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ON THE USE OF LARGER BULGES IN THE QR ALGORITHM
�

DANIEL KRESSNER
�

Abstract. The role of larger bulges in the QR algorithm is controversial. Large bulges are infamous for having
a strong, negative influence on the convergence of the implicitly shifted QR algorithm. This paper provides a new
explanation of this shift blurring effect, by connecting the computation of the first column of the shift polynomial
to the notoriously ill-conditioned pole placement problem. To avoid shift blurring, modern variants of the QR
algorithm employ chains of tightly coupled tiny bulges instead of one large bulge. It turns out that larger bulges still
play a positive role in these variants; a slight increase of the bulge sizes often results in considerable performance
improvements.
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1. Introduction. This paper is concerned with the QR algorithm, the most widely used
method for computing eigenvalues and invariant subspaces of a real or complex, dense ma-
trix. Having been introduced by Francis [10] and Kublanovskaya [17], in 1961–1962, the QR
algorithm contains three ingredients: preliminary reduction to Hessenberg form, QR itera-
tions, and deflations. In this paper, we will mainly focus on the second ingredient and assume
that our ����� matrix

�
, of interest, has already been reduced to Hessenberg form. An

efficient algorithm for achieving this reduction is described in [7], and implemented in LA-
PACK [1]. We will also assume that

�
is a real matrix; all obtained results can be extended

to the complex case without any difficulties.
An implicitly shifted QR iteration relies on a fortunate choice of � shifts �
	��������������

, yielding the associated shift polynomial��� ������� � � � � 	�!#" �%$ � � � �'& !#" �($�$�$ � � � � �)!#" � �(1.1)

where !#" denotes the �*�+� identity matrix. The set of shifts is assumed to be closed under
complex conjugation, implying that ��� ��� is real. If , denotes the first column of �-� ��� ,
then the QR iteration proceeds with choosing an orthogonal matrix .0/ , e.g., a Householder
matrix [11], such that .21/ , is a scalar multiple of the first unit vector 34	 . Next,

�
is updated

by the orthogonal similarity transformation
�65 .01/ � .7/ . This destroys the Hessenberg

form of
�

and creates a bulge of size � �98;: � � � �<8;: � , below the subdiagonal in the upper
left corner. The QR iteration is completed by reducing

�
back to Hessenberg form via a

sequence of orthogonal similarity transformations. This reduction can be seen as chasing the
bulge from the upper left corner down to the bottom right corner along the first subdiagonal
of
�

, a point of view that has been emphasized and extended to other QR-like algorithms by
Watkins and Elsner [32].

Early attempts to improve the performance of the QR algorithm focused on using shift
polynomials of high degree [3], say �>=@?BA . Large values for � result in large bulges,
which in turn admit the efficient use of medium-order Householder matrices and WY repre-
sentations [11]. This approach, however, has proved disappointing due to the fact that, the
convergence of such a large-bulge multishift QR algorithm is severely affected by roundoff
errors [8, 30, 31]. To explain this phenomenon, Watkins [30, 31], investigated the transmis-
sion of shifts during QR iterations and established a simple relationship between the shifts andC
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the bulges mentioned above, see also Section 2. Numerical experiments give evidence that
this relationship is extremely sensitive to perturbations for larger � , in which case the infor-
mation encoded in the shifts is likely to become completely contaminated by roundoff errors
during the QR iteration. As proper shifts are essential for convergence, it can be concluded
that this so called shift blurring effect, is responsible for the poor behavior of the large-bulge
QR algorithm. In Section 3, we will explain the occurrence of these extreme sensitivities via
a connection to the notoriously ill-conditioned pole placement problem.

The trouble with shift blurring has led researchers to develop variants of the QR algo-
rithm that still rely on a large number of simultaneous shifts, but chase several tiny bulges
instead of one large bulge. This idea has been proposed many times, see [4, 8, 13, 15, 18,
19, 29]. Particularly successful in improving the performance of the QR algorithm on serial
machines is a recent variant developed independently by Braman, Byers, and Mathias [4] as
well as by Lang [18]. This variant is based on chains of tightly coupled DE�FD bulges, each
of which contains two shifts. It achieves high performance by employing matrix-matrix mul-
tiplications during the bulge chasing process. In Section 4, we show that the performance of
this method can be considerably increased by using slightly larger, say G)�HG or I��EI , bulges.
Numerical experiments confirm that this assertion still holds if the recently developed and
highly successful early aggressive deflation strategy [5] is used. Hence, if utilized with care,
larger bulges still play a role in modern variants of the QR algorithm.

2. Bulges, Bulge Pencils and Shift Blurring. For the rest of this paper, we assume that
the matrix

� ��J "�KL" is in upper Hessenberg form, i.e., all entries below the subdiagonal
of
�

are zero. Moreover,
�

is assumed to be unreduced1, i.e., all its subdiagonal entries are
different from zero. The latter property can always be guaranteed by applying deflations in
the course of the QR algorithm.

