time for the decision process is linear in
the number of vertices in the graph. The only other operation that affects the cost is finding
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the leftmost vertex in the uppermost row. In a preprocessing step one can go through the
matrix in a left to right fashion and store pointers to the blocks so that v;; appears before vy;
iff i < kori = Fkandj < [. After this it takes constant time to find the current leftmost

vertex on the uppermost row. d

Algorithm MNDB-APX
I+0
while V' # ()
v ¢ leftmost vertex on the uppermost row
S < BinTreeDecision(v)
I+<1IUS
remove S and its neighborhood from G
endwhile
return I

LEMMA 4.2. The size of the maximal independent set returned by Algorithm MNDB-
APX is no smaller than 2 /3 of the size of maximum independent set on the intersection graph.

Proof. The proof is based on case by case analysis. We show that BinTreeDecision(v)
of Fig. 4.1 always returns an independent set S such that N(.S) contains no independent set
larger than 1.5 |.S|, where N (S) denotes the neighborhood of S, i.e., the set of vertices in S
or adjacent to a vertex in S. Below we examine the binary search tree case by case:

vs € VS = {v}, and v and its neighbors form a clique with MIS size 1.

vs €V
v1 € V By the closure property v2 € V, and we have the following:
ve ¢ VS = {v}, and v and its neighbors form a clique with MIS size 1.
ve €V
vy €V S = {v,v4}, and N(S) has MIS size at most 3.
vg € V' By the closure property u1 ¢ V. In this case, if one of vg or vg
isnot in V, then S = {ws, vs}, since their neighborhood has MIS
size at most 3. Otherwise, vg,vg € V:
vy € V' This implies u2 ¢ V and:
vig € V S = {uvs,ve} and N(S) has MIS size at most 3.
vig €V S ={v,vs,v9,v10}, and N(S) has MIS size at most 6.
v €V
v3 €V S = {v,v3}, and N(S) has MIS size at most 3.
v3 € VS = {v,vr}, and N(S) has MIS size at most 3.

v eV
vy €V S ={v,v2}, and N(S) has MIS size at most 3.
vy € V' By the closure property vz ¢ V, and
vy € V.S = {v1}, v1 and its neighbors form a clique, and the MIS is of
size 1.
weV
vg €V S = {v,vs}, and N(S) has MIS size at most 3.
vs € V By the closure property u1 ¢ V, and if one of vg or vg is not
in V, then S = {wi,vs}, and N(S) has a MIS size at most 3.
Otherwise if vg,v9 € V, then S = {v,vr,vs,v9}, and N(S)
has MIS size at most 6.

THEOREM 4.3. Algorithm MNDB-APX is a linear time, 2/3-approximation algorithm



ETNA

Kent State University
etna@mcs.kent.edu

120 A.PINAR AND V. VASSILEVSKA
ap2 aoo
oo Qo1 Go2 ao1 a12 ai0 ao1
a0 @11 12 Goo a11 a22 G20 ai11 Qo2
G20 @21 A22 a10 a21 G21 A12
a20 a22
(a) (b) (©)

F1G. 5.1. Matrix rotations. (a) the original matrix, (b) after Rotation 1, (c) after Rotation 2.

for the MNDB problem.

Proof. Follows directly from Lemma 4.1 and Lemma 4.2. d

A generalization of our 2/3-approximation algorithm for larger blocks is still under in-
vestigation. We expect the runtime and the approximation ratio to depend on the block size.

5. Alternative Substructures. We have so far focused our discussions on finding dense
rectangular blocks in a matrix. In this section, we will discuss generalizations of our results
to alternative substructures that might be exploited to improve memory performance. We will
first discuss diagonal blocks. Then we will introduce a cross substructure and its variants,
and prove that the MNS problem is NP-complete for finding these substructures.

5.1. Diagonal Blocks. In many applications, nonzeros of the sparse matrix are lined
around the main diagonal in the form of long diagonals. This makes diagonal blocks a nice
alternative to rectangular blocks. We define a diagonal block as follows. Given an M x N
matrix A = (a(i, j)), we say d(i, j) is an m X n diagonal block in A iff

Vi, i<l<i+m; 0<k<n; a(l+k, j+k) #0.

