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Abstract. The periodic Schur decomposition has been generally seen as a tool to compute the
eigenvalues of a product of matrices in a numerically sound way. In a recent technical report, it was
shown that the periodic Schur decomposition may also be used to accurately compute the singular
value decomposition (SVD) of a matrix. This was accomplished by reducing a periodic pencil that
is associated with the standard normal equations to eigenvalue revealing form. If this technique is
extended to the periodic QZ decomposition, then it is possible to compute the quotient singular
value decomposition (QSVD) of a matrix pair. This technique may easily be extended further to a
sequence of matrix pairs, thus computing the “periodic” QSVD.
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1. Introduction. In a recent technical report [8], a method was proposed by
which to compute the singular value decomposition (SVD) of a matrix via the periodic
Schur decomposition. This method applied the periodic QR algorithm [1] [6] to the
matrices in the periodic linear system of equations

x2 = Ax1,

x3 = ATx2,
(1.1)

thereby computing the orthogonal matrices and the non-negative definite diagonal
matrix that comprise the SVD of the matrix A. While numerically not as efficient
as the standard SVD algorithm, it was shown that the periodic QR algorithm could
compute the SVD of a matrix with comparable accuracy. In fact, if the standard
periodic QR algorithm is modified to perform a single (real) implicit shift instead of
the standard double (complex-conjugate) implicit shift, the result is essentially the
Golub–Kahan SVD algorithm [3] applied to both A and AT , doubling the normal
operations count.

The technical report further showed that it was possible to compute the singular
values of a matrix operator defined by a “quotient” of matrices. Here we speak of the
operator Ξ : X1 → X2, X1 ⊆ R

n X2 ⊆ R
n defined by the equations

Ex2 = Fx1,(1.2)

where E ∈ Rn×n and F ∈ Rn×n . This method accurately extracted the singular
values of Ξ by examining the eigenvalues of a related operator.

In this paper, we develop the idea further by relating the results to the quotient
singular value decomposition (QSVD) [11] [13]. The QSVD reduces the matrices E
and F in (1.2) to (diagonal) singular value revealing form. More precisely, via the

∗ Received January 14, 1994. Accepted for publication September 23, 1994. Communicated by
P. M. VanDooren.
† Institute of Information and Control Theory, Academy of Sciences of the Czech Republic, Pod
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QSVD it is possible to compute a non–orthogonal matrix X , non–negative definite
diagonal matrices Φ and Θ, and orthogonal matrices U and V such that

XTEU = Φ,
XTFV = Θ.(1.3)

Furthermore, if E is nonsingular, the ordering of the diagonal elements of Φ and
Θ may be chosen to reflect the ordering of the singular values in the SVD of the
explicitly formed operator Ξ̂ = E−1F , i.e.,

θi
φi
≥ θi+1

φi+1
.(1.4)

In this paper, as in [7], we will show that it is possible to compute the matrices
X , Φ, Θ, U and V via the periodic QZ decomposition. Further, we will show how this
technique may be extended to compute the periodic QSVD of a sequence of matrix
pairs. First, however, we review from [9] the periodic QZ decomposition.

2. The Periodic QZ Decomposition. The periodic QZ decomposition [1] [6]
[9] simultaneously triangularizes by orthogonal equivalences a sequence of matrices
associated with the generalized periodic eigenvalue problem. Consider the linear al-
gebraic map Πk : Xk → Xk+p where Xk ⊆ Rn and Xk+p ⊆ Rn and xk+p = Πkxk is
defined by the set of linear equations

Ekxk+1 = Fkxk,

Ek+1xk+2 = Fk+1xk+1,

...
...

Ek+p−1xk+p = Fk+p−1xk+p−1.(2.1)

It is possible to operate on the matrices Ek and Fk with orthogonal matrices Qk
and Zk so as to triangularize the system associated with the generalized periodic
eigenvalue problem

Ekxk+1 = Fkxk,

Ek+1xk+2 = Fk+1xk+1,

...
...

Ek+p−2xk+p−1 = Fk+p−2xk+p−2,

λEk+p−1xk = Fk+p−1xk+p−1.(2.2)

More precisely, the following products

QTkEkZk+1 , QTkFkZk,

QTk+1Ek+1Zk+2 , QTk+1Fk+1Zk+1,

...
...

QTk+p−2Ek+p−2Zk+p−1 , QTk+p−2Fk+p−2Zk+p−2,

QTk+p−1Ek+p−1Zk+p , QTk+p−1Fk+p−1Zk+p−1,(2.3)

have the properties that QTkEkZk+1 is a quasi–upper triangular matrix Hk, and the
remaining matrices QTk+`Ek+`Zk+`+1 and QTk+`Fk+`Zk+` are upper triangular matri-
ces Hk+` and Tk+`, respectively, with Zk+p = Zk. This permits the periodic pencil
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in (2.2) to be expressed as the triangularized periodic pencil that is associated with
the linear algebraic map Γk : Yk → Yk+p where Yk ⊆ Rn and Yk+p ⊆ Rn , and where
yk+p = Γkyk, as follows:

Hkyk+1 = Tkyk,

Hk+1yk+2 = Tk+1yk+1,

...
...