2.1. Implicitly shifted QR iterations. In the following, we briefly describe the con-
ventional implicitly shifted QR iteration based on Householder matrices. For a given vectorM �NJ " and an integer OQPR� , we will use SUT �VM � to denote a Householder matrix, which
maps the trailing � � O elements of M to zero, without affecting its leading O � : elements,
see [11]. After having chosen � shifts, where typically �XWY� , the next step of the QR
iteration consists of the update, �N5 S 	 � , �%$Z�[$ S 	 � , � �(2.1)

where , denotes the first column of the shift polynomial defined in (1.1). The following
Wilkinson diagram illustrates the shape of

�
, after this update for � � ? and � ��\ :]^^^^^^_

` ` ` ` ` `a a a ` ` `a a a ` ` `a a a ` ` `b b b ` ` `b b b b ` `
ceddddddf (2.2)

The Dg�hD submatrix
� � \i� A'��: � D � , whose elements are labeled by

a
, is called the bulge.

Here, the colon notation
� �Vj 	 � j & �kO�	 � O & � is used to designate the submatrix of

�
defined

by rows j 	 through j & and columns Ol	 through O & . For general �Ymn� � : , the bulge is� �o8�: � � � �<8*: � and resides in the submatrix
� � \p� �o8 \ ��: � �o8*: � . The QR iteration is

completed by reducing
�

back to Hessenberg form, see Algorithm 1. Let us see what happens

1Some authors favor the term proper instead of unreduced.
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Algorithm 1 Reduction to Hessenberg form
Input: A matrix qQr0s�tvu4t .
Output: An orthogonal matrix wxrys%tvu4t such that qoz{w}|~q�w is in upper Hessenberg

form.wQz�� t
for ��zn�Z�����������p��� dowQz�w����������#��q����#�q*z�� ���(� ��q�� � �(�#q��#� ����� ��q�� � �
end for

if the first two loops of this algorithm are applied to the matrix
�

in (2.2):

�
]^^^^^^_
` ` ` ` ` `` ` ` ` ` `b a a a ` `b a a a ` `b a a a ` `b b b b ` `

ceddddddf �
]^^^^^^_
` ` ` ` ` `` ` ` ` ` `b ` ` ` ` `b b a a a `b b a a a `b b a a a `

ceddddddf (2.3)

These diagrams illustrate the fact that the reduction of
�

to Hessenberg form can be seen
as, chasing the bulge from the upper left corner down to the bottom right corner, along the
first subdiagonal. The rest of Algorithm 1, consists of chasing the bulge off the bottom right
corner:

�
]^^^^^^_
` ` ` ` ` `` ` ` ` ` `b ` ` ` ` `b b ` ` ` `b b b a a ab b b a a a

ceddddddf �
]^^^^^^_
` ` ` ` ` `` ` ` ` ` `b ` ` ` ` `b b ` ` ` `b b b ` ` `b b b b ` `

ceddddddf (2.4)

Properly chosen shifts imply that, repeatedly applied QR iterations will let
�

converge
to block triangular form:������� � 	�	 � 	 &b � &�&i� � � 	�	)�yJ¡  K  
� � &�& �+J£¢ "v¤  �¥ K ¢ "v¤  #¥l(2.5)

Typically, the shifts are taken to be the eigenvalues of the trailing ���¦� principal submatrix
of
�

before each QR iteration. This choice is called Francis shifts2 and ensures local quadratic
convergence to a block triangular form (2.5), with � ��§©¨ � [33]. Another suitable choice
is, to use the same set of � shifts throughout all iterations. In this case, the convergence
becomes linear and often

§E¨ � [33]. As soon as
�

is sufficiently close to (2.5), the (nearly
zero) subdiagonal block of

�
is set to zero and the QR algorithm is continued by applying

QR iterations to the diagonal blocks
� &�& and

� 	�	 separately. This process is called deflation;
the most common deflation criterion is to set a subdiagonal entry `  �ª 	�«   of the Hessenberg
matrix

�
, to zero if it satisfies,¬ `  �ª 	�«   ¬ P® $ � ¬ `   «   ¬ 8 ¬ `  #ª 	�«  #ª 	 ¬ � �

where  denotes the unit roundoff. More advanced deflation criteria can be found in [5], see
also Section 4.2. Deflations and QR iterations are recursively applied until

�
has converged

2Other terms in use are Wilkinson shifts or generalized Rayleigh quotient shifts.
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to a Wintner-Murnaghan form, also known as real Schur form [11]. For later reference, we
note that the unreduced diagonal block which is currently being processed by QR iterations
is called the active submatrix.