To find diagonal blocks in a sparse matrix, we can rotate the positions of the matrix en-
tries to transform diagonal blocks to rectangular blocks and vice versa, so that our results for
rectangular blocks can be applied to diagonal blocks. Our rotations are depicted in Fig. 5.1,
and defined as follows.

Rotation 1: Given an M x N matrix A, its rotated matrix Ag is an (M + N — 1) x N matrix
so that

o Ap(i+ N —j—1,5) = A, j) fori=0,1,...M —landj=0,1,...N — 1.

e All other entries of Ag are 0.
Rotation 2: Given an M x N matrix A, its rotated matrix Ag is an (M + N — 1) x N matrix
so that

e Ap(i+j,5) = A(i,j) fori=0,1,...M —1and j =0,1,...N — 1.

e All other entries of Ay are 0.

THEOREM 5.1. Given matrix A, let A1 and As be its rotated matrices under Rotation 1
and Rotation 2, respectively. d(i, j) is a diagonal block in A, if and only if d(i+ N —j—1, )
is a rectangular block in Ay, and d(i, §) is a rectangular block in A, if and only if d(i + j, j)
is a diagonal block in A

Proof. By definition d(, j) is a diagonal block in A if and only if for all k,1: 0 < k <
m; 0<1l<n, AG+k,j+1)#0. This translatesto A1 (i + k+ N —j—1—-1,5+1) #0
with Rotation 1, and Ax(i + k + j + 1,5 + 1) # 0. Necessity follows from the definition of
a diagonal block, and sufficiency follows from the fact that the only nonzeros in A; and A,
are those defined by nonzeros in A. d

COROLLARY 5.2. Algorithm MNDB-APX, composed with Rotation 1, is a linear time
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Fi1G. 5.2. (a) Cross block, (b) diagonal cross block, (c) jagged cross block

2/3-approximation algorithm for the problem of finding a maximum number of nonoverlap-
ping diagonal blocks.

COROLLARY 5.3. Given a matrix A and a positive integer K, deciding if A has at least
K nonoverlapping diagonal blocks is NP-complete.

5.2. Cross Blocks. Various regular substructures in a sparse matrix can be exploited to
improve memory performance of sparse matrix computations. One possibility is the cross
blocks depicted in Fig. 5.2(a). We will identify a cross block with its center, that is, we say
¢(i, j) is a cross block in a matrix A if A has nonzeros at positions (%, 5), (i, — 1),(i — 1, 5),
(i,7+1),and (i + 1, ). Below, we prove that finding a maximum number of nonoverlapping
cross blocks is NP-complete by using our proof of Theorem 3.4 as a template.

THEOREM 5.4. Given a matrix A and a positive integer K, deciding if A has at least K
nonoverlapping cross blocks is NP-complete.

Proof. This problem can be reduced to the independent set problem, and thus it is in
NP. For the NP-completeness proof we use a reduction from the independent set problem on
cubic planar graphs. First we embed the cubic planar graph onto a grid and then enlarge the
grid as we did for the proof of Theorem 3.4. We can replace each vertex on this grid with a
cross pattern in the matrix. Formally, for an M x N grid, we define a 2M + 1 x 2N + 1
matrix, where grid point (3, j) is replaced by a cross centered at (2i + 1,25 + 1) in the matrix.
A does not have any other nonzeros besides those in cross blocks corresponding to vertex
points. There are no cross blocks in A, besides those representing grid points. Also observe
that unlike the case for rectangular blocks, bends and T-junctions do not cause any problems,
since the crosses to the left and below the corner vertex of a bend do not overlap.

The only problem is to make sure each edge in G is replaced by an even length path,
for which we use the transformation in Fig. 5.3. This transformation replaces a chain of odd
length with a chain of even length to guarantee each edge in G is replaced with even length
paths. O

We can use matrix rotations to reduce the problems of finding other blocks in Fig. 5.2 (b)
and (c) to the problem of finding cross blocks as in Fig. 5.2(a). For instance, Rotation 1
transforms jagged crosses, which are illustrated in Fig. 5.2(c) to regular crosses, and ¢(%, 7) is
a diagonal cross block in an M x N matrix, iff ¢(i + N — j — 1, 7) is a jagged cross block
(Fig. 5.2(c)) in its rotated matrix. Similar transformations can be used to transform cross
blocks to other jagged blocks, and vice versa.