Hk+p−2yk+p−1 = Tk+p−2yk+p−2,

µHk+p−1yk = Tk+p−1yk+p−1,(2.4)

with

x` = ZT` y`.(2.5)

Clearly, since the systems in (2.2) and (2.4) are (orthogonally) equivalent, their
eigenvalues are equal, i.e., Λ(Π`) = Λ(Γ`). Further, the triangularized system of
linear equations in (2.4) is written in an eigenvalue revealing form; this allows the
eigenvalues of the period map defined by (2.4) to be related to the diagonal elements of
its constituent matrices. Proceeding, let tijk denote the ijth element of the matrix Tk,
and similarly let hijk denote the ijth element of the matrix Hk. Also, let the matrices
T̃ik and H̃ik be 2 × 2 matrices centered on the diagonals of Tk and Hk respectively,
with the upper left–hand entries being tiik and hiik, if the system defined by T̃ik and
H̃ik is associated with a 2× 2 bulge in the quasi–upper triangular H1.

Then the eigenvalues of the operator Γ` may be written as

Λ(Γ`) =



λi =
p∏
j=1

tiij/hiij if hiij 6= 0 , λi ∈ R

{
{λi, λi+1} = Λ(H̃−1

ip T̃ip · · · H̃−1
i1 T̃i1)

λi = λ̄i+1 ∈ C

}
{ λi =∞ if tiij 6= hiij = 0 }
{ λi ∈ C if tiij = hiij = 0 } .


,
i = {1, . . . , n}
` = {1, . . . , p}.(2.6)

From the definition above, the eigenvalues fall into four categories. Since it is
necessary to refer to these categories throughout the paper, we provide a table of
nomenclature in the following definition.

Definition 1. Let E and F in (1.2) be the scalars E = α and F = β. Then the
adjectives1 enomorphic and medotropic may be used to describe the four categories
of possible eigenvalues as shown in Table 1.

3. Quotient Singular Value Decomposition. In this section, we show how
the QSVD may be related to the periodic QZ decomposition. We start by restricting
our attention to the case when E and F in (1.2) are nonsingular. In such a case, it is

1 We introduce here the neologisms enomorphic and medotropic. These terms are derived from
Greek meaning “of the form of one”, and “changed by zero”, respectively. The former term reflects the
fact that an enomorphic number is equivalent to one for a finite scaling. The latter term emphasizes
the fact that a medotropic number has a zero in its rational representation.
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Table 2.1

Table of Eigenvalue Categories

α β λ categories

α 6= 0 β 6= 0 β
α finite, determinate, enomorphic

α 6= 0 β = 0 0 finite, determinate, medotropic

α = 0 β 6= 0 ∞ non-finite, determinate, medotropic

α = 0 β = 0 C non-finite, indeterminate, medotropic

possible to write the matrices

∆̂1 = FTE−TE−1F,

∆̂2 = FFTE−TE−1,

∆̂3 = E−1FFTE−T ,

∆̂4 = E−TE−1FFT = ∆̂T
2 ,

(3.1)

where the matrices ∆̂i are nonsingular. It turns out that the eigenvectors of these
matrices are closely related to the QSVD, which we demonstrate formally in the
following lemmas and theorems.

Lemma 3.1. Let ∆̂1, ∆̂2, ∆̂3, and ∆̂4 be defined by (3.1), with E ∈ R
n×n and

F ∈ Rn×n nonsingular. There exist matrices M1, M2, M3, and M4 such that the
following sets of relations hold:

S = M−1
1 ∆̂1M1,

= M−1
2 ∆̂2M2,

= M−1
3 ∆̂3M3,

= M−1
4 ∆̂4M4,

(3.2)

where S is real, diagonal, positive definite and has arbitrarily ordered diagonal ele-
ments and

D1 = M−1
2 F M1,

D2 = M−1
3 E−1 M2,

D3 = M−1
4 E−TM3,

D4 = M−1
1 FT M4.

(3.3)

where the matrices Di are diagonal and positive definite.
Proof. Since ∆̂1 is symmetric, we can find an orthogonal M1 which diagonalizes

∆̂1 in (3.1) and (3.2) with arbitrarily ordered eigenvalues, as above. Let

F ∗M1 = M̃2D̃1,(3.4)

where the matrix D̃1 is chosen to be an arbitrary positive definite diagonal matrix and
where the matrix M̃2 is nonsingular. Inserting the identity matrix M̃2M̃

−1
2 between

E−1 and F in the equation for S in (3.1) yields the expression

M−1
1 FTE−TE−1M̃2 M̃−1

2 FM1 = S,

M−1
1 FTE−TE−1M̃2 D̃1 = S,︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸︷︷︸

@@ = @@ .

(3.5)



ETNA
Kent State University 
etna@mcs.kent.edu

142 On the periodic quotient singular value decomposition

Since S and D̃1 are diagonal, M−1
1 FTE−TE−1M̃2 must be diagonal as well. Noting

that diagonal matrices commute, we write

M̃−1
2 FM1M

−1
1 FTE−TE−1M̃2 = S.(3.6)

This implies that it is possible to write M̃2 = M2 and D̃1 = D1. Repeating this
procedure for all of the matrices Di in (3.3) completes the proof.