2.2. Bulge pencils. To explain the notion of bulge pencils, assume that the implicitly
shifted QR iteration, with �@m;� shifts, is applied to an unreduced �F�©� Hessenberg matrix�

and let , denote the first column of the shift polynomial. The initial bulge pencil is the
matrix pencil ¯ / �®°'± , where

±
is the � �R8�: � � � ��8�: � Jordan block belonging to the

eigenvalue zero and

¯²/ �´³ , � : � �µ8¶: � � � � : � �µ8¶: � : � � �k·(�
]^^^^_
,(	 ` 	�	 $�$�$ ` 	¸�, & ` & 	 . . .

...
...

. . . ` �¹�,�� ª 	 b ` � ª 	�« �
ceddddf 

There is a surprisingly simple relationship between the shifts and the eigenvalues of this
matrix pencil.

THEOREM 2.1 (Watkins [31]). The shifts �(	l���������� are the finite eigenvalues of the
initial bulge pencil ¯�/ �h°�± .

In Section 2.1, we have seen that during the course of a QR iteration, a bulge is created
at the top left corner of

�
and chased down to the bottom right corner. Let

� ¢ T ¥ denote the
updated matrix

�
after the bulge has been chased O � : steps, i.e., O � : loops of Algorithm 1

have been applied to
�

after the update (2.1). The bulge resides in the submatrix¯ T �N� ¢ T ¥ � O�8¶: � O�8��º8¶:4�kO � O78*� � �(2.6)

which is exactly the submatrix designated by the entries
a

in (2.3).
THEOREM 2.2 (Watkins [31]). The shifts �(	l���������� are the finite eigenvalues of theO th bulge pencil ¯ T �*°�± .
Note that the definition of the bulge ¯ T is only possible for OHP®� � � � : , since other-

wise (2.6) refers to entries outside of
� ¢ T ¥ . Such a situation is displayed in (2.4). This tech-

nical issue can be resolved; by adding virtual rows and columns to the matrix
� ¢ T ¥ , see [31],

Theorem 2.2 can be extended to the case OE»Q� � � � : .
2.3. Convergence for large � in finite-precision arithmetic. Theorem 2.2, shows how

the shifts are transmitted during QR iterations. In order to achieve quadratic convergence
with Francis shifts in finite-precision arithmetic, it is essential that the information contained
in these shifts is properly transmitted to the bottom right corner. However, several numerical
experiments conducted in [31], show that the finite eigenvalues of the bulge pencils ¯ T ��°�±
become, as � increases, extremely sensitive to perturbations. Already for � �´\ A , they are
often completely swamped with roundoff errors and have no significant digit in common with
the intended shifts.

Although no exact relation between the quality of shifts in the bulge pencils and the
convergence of the QR algorithm in finite-precision arithmetic, was proven in [31], it is intu-
itively clear that the described sensitivity may affect the performance severely. Note that, this
does not necessarily imply that the QR algorithm does not converge for large � but the con-
vergence is much slower and must be attributed to linear convergence often taking place at the
top left corner of

�
. Figure 2.1 illustrates this phenomenon for matrices generated with the

MATLAB [21] command triu(rand(300),-1). As � increases, deflations taking place
at the top left corner (signaling linear convergence) start dominating deflations at the bottom
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FIG. 2.1. Lower (red dots) and higher (blue dots) indices of active submatrices that have order larger than ¼
during the multishift QR algorithm with ¼ Francis shifts.

right corner (signaling quadratic convergence). The QR algorithm requires about Iv A $ : bL½
flops (floating point operations) for � �¶\ A , while it requires only

\  ¾}�H: bv½ flops for � �N\ .
Note that the matrix under consideration is known to have extremely ill-conditioned

eigenvalues, see [28]. For matrices with fairly well-conditioned eigenvalues – such as those
generated by the MATLAB command hess(rand(300)) – the convergence of the QR al-
gorithm similarly slows down in finite-precision arithmetic as � increases [18, 31]. However,
the effect that linear convergence starts dominating quadratic convergence, is not as clearly
visible as in Figure 2.1.

3. Connection to Pole Placement. Although convincing numerical experiments for the
described shift blurring effects are provided in [31], there has been no explanation why bulge
pencils are getting so sensitive as � increases. In this section, we connect the computation
of , , the first column of the shift polynomial, to the pole placement problem in systems and
control theory, see [25, 26] for a numerical linear algebra oriented introduction.

First, we note that the unreducedness of
�

implies

,�� ª 	 � � ª 	¿ÀÂÁ 	 ` À ª 	�« À�Ã� b 
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Furthermore, it can be easily shown that neither the implicitly shifted QR iteration nor the
statement of Theorem 2.1 is affected if we replace , by a nonzero scalar multiple thereof.
Hence, we may assume without loss of generality that , is normalized such that ,
� ª 	 �: . By applying a simple equivalence transformations to the initial bulge pencil ¯Ä/ � °'± ,
Theorem 2.1 shows that the shifts �(	B��������'� are the eigenvalues of the matrixÅ � � � : � �i��: � � �%� ` � ª 	�« �², � : � � � 3 1�(3.1)

� ]^^^^^_
` 	�	 ` 	 & �� ` 	�« ��¤
	 ` 	Æ� � ` � ª 	�« � , 	` & 	 ` &�& �� ` & « ��¤
	 ` & � � ` � ª 	�« � ,�&b `vÇ & �� `vÇ « ��¤
	 `vÇ � � ` � ª 	�« � , Ç...