Rotation 3, as defined below and depicted in Fig. 5.4, transforms diagonal cross blocks
of Fig. 5.2(b) to regular cross blocks.

Rotation 3: Given an M x N matrix A, its rotated matrix Ag isan (M+N—1)x (M+N—1)
matrix so that
e Ap(i—j+N—-1,i+j) = A(,j) fori =0,1,... M —1landj =0,1,...N — 1.
e All other entries of Ag are 0.

These transformations can be used to prove NP-completeness of deciding if there are a
specified number of nonoverlapping jagged and diagonal cross blocks in a matrix. For brevity,
we are not giving the details here. As an approximation solution, the greedy algorithm that
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FIG. 5.3. Odd- to even-length path transformation for cross blocks.
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FIG. 5.4. Matrix Rotations. (a) the original matrix, (b) after Rotation 3.

chooses the leftmost block in the upper most row will yield a 1/2—approximation algorithm
for finding cross blocks and all its variations.

6. Open Problems. This work studies a new problem for the sparse matrix computa-
tions community, and brings forth many open problems. One interesting family of problems
is the design of heuristics for larger blocks and different substructures, and developing better
approximation algorithms. As we discussed in Section 4, it may be possible to generalize our
2/3-approximation algorithm for larger blocks, where the runtime complexity is likely to de-
pend on the block size. Another open problem is whether one can improve the approximation
ratio by looking at a larger neighborhood of the leftmost vertex of the uppermost row. Finally,
one may search for different heuristics to apply to different dense substructure problems. For
instance, although the greedy left-uppermost block heuristic still gives a 1/2-approximation,
the neighborhood structure of the cross block is fairly different from that of the rectangular
block, and thus our 2/3-approximation algorithm cannot be applied directly.

Another approach to reducing memory indirection is selectively replacing structural ze-
ros of the matrix with numerical zeros. Doing this would improve memory performance and
may result in significant speedups, even though the number of floating point operations may
increase [15]. This technique calls for another interesting combinatorial problem. In this
case, we need to choose blocks to make sure all nonzeros are covered, and we try to do this
by using as few blocks as possible. We call this problem the minimum block cover problem
and define it as follows.

Given a sparse matrix A, and an oriented substructure o, place a minimum
number of substructures on A, so that all its nonzeros are covered.
Fowler et al. [6] proved that this problem is NP-complete. Nevertheless, good approxi-
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mation algorithms for covering sparse matrices would be valuable.

Finally, in this paper we considered finding only one specified structure in the matrix.
However, it is possible to split a matrix into three or more matrices (e.g., A = Aﬁ + Ab +A,),
so that each matrix contains a different substructure. Vuduc did some empirical work on
splitting into multiple matrices [14]. In such a decomposition, the objective is minimizing the
total number of blocks in all matrices. Clearly, this problem is much harder, and even good
approximation algorithms (provably or practically) would be valuable.

7. Conclusion. We studied the problem of finding maximum number of nonoverlapping
substructures in a sparse matrix, which we called the maximum nonoverlapping substructures
problem. Such substructures can be exploited to improve memory performance of sparse ma-
trix operations by reducing the number of memory indirections. We focused on m x n dense
blocks as a substructure (maximum nonoverlapping dense blocks problem) due to their fre-
quency in sparse matrices arising in various applications, and to their effectiveness in decreas-
ing extra load operations. We investigated the relation between the maximum independent
set problem and the maximum nonoverlapping substructures problem, and defined a class
of graphs where the independent set problem is equivalent to the maximum nonoverlapping
dense blocks problem. We used this relation to prove the NP-completeness of the maximum
nonoverlapping dense blocks problem. Our proof used a reduction from the maximum in-
dependent set problem on cubic planar graphs and adopted orthogonal drawings of planar
graphs. We discussed generalizations of our results to alternative substructures and observed
the relation between diagonal and rectangular blocks to show that the two MNS problems are
equivalent and one can be reduced to the other by a matrix transformation. We also discussed
cross blocks and proved that the MNS problem is NP-complete for cross blocks.

We presented an approximation algorithm for the maximum nonoverlapping dense blocks
problem for 2 x 2 blocks. Our algorithm requires only linear time and space, generates so-
lutions whose sizes are within 2/3 of the optimal, and can be used to approximate MNS on
diagonal blocks as well.
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