In Lemma 3.1 the matrices M−1
2 and M1 diagonalize F ; however, we would like

to diagonalize this matrix without forming an inverse. This indeed is possible, as we
demonstrate in the next lemma.

Lemma 3.2. Suppose M2 and M4 diagonalize ∆̂2 and ∆̂4, respectively, with the
same eigenvalue ordering, as in (3.2). Then M−T4 and M−T2 diagonalize ∆̂2 and ∆̂4,
respectively. Further, if the eigenvalues of the matrices ∆̂i are distinct, the matrices
M2 and M4 may be related by the equation

M−T2 = M4L,(3.7)

with L diagonal.
Proof. Since M2 diagonalizes ∆̂2, M4 diagonalizes ∆̂4, and S = ST ,

S = M−1
4 E−TE−1FFTM4,

= ST ,

= MT
2 E
−TE−1FFTM−T2 .

With the eigenvalues of S distinct, columns of the the matrices M−T2 and M4 are
right eigenvectors associated with the eigenvalues of S. Since eigenvectors of distinct
eigenvalues are equal up to a scaling, then M−T2 = M4L with L nonsingular and
diagonal.

The lemmas above demonstrate a number of remarkable properties of the sets
of matrices Mi and ∆̂i, namely, that the matrices Mi diagonalize the matrices ∆̂i,
that the matrices Mi diagonalize the matrices E, ET , F and FT individually, and
that under certain conditions the inverses of all of the Mi’s may be computed by
appropriately weighting the columns of related Mj’s. These properties allow us to
demonstrate our main result.

Theorem 3.3. Let the matrices E ∈ Rn×n and F ∈ Rn×n be nonsingular with
the eigenvalues of the matrices ∆i in (3.1) distinct. Further, let M1, M2, M3, and
M4 be defined as in (3.2) and (3.3). There exists a diagonal signature matrix P with

P =


±1

±1
. . .

±1

 ,(3.8)

such that U , X, V Φ and Θ associated with the QSVD (1.3) of Ξ (1.2) may be written
as

U = M3,
X = M4P,
V = M1,
Φ = PMT

4 EM3,
Θ = PMT

4 FM1.

(3.9)



ETNA
Kent State University 
etna@mcs.kent.edu

J.J. Hench 143

Proof. Since ∆̂1 is symmetric, it is possible to choose M1 to be orthogonal.
Further, the matrices D1, D2, and D3 may be chosen such that the columns of M2,
M3 and M4 are unit normalized. The fact that the columns of M3 are unit normalized
and that the matrix ∆̂3 is symmetric imply that M3 is orthogonal. Thus,

D1 = M−1
2 FM1,

D−1
2 = M−1

2 EM3,

with M1 and M3 are orthogonal, and with D1 and D2 diagonal and positive definite.
Since the singular values of Ξ are distinct, then via Lemma 3.2,

LD1 = MT
4 FM1,

LD−1
2 = MT

4 EM3.

This implies that MT
4 FM1 and MT

4 EM3 are diagonal. Setting P = sgn(L) completes
the proof.

Remark 1. In the proof of the above theorem, the condition that the singular
values appearing on the diagonal of Φ and Θ be ordered as in (1.4) was not imposed.
However, any ordering of the singular values in the QSVD may be imposed without
loss of generality. 3

In general, we would like to be able to prove Theorem 3.3 when E and F are
not restricted to be nonsingular with the singular values of Ξ in (1.2) distinct. Even
in the case where E and F are nonsingular, the procedure outlined in the proof of
Lemma 3.1 is undesirable from a numerical point of view since it requires forming the
matrices ∆̂i explicitly. Fortunately, the periodic QZ decomposition allows us to view
the matrices ∆̂i as period–maps ∆i of certain related periodic systems, thereby elimi-
nating the need for inversions and multiplications by non-orthogonal matrices. Three
key properties of the periodic QZ decomposition are employed to generalize Theorem
3.3 to the case where E and F are singular. The first property allows the reduc-
tion of the matrices comprising a periodic system of equations to quasi–triangular
(eigenvalue revealing) form without forming the period–map explicitly. Parentheti-
cally, this property implies that the periodic QZ decomposition triangularizes each of
the period–maps ∆i separately. The second property allows the eigenvalues appear-
ing along the diagonals of the triangularized period–map produced by the periodic
QZ decomposition to be ordered arbitrarily. The third property asserts that the first
columns (rows) of the matrices Zi (QTi ) of the periodic QZ decomposition are right
(left) eigenvectors of the period–maps ∆i. By rotating each of the eigenvalues of the
system triangularized by the periodic QZ decomposition in turn to the upper left–
hand corner, it is possible to assemble the eigenvector matrices Mi associated with
the ∆̂i’s in (3.2) and (3.3) and thereby to compute all of the matrices related to the
QSVD. This may be done irrespective of the rank of E and F . Proceeding, we propose
a modified form for the periodic QZ decomposition, which is more closely related to
the QSVD than the standard periodic QZ decomposition.

Lemma 3.4. Let Q and Z be orthogonal matrices with the product QZ being
upper-triangular. Then QZ = P where P is a diagonal signature matrix.