. . . . . .
...

...b �� b ` ��« ��¤�	 ` �¹� � ` � ª 	�« ��,��
cedddddf 

Next, consider the single-input control systemÈÉ'��Ê ��� � � : � �i��: � � � 1 É��VÊ ��� �Ë` � ª 	�« � 3 � �¸Ì �VÊ �(3.2)

with state vector É~� $Í� and input
Ì � $ � . The linear state feedback

Ì �VÊ �i� , � : � � � 1 É~��Ê �
yields the closed-loop matrix

Å 1 , where
Å

is defined as in (3.1). Hence, the feedback vector, � : � � � places the poles of the open loop system (3.2) to � 	 �������� � . Since , � : � � � is
uniquely defined by this property, we obtain the following connection:
Any pole placement algorithm for single-input systems is a suitable method for computing a

multiple of the first column of the shift polynomial; and vice versa.
To some extent, this connection has already been used by A.Varga for designing a multi-
shift pole placement algorithm [27]. A not-so-serious application is the expression of the QL
iteration [9], a permuted version of the QR iteration, in three lines of MATLAB code, using
functions of the MATLAB Control Toolbox [20]:

s = eig(A(1:m,1:m));
x = acker(A(n-m+1:n,n-m+1:n)’, A(n-m,n-m+1)*eye(m,1), s);
A = ctrbf(A, [zeros(1,n-m-1) 1 x]’, []);

An exceedingly more serious consequence is caused by observing that placing a large
number of poles in a single-input problem is often very ill-conditioned [12, 14], in the sense
that,the poles of the closed loop system are very sensitive to perturbations in the input data.
The nature of this ill-conditioning was analyzed in detail by Mehrmann and Xu [22, 23].
Assume that the input data of the pole placement problem – ¯ �Î� � : � �i��: � � � 1Ï� a �` � ª 	�« �)3�� , and �(	B����#���'� – are perturbed by sufficiently small perturbations Ð�¯ , Ð a andÐ��~	Z�������Ð���� . Set Ñ � ÒHÓlÔ(ÕvÖ4³ Ð�¯©��Ð a ·¸Ö � ¬ Ð��(	 ¬ ������ ¬ Ð���� ¬�× �
and let ØÙ be the feedback vector defined by the perturbed problem. Then, it was shown in [23,
Thm. 1.1] that the eigenvalues Ø��	B����#� Ø�'� of ¯ � a ØÙ 1 satisfy,¬ Ø� À � � À ¬ PÛÚ�:�8 Ö#ÜEÖ & Ö#Ü ¤
	 Ö &BÝ :�8 Ö ØÙ Ö &#Þ Ñ 8®ß � Ñ & � �(3.3)

where
Ü

is the eigenvector matrix of the closed loop matrix
Å 1 �Û� 8 a Ù 1 , normalized

such that all columns of
Ü

have unit norm. Although (3.3) is only an upper bound, numerical
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FIG. 3.1. Condition number of the eigenvector matrix à of the closed loop matrix á | .

experiments in [22, 23] suggest that (3.3) catches the qualitative behavior of the maximal
eigenvalue error rather well.

The presence of the condition number
Ö#ÜEÖ & Ö�Ü ¤�	 Ö & in (3.3), is particularly worrying.

Often, this term grows rapidly with � , even exponential growth can be proven for some
cases [22, Ex. 1]. Indeed, such an effect can be observed in the QR algorithm. For this
purpose, we constructed the closed loop matrix

Å 1 , as defined in (3.1), for a matrix
�

gen-
erated by the MATLAB command hess(rand(250)). Figure 3.1 displays the condition
number of the corresponding eigenvector matrix

Ü
for � ��\ ����#��:�G Francis shifts, clearly

exhibiting exponential growth.
The described connection to the notoriously ill-conditioned pole placement problem

yields an explanation for the sensitivity of the initial bulge pencil. However, it does not
explain the sensitivity of the bulge pencils ¯ 	 �â°�± , ¯)& �F°�± , �� . On the other hand, there
is little hope that the shifts, once destroyed because of the sensitivity of ¯ / �Q°�± , recover
during the bulge chasing process although this event sometimes occurs in practice [31].

4. Tightly Coupled Tiny Bulges. Chasing chains of tightly coupled tiny bulges instead
of one large bulge,is an approach which avoids shift blurring but is still capable to benefit
from a large number of Francis shifts. To describe this approach, let � , denote the number
of simultaneous shifts to be used in each QR iteration, and let �%ã denote the number of shifts
contained in each bulge. It is assumed that � is an integer multiple of � ã . To avoid shift
blurring effects we use tiny values for � ã , say � ã � ³ \ ��? · .

