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THE GENERALIZATIONS OF NEWTON’S INTERPOLATION
FORMULA DUE TO MÜHLBACH AND ANDOYER∗

C. BREZINSKI †

Abstract. Newton’s formula for constructing the interpolation polynomial is well–known. It
makes use of divided differences. It was generalized around 1971–1973 by Mühlbach for interpolation
by a linear family of functions forming a complete Chebyshev system. This generalization rests on
a generalization of divided differences due to Popoviciu. In this paper, it is shown that Mühlbach’s
formula is related to the work of Andoyer which goes back to the beginning of the century.
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1. Introduction. Newton’s formula for interpolation by a polynomial was given
by Isaac Newton (Woolsthorpe, 25.12.1642 – London, 20.3.1727) as Lemma 5 of Book
III of his Principia Mathematica of 1687 [22] but it was known to him before since he
mentioned it in a letter to the German scientist Henry Oldenburg (1618–1677) dated
October 24, 1676.

According to this formula, the polynomial Pn such that

Pn(xi) = f(xi), for i = 0, . . . , n,

is given by

Pn(x) = [x0] + (x− x0)[x0, x1] + (x− x0)(x− x1)[x0, x1, x2]
+ · · ·+ (x− x0) · · · (x− xn−1)[x0, . . . , xn]

where the quantities into square brackets are the usual divided differences defined
recursively by

[xp0 , . . . , xpn ] =
[xp0 , . . . , xpn−1 ]− [xp1 , . . . , xpn ]

xp0 − xpn
with [xpi ] = f(xpi). It is well known that these divided differences can also be written
as a ratio of two determinants (see, for example, [9]). An account on the history of
interpolation can be found in [6].

In this paper, we shall be interested in the generalization of Newton’s formula for
interpolation by a linear combination of the form

Pn(x) = a0ϕ
0(x) + · · ·+ anϕ

n(x)

where the ϕi’s are given functions which are assumed to satisfy∣∣∣∣∣∣∣
ϕ0(z0) · · · ϕ0(zk)

...
...

ϕk(z0) · · · ϕk(zk)

∣∣∣∣∣∣∣ 6= 0

for all choices of the distinct points z0, . . . , zk and for k = 0, . . . , n. In that case, the
functions ϕ0, . . . , ϕn are said to form a complete Chebyshev system.

∗ Received June 3, 1994. Accepted for publication September 2, 1994. Communicated by R. S.
Varga.
† Laboratoire d’Analyse Numérique et d’Optimisation, UFR IEEA - M3, Université des Sciences et
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2. Mühlbach’s formula.

Interpolation by a linear family of functions forming a complete Chebyshev system
was addressed by Mühlbach in his thesis [15] and in his subsequent papers [16, 17,
18, 19, 20]. He obtained a generalization of Newton’s interpolation formula which is

Pn(x) =
n∑
i=0

[
ϕ0 · · · ϕi

x0 · · · xi

∣∣∣∣ f] gi(x)

with gi(x) = ϕi(x) − Ri−1(x) where Ri−1 is the linear combination of ϕ0, . . . , ϕi−1

which satisfies the interpolation conditions

Ri−1(xj) = ϕi(xj) for j = 0, . . . , i− 1.

Of course it holds

Pk(x) = Pk−1(x) +
[
ϕ0 · · · ϕk

x0 · · · xk

∣∣∣∣ f] gk(x)(2.1)

for k = 0, 1, . . ., with P−1(x) ≡ 0.
The quantities [

ϕ0 · · · ϕi

x0 · · · xi

∣∣∣∣ f]
are the generalized divided differences introduced by Popoviciu [23] as a ratio of two
determinants

[
ϕ0 · · · ϕi

xm · · · xm+i

∣∣∣∣ f] =

∣∣∣∣∣∣∣∣∣
ϕ0(xm) · · · ϕ0(xm+i)

...
...

ϕi−1(xm) · · · ϕi−1(xm+i)
f(xm) · · · f(xm+i)

∣∣∣∣∣∣∣∣∣
/∣∣∣∣∣∣∣

ϕ0(xm) · · · ϕ0(xm+i)
...