Proof. By definition, P is orthogonal which implies PTP = I. Since P is upper
triangular as well, PTP = I implies that P is diagonal. Finally, since the modulus of
the eigenvalues of an orthogonal matrix must be one and since P is real, then P is a
diagonal matrix with pii = ±1
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Next, the operator ∆1 is defined in terms of a periodic system. Eventually it will
be used to compute the QSVD of Ξ. The next lemma shows that its periodic QZ
decomposition has a special form.

Lemma 3.5. Let the operator ∆1 : X1 → X4 be the operator defined by the
equations

Ex2 = Fx1,

ETx3 = x2,

x4 = FTx3,(3.10)

with E ∈ Rn×n and F ∈ Rn×n nonsingular. There exist orthogonal matrices Q, U ,
V , and W such that

QTEU = H1 , QTFV = T1,
UTETW = H2 , V TFTW = T3.

(3.11)

where H1, H2, T1, and T3 are upper triangular.
Proof. Via the periodic Schur decomposition, there exist orthogonal matrices Q1,

Q2, Q3, Z1, Z2, and Z3 such that

QT1 EZ2 = H1 , QT1 FZ1 = T1,
QT2 E

TZ3 = H2 , QT2 Z2 = T2,
QT3 Z1 = H3 , QT3 F

TZ3 = T3,
(3.12)

where H2, H3, T1, T2, and T3 are upper–triangular. Since the operator ∆1 = ∆̂1

is symmetric, the eigenvalues of the operator will be real and therefore H1 is upper-
triangular as well. By Lemma 3.4, QT2 Z2 = P1 and QT3 Z1 = P2 where the diagonal
elements of P1 and P2 are ±1. This implies that the columns of Q2 and Z2 differ only
by sign. This is equally the case for Q3 and Z1. By setting Q = Q1, U = Q2 = Z2P1,
V = Q3 = Z1P2, and W = Z3, we complete the proof.

Remark 2. Since the operator ∆1 = ∆̂1 with E and F nonsingular, the or-
thogonal matrix V resulting from the (modified) periodic QZ decomposition that
diagonalizes the operator is the matrix V associated with the QSVD in (1.3), mod-
ulo the sign of the columns. Similarly, the orthogonal matrix U resulting from the
periodic QZ decomposition is the matrix U associated with the same QSVD. 3

In the following lemma, we show how the remaining matrices X , Φ and Θ may
be computed via the periodic QZ decomposition.

Lemma 3.6. Let Ξ be defined as in (1.2), with E ∈ Rn×n and F ∈ Rn×n

nonsingular. Further, let the eigenvalues of the matrices ∆i in (3.1) be distinct.
Then the matrices X, U , V , Φ, and Θ associated with the QSVD in (1.3) may be
computed via the (modified) QZ decomposition in (3.11).

Proof. Via Lemma 3.5, it is possible to find orthogonal matrices Q̄, Ū , V̄ , and W̄
that diagonalize ∆1 with a particular eigenvalue ordering. Let λi be the eigenvalue
associated with the ith column of V̄ . Let the matrix V[ j] be the orthogonal matrix
that results from interchanging the first column of V̄ and the jth column. Since the
operator ∆1 is diagonalized by the matrix V̄ , V[ j] also diagonalizes the operator ∆1

with the jth eigenvalue in the upper left–hand corner. Now, define the matrices Q[ j],
U[ j], and W[ j] as the matrices, along with V[ j], that triangularize matrices E, F , ET ,
and FT in ∆1 with the jth eigenvalue in the upper left–hand corner. Also define the
vector x̃[ j] to be the first column of W[ j]. Since ∆4 is triangularized by W[ j] with the
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jth eigenvalue in the upper left–hand corner, then x̃[ j] is a right eigenvector of ∆4 and,
via Lemma 3.2, x̃T[ j] is a left eigenvector of ∆2. Thus, the matrix X̃ = [x̃[1], . . . , x̃[n]]
diagonalizes ∆4 from the right and X̃T diagonalizes ∆2 from the left with the same
eigenvalue ordering. This implies, via Lemma 3.1, that X̃T along with matrices U and
V diagonalize E and F , albeit with the diagonal elements not necessarily positive.
There exists, however, a diagonal signature matrix P as in (3.8), a matrix X = PX̃,
and orthogonal matrices U and V such that XT , U , and V diagonalize E and F with
positive diagonal elements.

In the proof above, we rely on the fact that the matrices E and F are nonsingular
and with the singular values distinct. In the following theorem, we provide a proof
for the existence of the QSVD with E and F possibly singular.