Our algorithm performs an implicitly shifted QR iteration with � Francis shifts on an
unreduced Hessenberg matrix

�
and consists of three stages, which are described in more

detail below. First, a chain of �+äl� ã tightly coupled bulges is bulge-by-bulge introduced in
the top left corner

�
. Second, the whole chain at once is chased down along the subdiagonal

until the bottom bulge reaches the bottom right corner of
�

. Finally, all bulges are bulge-by-
bulge chased off this corner.

Note that, the only aspect in which our algorithm extends the algorithms described in [4,
18] is that the latter are restricted to D¦��D bulges, i.e., � ã �N\ .

Introducing a chain of bulges. Given a set of � Francis shifts, we partition this set
into subsets å}	���å & �������å ��æ�"èç . Each å T contains � ã shifts and is closed under complex
conjugation. We apply the implicitly shifted QR iteration with the shifts contained in å�	 and
interrupt the bulge chasing process as soon as the bottom right corner of the bulge touches
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�~é � : �
FIG. 4.1. Introducing a chain of ¼)ê�ëíì%î©ï tightly coupled bulges, each of which contains ëíì%îyð shifts.

the �e�~é � :4� �~é � subdiagonal entry of
�

, where ��é � � �âä�� ã � � � ã 8º: � 8º: . Next, the
bulge belonging to å & is introduced and chased so that,its bottom right corner is at the ���ñé �� ã �*\ � �(é � � ã � : � subdiagonal entry. This process is continued until all �âä�� ã bulges are
stringed like pearls on the subdiagonal of the submatrix

� � : � �
é ��: � �(é � , see Figure 4.1.
Note that only this submatrix (painted red in Figure 4.1) must be updated during the bulge
chasing process. To update the remaining part of

�
(painted blue), all employed orthogonal

transformations are accumulated into a ��é � �(é matrix ò . This enables us to use matrix-matrix
multiplications: � � : � � é � ��� é 8 : ��� � �Ï5 ò 1 $�� � : � � é � ��� é 8¶: ��� � � 

Chasing a chain of bulges. Suppose that a chain of bulges resides on the subdiagonal of
the submatrix

� ����ó � � é � �'ó � � é � , where � é � ��ó 8 � �ñã�8�: � �âä��ñã . In the beginning, we have�'ó � : and � é � � �âä��ñã � � �ñã
8;: � 8;: but we will now subsequently increase these values by
chasing the complete chain. To move the chain to the submatrix

� ����ó 8 §y� � é 8 § � �'ó 8 §y��~é 8 §L� , each individual bulge is chased
§

steps, as depicted in Figure 4.2. This is done in
bottom-to-top order,so that,no bulges have to cross each other.

Again only a submatrix, namely
� ��� ó � �(é 8 § � � ó � �~é 8 §'� , must be updated during the

bulge chasing process. To update the rest of the matrix, we accumulate all transformations in
an orthogonal matrix ò of order ��� ��ã�8U: � �+äl�ñã#8 § 8U: � and use matrix-matrix multiplications:� ��� ó � �(é 8 § � �e�~é 8¶: ��� � �Ï5 ò 1 $�� ��� ó � �(é 8 § � �e�~é 8¶: ��� � � �� � : � � ó � :4� � ó � �~é 8 §L�Ï5ô� � : � � ó � :è� � ó � �(é 8 §L��$ ò�
Note that ò has a particular block structure that can be exploited to increase the efficiency of
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FIG. 4.2. Chasing a chain of ¼7ê�ë ì îgï tightly coupled bulges.

these multiplications:

ò � ]_ : b bb ò 	�	 ò 	 &b òÏ& 	 òÏ&�&
cf � ]^^_ : b bb õbXõ

ceddf �(4.1)

i.e., the matrices ò�	 & �[J ó÷ö K óÂö and ò & 	g�®J óeø K óùø , where úV	 � � �âä�� ã � � � ã 8<: ��� � ã andú & �û§ 8o� ã , are lower and upper triangular, respectively. There is even more structure
present, as illustrated in Figure 4.3. It is, however, difficult to take advantage of this extra
banded structure using level 3 BLAS [6].

The rare event of a zero subdiagonal entry between two consecutive bulges, during the
bulge chasing process is called a “vigilant” deflation [29]. Such a deflation causes a se-
vere loss of information,if bulges are chased from above through this zero subdiagonal entry.
This can be avoided by reintroducing the bulges in the row,in which the zero appears us-
ing essentially the same method that has been used for introducing bulges [4]. Note that
it is not necessary to take care of vigilant deflations caused by small non-zero subdiagonal
entries [30].

Getting rid of a chain of bulges. Once the bottom bulge of the chain has reached the
bottom right corner of

�
, the whole chain is bulge-by-bulge chased off this corner, similarly

to the introduction of bulges at the top left corner of
�

.