...
ϕi(xm) · · · ϕi(xm+i)

∣∣∣∣∣∣∣ .
As proved by Mühlbach [15, 16, 17], these generalized divided differences can be

recursively computed by

[
ϕ0 · · · ϕi

xm · · · xm+i

∣∣∣∣ f] =

[
ϕ0 · · · ϕi−1

xm+1 · · · xm+i

∣∣∣∣ f]− [ ϕ0 · · · ϕi−1

xm · · · xm+i−1

∣∣∣∣ f][
ϕ0 · · · ϕi−1

xm+1 · · · xm+i

∣∣∣∣ϕi]− [ ϕ0 · · · ϕi−1

xm · · · xm+i−1

∣∣∣∣ϕi]
with [

ϕ0

xm

∣∣∣∣ f] = f(xm)/ϕ0(xm) and
[
ϕ0

xm

∣∣∣∣ϕi] = ϕi(xm)/ϕ0(xm).

The computation of Pn can also be performed via a generalization of the Neville–
Aitken algorithm. This generalization was obtained by Mühlbach [18, 19] from the
preceding recurrence relation for the generalized divided differences. It can also be de-
rived by applying Sylvester’s identity to the determinantal expression of Pn [3]. This
algorithm was called the Mühlbach–Neville–Aitken algorithm. It gave rise to the E–
algorithm which is the most general extrapolation algorithm known [2, 10, 12, 24].
See [4] for a survey including historical remarks about the synthesis of these algo-
rithms, their generalizations and their applications. The corresponding subroutines,
theoretical and numerical results can be found in [7]. These questions are very much
related to biorthogonality as exposed in [9] and [5].
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3. The work of Andoyer.

The Encyklopädie der Mathematischen Wissenschaften [13] is a series of books
published from 1898 to 1904 under the supervision of Friedrich Wilhelm Franz Meyer
(2.9.1856 – 11.4.1934), a Professor at the Universities of Clausthal and Könisgberg.
Each volume contains a series of articles mostly written by German mathematicians,
and the whole project covers arithmetics and algebra, analysis, geometry, mechanics,
physics, geodesics and geophysics, and astronomy. The idea of the project arose from
a meeting in September 1894 between Meyer, Felix Klein (25.4.1849 – 22.6.1925) and
Heinrich Weber (5.3.1842 – 17.5.1913). The article Interpolation appears in Tome
II, vol.1, I D3, pp.799–820. It was written by Julius Bauschinger (1860–1934). This
Encyklopädie was translated into French and published between 1904 and 1912 under
the editorship of Jules Molk (1857–1914), a Professor at the University of Nancy [14].
This work was not only a translation. Each article was first revised by its German
author and the French translator added new material (indicated between two *’s).
The article on interpolation was translated and completed by the French astronomer
and mathematician Henri Marie Andoyer (Paris, 1.10.1862 – Paris, 12.6.1929). It can
be found in Tome I, vol. 4, fasc. 1, I–21. It is dated 20 March 1906. On pages 129
and 130 of the French edition, Andoyer gave a contribution of his (beginning page
127 and ending page 130) dealing with a general interpolation process. It seems that
[14] is the only place where Andoyer published his results.

We shall now present the work of Andoyer using the same notation as in the
preceding section. This notation is in fact Andoyer’s except that ϕ(x) is replaced
by Pn(x) and that ∆ is replaced by δ to avoid possible confusion with the forward
difference operator.

The problem is the same as above. It consists in finding

Pn(x) =
n∑
i=0

aiϕ
i(x)

such that Pn(xj) = f(xj) for j = 0, . . . , n where the quantities f(xj) are not all zero.
For simplicity we shall sometimes make use of the notation

ϕij = ϕi(xj) and fj = f(xj).

We have

Pn(x) − a0ϕ
0(x) − · · · − anϕ

n(x) = 0,
f0 − a0ϕ

0
0 − · · · − anϕ

n
0 = 0,

· · · · · · · · · · · · · · · · · · · · · · · · · · · ,
fn − a0ϕ

0
n − · · · − anϕ

n
n = 0.

Since the solution of this system is not identically zero, its determinant vanishes, and
we obtain ∣∣∣∣∣∣∣∣∣

Pn ϕ0 · · · ϕn

f0 ϕ0
0 · · · ϕn0

...
...