Theorem 3.7. Let E ∈ Rn×n and F ∈ Rn×n and the operator Ξ be defined
as in (1.2). There exist a non–orthogonal matrix X, non–negative definite diagonal
matrices Φ and Θ, and orthogonal matrices U and V such that

XTEU = Φ,
XTFV = Θ.(3.13)

Proof. Let {E(k)} and {F(k)} be a sequence of nonsingular n × n matrices that
converge pointwise to E and F respectively with the eigenvalues of the associated
matrix ∆̂(k) distinct. Let the matrices Q(k), U(k), V(k), W(k), H1(k), H2(k), T1(k),
and T2(k) be the matrices produced by the (modified) periodic QZ decomposition in
(3.11). Further, let X(k), Φ(k), and Θ(k) be produced by the procedure in the proof
in Lemma 3.6. For any given E(k) and F(k), the periodic QZ decomposition produces
bounded Q(k), U(k), V(k), W(k). The boundedness of Q(k), U(k), V(k), W(k), E(k),
and F(k) clearly imply the boundedness of X(k), Φ(k), and Θ(k). Finally, since these
matrices are all elements of a compact metric space, the Bolzano-Weierstrass Theorem
ensures that the bounded sequence {(U(k), X(k), V(k),Φ(k),Θ(k))} has a converging
subsequence, ki, i.e.,

lim
ki→∞

{(U(ki , X(ki), V(ki),Φ(ki),Θ(ki))} = (U,X, V,Φ,Θ).

In the limit, the matrices U and V remain orthogonal and the matrices Φ and ∆ are
non–negative definite, and therefore are matrices associated with the QSVD in (1.3).

Remark 3. This proof of the existence of the QSVD for E and F singular requires
the use of a converging subsequence, which is impractical from a computational point
of view. If the requirement that Φ and Θ is diagonal is relaxed to be block upper
triangular, where the non-diagonal blocks correspond to the non-distinct singular
values, then the matrices resulting from the procedure in the proof in Lemma 3.6
suffices. In such a case, this algorithm requires approximately 162n3 flops, assuming
2 implicit QZ steps per eigenvalue. This compares with approximately 52n3 flops for
the standard QSVD algorithm [13]. 3

Remark 4. In [12] and [13], Van Loan suggests the use of the VZ algorithm [12]
applied to the pencil

ETE − λFTF,(3.14)

to compute the singular values of Ξ in (1.2). This idea is similar to the idea of this
paper in a number of ways. First, the matrix pencil in (3.14) is closely related to
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the operator ∆4. Second, the VZ decomposition is nearly identical to the modified
periodic QZ decomposition proposed in Lemma 3.5. To our knowledge, however,
the eludication of the relationships between the eigenvectors of the operators ∆i and
the matrices U , X , and V and the method of extracting the eigenvectors from the
orthogonal matrices that comprise the modified QZ decomposition is novel to this
paper. 3

4. Periodic Quotient Singular Value Decomposition. In this section, we
examine the operator Π1 : X1 → Xp+1, X1 ⊆ Rn Xp+1 ⊆ Rn , where Π1 is defined by
the equations

E1x2 = F1x1,
... =

...
Epxp+1 = Fpxp,

(4.1)

with Ei ∈ Rn×n and Fi ∈ Rn×n . In this section, we intend to show that it is possible
to implicitly reduce the matrices comprising the operator Π1 to diagonal form as was
the case for the non–periodic operator Ξ in (1.2). As in the previous section, we
restrict our attention first to the case where the matrices Ei and Fi are nonsingular.
Proceeding, we write definitions for the matrices Γ̂i for i = 1, . . . , 4p, where the
matrices Γ̂i are analogous to matrices ∆̂i in the non–periodic case

Γ̂1 = FT1 E−T1 FT2 E−T2 · · · FTp E
−T
p E−1

p FpE
−1
p−1Fp−1 · · · E−1

1 F1,

Γ̂2 = F1 FT1 E−T1 FT2 · · · FTp E
−T
p E−1

p FpE
−1
p−1Fp−1 · · · F2 E−1

1 ,
...

...
...

Γ̂4p = E−T1 FT2 E−T2 FT3 · · · FTp E
−T
p E−1

p FpE
−1
p−1Fp−1 · · · F1 FT1 .

(4.2)

The matrices Γ̂i, defined as above, provide a mechanism by which the existence of a
periodic QSVD may be proved.

Lemma 4.1. Let Γ̂1, Γ̂2, . . . , Γ̂4p be defined by (4.2), with Ei ∈ Rn×n and Fi ∈
Rn×n nonsingular for i = 1, . . . , p. There exist matrices Mi for i = 1, . . . , 4p such
that the following sets of relations hold:

S = M−1
1 Γ̂1 M1,

= M−1
2 Γ̂2 M2,

...
...

= M−1
4p Γ̂4pM4p,

(4.3)

where S is real, diagonal, positive definite and

D1 = M−1
2 F M1,

D2 = M−1
3 E−1 M2,

...
...

D4p−1 = M−1
4p E

−TM4p−1,

D4p = M−1
1 FT M4p.

(4.4)

where the matrices Di are diagonal and positive definite.
Proof. The proof is trivial extension of the proof of Lemma 3.1, with F1 substi-

tuting for F in (3.4), and with the Γ̂i playing the role of ∆̂i throughout.
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Proceeding along the lines of the previous section, we generalize Lemma 3.2 to
the periodic case.

Lemma 4.2. Suppose Mr diagonalizes Γ̂r for r = 2, . . . , 2p and r = 2p+2, . . . , 4p,
with the same eigenvalue ordering, as in (4.3). Then M−T4p−r+2 diagonalizes Γ̂r for
r = 2, ..., 2p and r = 2p+ 2, ..., 4p. Further, if the eigenvalues of the matrices Γ̂i are
distinct, then the matrices Mr and M4p−r+2 may be related by the equation

M−T4p−r+2 = MrLr,(4.5)

with Lr diagonal.
Proof. The key element of the proof for Lemma 3.2 was the observation that

∆̂2 = ∆̂T
4 . In the periodic case, Γ̂r = Γ̂T4p−r+2 for r = 2, . . . , 2p and r = 2p+2, . . . , 4p.