4.1. Numerical experiments. The described QR algorithm based on chains of tightly
coupled tiny bulges has been implemented in a Fortran 77 routine called MTTQR. Although
this routine generally requires more flops than standard implementations of the QR algo-
rithm [1], it can be expected that this extra cost is more than compensated by the fact that
MTTQR facilitates level 3 BLAS for a large part of the computation, see also [4].

Note that,the packing density of the bulges is getting higher as � ã , the number of shifts
per bulge, increases. For example, a :�?¦�h:�? principal submatrix of

�
may either contain : b

shifts distributed over five D)�UD bulges or it may contain : \ shifts distributed over three G��pG
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FIG. 4.3. Structure of the transformation matrix ü for chasing a chain of ¼)ê�ëLì�îhý bulges, each of which
contains ëvì-î�ï shifts, þ¹îyð�ÿ steps.

Matrix name � Description
OLM1000 : b4bèb Olmstead model
TUB1000 : b4b4b tubular reactor model
TOLS1090 : b ¾ b Tolosa matrix
TOLSBAL : b ¾ b balanced Tolosa matrix
RDB1250 : \ G b reaction-diffusion Brusselator model, � � b  G
RDB1250L : \ G b reaction-diffusion Brusselator model, � � :
BWM2000

\ b4bèb
Brusselator wave model in chemical reaction

OLM2000
\ b4bèb

Olmstead model
DW2048

\ b A�� square dielectric waveguide
RDB2048

\ b A�� reaction-diffusion Brusselator model, � � b  G
RDB2048L

\ b A�� reaction-diffusion Brusselator model, � � :
PDE2961

\ ¾4?': partial differential equation
TABLE 4.1

Subset of matrices from the test matrix collection [2].

bulges. In either case, essentially the same amount of operations is necessary to chase the
chain of bulges from top to bottom. Hence, if shift blurring does not cause problems, using
larger values for � ã can improve the efficiency of MTTQR.

To verify these statements, we applied MTTQR to a subset of real �;��� matrices from
the test matrix collection [2], see also Table 4.1. Note that TOLSBAL is the matrix obtained
after balancing [24] has been applied to the highly unbalanced matrix TOLS1090. For the
parameters � (number of shifts in each iteration) and

§
(number of steps a chain of bulges is

chased before off-diagonal parts are updated), we followed the recommendations given in [4]:

� � �� � ? b � if : b4bèb P®�im \ bèb4b �: \ b � if
\ b4bèb P®�im \ G b4b �:�GB?L� if
\ G bèb P®�imQD bèb4b �
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FIG. 4.4. Execution times for DHSEQR and MTTQR, the tiny-bulge multishift QR algorithm with ëLì��
	��� ï�����
shifts per bulge, applied to matrices from the test matrix collection [2].

and
§H� Dvä \�$ � �*\ .
Our numerical experiments were performed on an IBM Power3 based SMP system with

four 375 Mhz Power3 Processors and A gigabytes of memory. The Fortran 77 routines are
based on the BLAS kernels provided by IBM’s machine-specific optimized Fortran library
ESSL. We used the XL Fortran compiler with optimization level D . Matrices,were always
stored in an array,with leading dimension slightly larger than the number of rows to avoid
unnecessary cache conflicts.

Figure 4.4 compares the cpu times required by MTTQR with those required by DHSEQR,
LAPACK’s implementation of the QR algorithm. ¿From these times, we may conclude that
MTTQRwith � ã �N\ shifts per bulge requires considerably less time than DHSEQR for all con-
sidered matrices except TOLSBAL and TUB1000. For TOLSBAL, MTTQR consumes D4A��
more time, which seems to be due to the fact that the QR algorithm converges so quickly that
the overhead in MTTQR dominates any performance improvements gained by using matrix-
matrix multiplications . For TUB1000, we obtain a performance improvement of only :4ÍG�� ,
which is much less than for the other matrices, where this figure ranges from

\ G�� up to?4¾�� . Increasing � ã from
\

to A often leads to even further speedups. A notable exception is
TOLS1090, where MTTQR requires :�¾ b � more time if � ã � A instead of � ã �¶\ is used. We
believe that,this behavior can be attributed to the poor balancing of this matrix, which seems
to amplify shift blurring effects. The highest improvements can be obtained for TUB1000
and BWM2000, where MTTQR requires

\ I�� less time if � ã � A instead of � ã �´\ is used.
Increasing � ã further, from A to ? , can lead to additional (albeit often insignificant) speedups;
but it also raises the risk of shift blurring.

4.2. Influence of aggressive early deflation. We repeated the numerical experiments
from the previous section,by combining aggressive early deflation with the QR algorithm
based on chains of tightly coupled bulges in a Fortran 77 routine called ATTQR. Aggressive
early deflation is a highly successful deflation strategy that takes advantage of matrix per-
turbations outside of the commonly considered subdiagonal entries, see [5] for more details.
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FIG. 4.5. Execution times for ATTQR, the tiny-bulge multishift QR algorithm with aggressive early deflation
and ë ì ��	��� ï����� shifts per bulge, applied to matrices from the test matrix collection [2].