The remainder of the proof follows from this observation.
Next, we prove the existence of the periodic QSVD in the case where the matrices

Ei and Fi are nonsingular.
Theorem 4.3. Let the matrices Ei ∈ R

n×n and Fi ∈ R
n×n in (4.2) be non-

singular with the eigenvalues of the matrix Γ̂1 distinct. There exist non–orthogonal
matrices X1,. . .,Xp and Y2,. . .,Yp, positive definite diagonal matrices Φ1,. . .,Φp and
Θ1,. . .,Θp, and orthogonal matrices U and V such that

XT
1 E1Y2 = Φ1 , XT

1 F1V = Θ1,
XT

2 E2Y3 = Φ2 , XT
2 F2Y2 = Θ2,

... =
... ,

... =
...

XT
p−1Ep−1Yp = Φp−1 , XT

p−1Fp−1Yp−1 = Θp−1,
XT
p EpU = Φp , XT

p FpYp = Θp.

(4.6)

Further, the constituent matrices of the periodic QSVD may be related to the matrices
Mi in (4.3) and (4.4) which diagonalize the matrices Γ̂i in the following way:

X1 = M4pP4p , V = M1,
X2 = M4p−2P4p−2 , Y2 = M4p−1P4p−1,
X3 = M4p−4P4p−4 , Y3 = M4p−3P4p−3,
... =

... ,
... =

...
Xp = M2p+2P2p+2 , Yp = M2p+3P2p+3,

, U = M2p+1,

Φ1 = P4pM
T
4pE1M4p−1P4p−1 , Θ1 = P4pM

T
4pF1M1,

Φ2 = P4p−2M
T
4p−2E2M4p−3P4p−3 , Θ2 = P4p−2M

T
4p−2F2M4p−1P4p−1,

... =
... ,

... =
...

Φp−1 = P2pM
T
2pEp−1M2p+3P2p+3 ,Θp−1 = P2pM

T
2pFp−1M2p+1,

Φp = P2p+2M
T
2p+2EpM2p+1 , Θp = P2p+2M

T
2p+2FpM2p+3P2p+3.

(4.7)

where the matrices Pi are diagonal signature matrices as in (3.8).
Proof. The proof is a straightforward extension of the proof of Theorem 3.3. By

the substitution of the results of Lemmas 4.1 we can assure that the matrix S in (4.3)
and the matrices Di’s (4.4) are diagonal and positive definite. Since Γ̂1 and Γ̂2p+1

are symmetric, M1 and M2p+1 may be chosen to be orthogonal. With M1 and M2p+1

orthogonal and S positive definite, Lemma 4.1 and Lemma 4.2 imply that there exist
matrices Pi such that (4.7) holds, completing the proof.
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As in the previous section, we show that the matrices in the periodic QSVD may
be constructed from the matrices resulting from the periodic QZ decomposition of
the matrices comprising a related operator Γ1 : X1 → X2p+2, Xi ⊆ Rn where Γ1 is
defined by the equations

E1x2 = F1x1,
... =

...
Epxp+1 = Fpxp,
ETp xp+2 = xp+1,
ETp−1xp+3 = FTp xp+2,

... =
...

ET1 x2p+1 = FT2 x2p,
x2p+2 = FT1 x2p+1.

(4.8)

To prove the existence of the periodic QSVD, it is necessary to generalize the
lemmas and theorems of the previous section.

Lemma 4.4. Let the operator Γ1 be defined as in (4.8). There exist orthogonal
matrices Q1, . . . , Q2p−1, W2, . . . ,W2p, U and V such that the matrices Hk and Tk are
upper triangular

QT1 E1W2 = H1 , QT1 F1V = T1,
... ,

...
QTpEpU = Hp , QTp FpWp = Tp,

UTETp Wp+1 = Hp+1 ,
QTp+1E

T
p−1Wp+2 = Hp+2 , QTp+1F

T
p Wp+1 = Tp+2,

... ,
...

QT2p−1E
T
1 W2p = H2p , QT2p−1F

T
2 W2p−1 = T2p,

, V TFT1 W2p = T2p+1.

(4.9)

Proof. The proof is a trivial extension of that in Lemma 3.5.
Lemma 4.5. Let the operator Γ1 be defined as in (4.8), with the matrices Ei ∈

Rn×n and Fi ∈ Rn×n nonsingular and with the eigenvalues of Γ1 distinct. The ma-
trices Xi, Ui, Vi, Φi, and Θi associated with the periodic QSVD in (4.6) may be
computed via the (modified) QZ decomposition in (4.9).

Proof. The proof for the existence of the periodic QSVD with the matrices Ei and
Fi nonsingular is an extension of Lemma 3.6, with the matricesXk and Yk constructed
analogously. Lemma 4.4 ensures that there exist orthogonal matrices Q̄1, . . . , Q̄2p−1,
Ū , V̄ , and W̄2, . . . , W̄2p that diagonalize Γ1 with a particular eigenvalue ordering.
Let λi be the eigenvalue of associated with the ith column of V̄ . Let the matrix
V[ j] be the orthogonal matrix that results from interchanging the first column of V̄
and the jth column. Since the operator Γ1 is diagonalized by the matrix V̄ , V[ j]

also diagonalizes the operator with the jth eigenvalue in the upper left–hand corner.
Now, define the matrices Q` [ j], U`, and W` [ j] as the matrices, along with V`, that
triangularize constituent matrices of Γ1 with the jth eigenvalue in the upper left–hand
corner. Also define the vector x̃` [ j] to be the first column of W2p−`+1 [ j]. Via Lemma
4.2 and in analogy with Lemma 3.6, x̃T` [ j] is a left eigenvector of the operator Γ4p−2`.
Similarly, define the vector ỹ` [ j] to be the first vector of W`+1 [ j]. The vector ỹ` [ j] is a
right eigenvector of the operator Γ2`−2. Thus, the matrices X̃` = [x̃` [1], . . . , x̃` [n]] and
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Ỹ` = [ỹ` [1], . . . , ỹ` [n]] are matrices of eigenvectors of Γ4p−2` and Γ2`−2, respectively,
and therefore diagonalize the constituent matrices of the operator Γ1 via Lemma
4.1, albeit with the diagonal elements not necessarily positive. There exists, however,
diagonal signature matrices Px` and Py` as in (3.8) such that the matricesX` = X̃`Px`
and Y` = Ỹ`Py` diagonalize the constituent matrices of the operator Γ1 with the
diagonalized matrices positive definite.

Finally, Theorem 3.7 is generalized for the periodic case.
Theorem 4.6. Let the operator Π be defined as in (4.1). There exist non–

orthogonal matrices X1, . . . , Xp and Y2, . . . , Yp, non–negative definite diagonal ma-
trices Φ1, . . . ,Φp and Θ1, . . . ,Θp, and orthogonal matrices U and V such that the
relations in (4.6) hold.

Proof. The proof is a trivial extension of Theorem 3.7.

5. Numerical Examples. In this section we give some numerical examples to
illustrate the points discussed in the previous sections.

Example 1 Consider the operator Ξ defined by (1.2) where the matrices E and
F are

E =
[

2 3
4 5

]
, F =

[
1 2
3 4

]
.

Since E is nonsingular, it is possible to write the map Ξ = Ξ̂ directly:

Ξ̂ =
[

2 1
−1 0

]
.

The singular value decomposition of Ξ̂ = Û Σ̂V̂ T where

Û =
[

0.9239 0.3827
−0.3827 0.9239

]
, Σ̂ =

[
2.4142 0.0000
0.0000 0.4142

]
,

V̂ =
[

0.9239 −0.3827
0.3827 0.9239

]
.

The matrices U , V , Q, W , Hi, and Ti that result from the periodic QZ decomposition
of ∆1 are:

U =
[

0.9239 0.3827
−0.3827 0.9239

]
, V =

[
0.9239 −0.3827
0.3827 0.9239

]
,

Q =
[

0.3655 0.9308
0.9308 −0.3655

]
, W =

[
−0.8669 0.4985

0.4985 0.8669

]
,

H1 = QTEU

=
[

1.9145 7.0174
0.0000 1.0446

]
,

H2 = UTETW

=
[

0.2819 1.8937
0.0000 7.0947

]
,

T1 = QTFV

=
[

4.6221 2.9067
0.0000 0.4327

]
,

T3 = V TFTW

=
[

0.6806 4.5717
0.0000 2.9387

]
.



ETNA
Kent State University 
etna@mcs.kent.edu

150 On the periodic quotient singular value decomposition

With a two by two system, it is possible to construct X = [x1, x2] directly from Q
and W :

x1 = w1,

x2 = q2,

yielding

X =
[
−0.8669 0.9308

0.4985 −0.3655

]
.

Computing Φ and Θ yields

Φ = XTEU

=
[

0.2819 0.0000
0.0000 1.0446

]
,

Θ = XTFV

=
[

0.6806 0.0000
0.0000 0.4327

]
.

The product Σφθ = Φ−1Θ is

Σφθ =
[

2.4142 0.0000
0.0000 0.4142

]
,

which is equal to Σ̂, as expected.
Example 2 Consider again the operator Ξ where

E =
[

2 3
4 6

]
, F =

[
1 2
3 6

]
.

Since E is singular it is not possible to write the map Ξ̂ directly. However, it is
possible to compute the QSVD of the system. The matrices U , V , Q, W , Hi, and Ti
that result from the periodic QZ decomposition of ∆ are:

U =
[

0.8321 −0.5547
−0.5547 −0.8321

]
, V =

[
−0.4472 −0.8944
−0.8944 0.4472

]
,

Q =
[
−0.3162 −0.9487
−0.9487 0.3162

]
, W =

[
0.8944 −0.4472
−0.4472 −0.8944

]
,

H1 = QTEU

=
[

0.0000 7.9812
0.0000 1.1402

]
,

H2 = UTETW

=
[

0.0000 0.0000
0.0000 8.0623

]
,

T1 = QTFV

=
[

7.0711 0.0000
0.0000 0.0000

]
,

T3 = V TFTW

=
[

1.0000 7.0000
0.0000 0.0000

]
.