Our choice of parameters for ATTQR is based on the recommendations given in [5]:� � �� � ¾è?L� if : b4bèb P®�im \ bèb4b �: \ b � if
\ b4bèb P®�im \ G b4b �:�� b � if
\ G bèb P®�imQD bèb4b �§H� D ä \�$ � �*\ , and � � D ä \�$ � (size of deflation window).

The cpu times displayed in Figure 4.5 show that the use of aggressive early deflation
results in substantial improvements. The gained cpu time savings (for the case that �%ã �º\
shifts per bulge are used) range from :�A�� for the TOLS1090 matrix up to I�A�� for the
RDB2048 matrix. Again, increasing ��ã from

\
to A leads to even further speedups, except

for TOLS1090 and OLM2000. For all other matrices, the gained savings range from G�� up
to
\ A�� .

5. Conclusion. The conclusion that can be drawn from this paper is two-edged. On the
one hand, the explained connection to the pole placement problem confirms the well-known
wisdom that large bulges severely deteriorate the convergence of the QR algorithm. On the
other hand, we have shown that the use of slightly larger bulges can still have a positive effect
on the performance of modern variants of the QR algorithm. A good compromise seems to
be made by Gp�yG bulges.

6. Final Remarks and Acknowledgments. The work presented in this article is based
on preliminary results derived in [16]. The Fortran 77 routines MTTQR and ATTQR, used in
the numerical experiments, are available on request from the author.

The author is greatly indebted to Volker Mehrmann for illuminating discussions and
to Ralph Byers for providing Fortran implementations of the algorithms described in [4, 5];
these implementations laid the basis for the Fortran routines used in this paper. The numerical
experiments in Section 4 were performed using facilities of the High Performance Computing
Center North (HPC2N) in Umeå, Sweden.

REFERENCES



ETNA
Kent State University 
etna@mcs.kent.edu

62 D. KRESSNER

[1] E. ANDERSON, Z. BAI, C. BISCHOF, S. BLACKFORD, J. W. DEMMEL, J. J. DONGARRA, J. DU CROZ,
A. GREENBAUM, S. HAMMARLING, A. MCKENNEY, AND D. C. SORENSEN, LAPACK Users’ Guide,
SIAM, Philadelphia, PA, third edition, 1999.

[2] Z. BAI, D. DAY, J. W. DEMMEL, AND J. J. DONGARRA, A test matrix collection for non-Hermitian
eigenvalue problems (release 1.0), Technical Report CS-97-355, Department of Computer Sci-
ence, University of Tennessee, Knoxville, TN, USA, March 1997, also available online from
http://math.nist.gov/MatrixMarket.

[3] Z. BAI AND J. W. DEMMEL, On a block implementation of the Hessenberg multishift ��� iterations, Internat.
J. High Speed Comput., 1 (1989), pp. 97–112.

[4] K. BRAMAN, R. BYERS, AND R. MATHIAS, The multishift ��� algorithm. I. Maintaining well-focused
shifts and level 3 performance, SIAM J. Matrix Anal. Appl., 23 (2002), No. 4, pp. 929–947.

[5] K. BRAMAN, R. BYERS, AND R. MATHIAS, The multishift ��� algorithm, II, Aggressive early deflation,
SIAM J. Matrix Anal. Appl., 23 (2002), No. 4, pp. 948–973.

[6] J. J. DONGARRA, J. DU CROZ, I. S. DUFF, AND S. HAMMARLING, A set of level 3 basic linear algebra
subprograms, ACM Trans. Math. Software, 16 (1990), pp. 1–17.

[7] J. J. DONGARRA, D. C. SORENSEN, AND S. J. HAMMARLING, Block reduction of matrices to condensed
forms for eigenvalue computations, J. Comput. Appl. Math., 27 (1989), No. 1-2, pp. 215–227, reprinted
in Parallel algorithms for numerical linear algebra, pp. 215–227, North-Holland, Amsterdam, 1990.

[8] A. A. DUBRULLE, The multishift QR algorithm–is it worth the trouble? TR 6320-3558, IBM Scientific
Center, Palo Alto, CA, 1991.

[9] A. A. DUBRULLE, R. S. MARTIN, AND J. H. WILKINSON, The implicit QL algorithm, Numerische
Mathematik, 12 (1968), pp. 377–383, also in [34, pp.241–248].

[10] J. G. F. FRANCIS, The QR transformation, parts I and II, Computer Journal, 4 (1961), pp. 265–271, 4 (1962),
pp. 332–345.

[11] G. H. GOLUB AND C. F. VAN LOAN, Matrix Computations, Johns Hopkins University Press, Baltimore,
MD, third edition, 1996.