As before, we construct X = [x1, x2] directly from Q and W :

x1 = w1,

x2 = q2,



ETNA
Kent State University 
etna@mcs.kent.edu

J.J. Hench 151

making

X =
[

0.8944 −0.9487
−0.4472 0.3162

]
.

Computing Φ and Θ yields

Φ = XTEU

=
[

0.0000 0.0000
0.0000 1.1402

]
,

Θ = XTFV

=
[

1.0000 0.0000
0.0000 0.0000

]
.

Note that the system has an infinite and a zero singular value, and no enomorphic
eigenvalues.

Example 3 Consider the operator Π in (4.1) defined by matrices Ei and Fi where

E1 =
[

1 2
3 4

]
, F1 =

[
2 3
4 5

]
,

E2 =
[

1 2
3 5

]
, F2 =

[
2 3
5 8

]
.

Since the matrices Ei are nonsingular, it is possible to write the map Π̂ directly:

Π̂ =
[

1 2
1 1

]
.

The singular value decomposition of Π̂ = Û Σ̂V̂ T where

Û =
[

0.8507 0.5257
0.5257 −0.8507

]
, Σ̂ =

[
2.6180 0.0000
0.0000 0.3820

]
,

V̂ =
[

0.5257 −0.8507
0.8507 0.5257

]
.

The matrices U , V , Qk, Wk, Hk and Tk that result from the periodic QZ decomposi-
tion of the pencil of Γ are:

U =
[

0.8507 0.5257
0.5257 −0.8507

]
, V =

[
0.5257 −0.8507
0.8507 0.5257

]
,

Q1 =
[

0.4932 0.8699
0.8699 −0.4932

]
, Q2 =

[
0.3447 −0.9387
0.9387 0.3447

]
,

Q3 =
[

0.3568 −0.9342
0.9342 0.3568

]
, W2 =

[
−0.3568 −0.9342

0.9342 −0.3568

]
,

W3 =
[
−0.9156 −0.4022

0.4022 −0.9156

]
, W4 =

[
0.9874 −0.1583
−0.1583 −0.9874

]
,

H1 = QT1 E1W2

=
[

3.0649 −4.4923
0.0000 0.6526

]
,

H2 = QT2E2U

=
[

5.5188 −2.9173
0.0000 0.1812

]
,
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H3 = UTET2 W3

=
[

0.3421 −5.5081
0.0000 2.9229

]
,

H4 = QT3 E
T
1 W4

=
[

1.4360 −5.0988
0.0000 1.3928

]
,

T1 = QT1 F1V

=
[

7.3065 −0.7345
0.0000 0.2737

]
,

T2 = QT2 F2W2

=
[

6.0606 −8.0772
0.0000 0.1650

]
,

T4 = QT3 F
T
2 W3

=
[

0.5041 −9.8899
0.0000 1.9838

]
,

T5 = V TFT1 W4

=
[

2.5516 −6.8465
0.0000 0.7838

]
.

With a two by two system, it is possible to construct X1 = [x11, x12], X2 =
[x21, x22], and Y2 = [y21, y22] directly from the Qk’s and Wk’s:

x11 = w41,

x12 = q12,

x21 = w31,

x22 = q22,

y11 = w21,

y12 = q32.

yielding

X1 =
[

0.9874 0.8699
−0.1583 −0.4932

]
, X2 =

[
−0.9156 −0.9387

0.4022 0.3447

]
,

and

Y2 =
[
−0.3568 −0.9342

0.9342 0.3568

]
.

Computing Φ1, Φ2, Θ1, and Θ2 yields

Φ1 = XT
1 E1Y2

=
[

1.0703 0.0000
0.0000 0.4864

]
,

Θ1 = XT
1 F1V

=
[

2.5516 0.0000
0.0000 0.2737

]
,

Φ2 = XT
2 E2U

=
[

0.3421 0.0000
0.0000 0.1812

]
,

Θ2 = XT
2 F2Y2

=
[

0.3757 0.0000
0.0000 0.1230

]
.

The product Σφθ = Φ−1
2 Θ2Φ−1

1 Θ1 is

Σφθ =
[

2.6180 0.0000
0.0000 0.3820

]
,

which is equal to Σ̂, as expected.
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6. Conclusion. In this paper, the relationship between the QSVD and the pe-
riodic QZ decomposition is elaborated. Specifically, the periodic QZ algorithm may
be viewed as a method by which the QSVD may be computed as accurately, albeit
half as efficiently, than the standard algorithm. Nevertheless, by using this technique
the “periodic” QSVD of a sequence of matrix pairs may be readily computed. In this
paper we have discussed the QSVD; however, other canonical forms, such as those
discussed in previous papers [2] [3] [5] [8] [10] [11] [12], or the computation of principal
angles and vectors [4], may be cast in the periodic QZ framework. This demonstrates
the versatility of the QZ decomposition; it provides a theoretical basis for computing
eigenvalue or singular value revealing matrix decompositions.
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