[12] C. HE, A. J. LAUB, AND V. MEHRMANN, Placing plenty of poles is pretty preposterous, Preprint SPC 95-17,
Forschergruppe ‘Scientific Parallel Computing’, Fakultät für Mathematik, TU Chemnitz-Zwickau, 1995.

[13] G. HENRY, D. S. WATKINS, AND J. J. DONGARRA, A parallel implementation of the nonsymmetric QR
algorithm for distributed memory architectures, SIAM J. Sci. Comput., 24 (2002), No. 1, pp. 284–311.

[14] N. J. HIGHAM, M. KONSTANTINOV, V. MEHRMANN, AND P. PETKOV, Sensitivity of computational control
problems, Numerical Analysis Report No. 424, Manchester Centre for Computational Mathematics,
Manchester, England, February 2003, to appear in IEEE Control Systems Magazine,

[15] L. KAUFMAN, A parallel QR algorithm for the symmetric tridiagonal eigenvalue problem, Journal of Parallel
and Distributed Computing, 3 (1994), pp. 429–434.

[16] D. KRESSNER, Numerical Methods and Software for General and Structured Eigenvalue Problems, PhD
thesis, TU Berlin, Institut für Mathematik, Berlin, Germany, 2004.

[17] V. N. KUBLANOVSKAYA, On some algorithms for the solution of the complete eigenvalue problem, Zhurnal
Vychislitelnoi Matematiki i Matematicheskoi Fiziki, 1 (1961), pp. 555–570.

[18] B. LANG, Effiziente Orthogonaltransformationen bei der Eigen- und Singulärwertzerlegung, Habilitationss-
chrift, 1997.

[19] B. LANG, Using level ð BLAS in rotation-based algorithms, SIAM J. Sci. Comput., 19 (1998), No. 2,
pp. 626–634.

[20] The MATLAB Control Toolbox, Version 5, The MathWorks, Inc., Cochituate Place, 24 Prime Park Way,
Natick, MA, 2000.

[21] MATLAB Version 6.5, The MathWorks, Inc., Cochituate Place, 24 Prime Park Way, Natick, MA, 2002.
[22] V. MEHRMANN AND H. XU, An analysis of the pole placement problem, I,

The single-input case, Electron. Trans. Numer. Anal., 4 (1996), pp. 89–105,
http://etna.mcs.kent.edu/vol.4.1996/pp89-105.dir/pp89-105.pdf

[23] V. MEHRMANN AND H. XU, Choosing poles so that the single-input pole placement problem is well condi-
tioned, SIAM J. Matrix Anal. Appl., 19 (1998), No. 3, pp. 664–681.

[24] B. N. PARLETT AND C. REINSCH, Balancing a matrix for calculation of eigenvalues and eigenvectors,
Numerische Mathematik, 13 (1969), pp. 293–304, also in [34, pp.315–326].

[25] P. H. PETKOV, N. D. CHRISTOV, AND M. M. KONSTANTINOV, Computational Methods for Linear Control
Systems, Prentice-Hall, Hertfordshire, UK, 1991.

[26] P. VAN DOOREN, Numerical Linear Algebra for Signal, Systems and Control, Draft notes prepared for the
Graduate School in Systems and Control, 2003.

[27] A. VARGA, A multishift Hessenberg method for pole assignment of single-input systems, IEEE Trans. Au-
tomat. Control, 41 (1996), No. 12, pp. 1795–1799.

[28] D. VISWANATH AND L. N. TREFETHEN, Condition numbers of random triangular matrices, SIAM J. Matrix
Anal. Appl., 19 (1998), No. 2, pp. 564–581.

[29] D. S. WATKINS, Shifting strategies for the parallel ��� algorithm, SIAM J. Sci. Comput., 15 (1994), No. 4,

http://math.nist.gov/MatrixMarket
http://etna.mcs.kent.edu/vol.4.1996/pp89-105.dir/pp89-105.pdf


ETNA
Kent State University 
etna@mcs.kent.edu

LARGER BULGES IN THE QR ALGORITHM 63

pp. 953–958.
[30] D. S. WATKINS, Forward stability and transmission of shifts in the ��� algorithm, SIAM J. Matrix Anal.

Appl., 16 (1995), No. 2, pp. 469–487.
[31] D. S. WATKINS, The transmission of shifts and shift blurring in the ��� algorithm, Linear Algebra Appl.,

241/243 (1996), pp. 877–896.
[32] D. S. WATKINS AND L. ELSNER, Chasing algorithms for the eigenvalue problem, SIAM J. Matrix Anal.

Appl., 12 (1991), No. 2, pp. 374–384.
[33] D. S. WATKINS AND L. ELSNER, Convergence of algorithms of decomposition type for the eigenvalue

problem, Linear Algebra Appl., 143 (1991), pp. 19–47.
[34] J. H. WILKINSON AND C. REINSCH, Handbook for Automatic Computation, Vol. II Linear Algebra,

Springer-Verlag, New York, 1971.