...
fn ϕ0

n · · · ϕnn

∣∣∣∣∣∣∣∣∣ = 0,(3.1)
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and it follows that

Pn(x) = −

∣∣∣∣∣∣∣∣∣
0 ϕ0(x) · · · ϕn(x)
f0 ϕ0

0 · · · ϕn0
...

...
...

fn ϕ0
n · · · ϕnn

∣∣∣∣∣∣∣∣∣
/∣∣∣∣∣∣∣

ϕ0
0 · · · ϕn0
...

...
ϕ0
n · · · ϕnn

∣∣∣∣∣∣∣ .
By combining the rows and the columns in (3.1) we shall now reduce by one the
dimension of this determinant. For that purpose, Andoyer introduced the functions
δku(x) (he used the letter ∆ instead of δ) defined recursively by

δk+1u(x) = δku(x)− δkϕ
k(x)

δkϕk(xp)
δku(xp)

where u is an arbitrary function (that will be later Pn or ϕi), p an arbitrary index
(which can depend on k) greater or equal to k (Andoyer only considered the case
p = k) and δ0u(x) = u(x). We have δk+1ϕ

k(x) ≡ 0. Andoyer also defined the
quantities δku(xi) by

δk+1u(xi) = δku(xi)−
δkϕ

k(xi)
δkϕk(xp)

δku(xp)

with δ0u(xi) = u(xi) where p is an arbitrary index (which can depend on k and i)
strictly smaller than i and greater or equal to k, and i = k + 1, k + 2, . . .. Obviously
if p = k, which is always possible since p and k are both stricly smaller than i, then
these two formulae reduce to a single one. Of course the quantities δkϕk(xp) are all
assumed to be nonzero. It remains open how the necessary condition δkϕ

k(xp) 6= 0
follows from the assumption that ϕ0, . . . , ϕn form a complete Chebyshev system. For
the choice p = k, made by Andoyer, this becomes clear from an induction proof which
derives Mühlbach’s recurrence formula for the generalized divided differences from
Andoyer’s calculations (I am indebted to the referee for this remark).

Let us multiply the row with the lower index p in the determinant (3.1) by
δ0ϕ

0(x)/δ0ϕ0(xp) for p ≥ 0 and subtract it from the first row. Then, for the row
with the lower index i = n, n− 1, . . . , 1, let us multiply the row with the lower index
p, where 0 ≤ p < i, by δ0ϕ0(xi)/δ0ϕ0(xp) and subtract it from that row. These linear
combinations of the rows of the determinant (3.1) do not change its value. Making
use of the definition of δ1, we finally obtain∣∣∣∣∣∣∣∣∣∣∣

δ1Pn(x) 0 δ1ϕ
1(x) · · · δ1ϕ

n(x)
δ0f(x0) δ0ϕ

0(x0) δ0ϕ
1(x0) · · · δ0ϕ

n(x0)
δ1f(x1) 0 δ1ϕ

1(x1) · · · δ1ϕ
n(x1)

...
...

...
...

δ1f(xn) 0 δ1ϕ
1(xn) · · · δ1ϕ

n(xn)

∣∣∣∣∣∣∣∣∣∣∣
= 0.

Thus, assuming that δ0ϕ0(x0) 6= 0, we have∣∣∣∣∣∣∣∣∣
δ1Pn(x) δ1ϕ

1(x) · · · δ1ϕ
n(x)

δ1f(x1) δ1ϕ
1(x1) · · · δ1ϕ

n(x1)
...

...
...

δ1f(xn) δ1ϕ
1(xn) · · · δ1ϕ

n(xn)

∣∣∣∣∣∣∣∣∣ = 0.
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It follows that

δ1Pn(x) = −

∣∣∣∣∣∣∣∣∣
0 δ1ϕ

1(x) · · · δ1ϕ
n(x)

δ1f(x1) δ1ϕ
1(x1) · · · δ1ϕ

n(x1)
...

...
...

δ1f(xn) δ1ϕ
1(xn) · · · δ1ϕ

n(xn)

∣∣∣∣∣∣∣∣∣
/∣∣∣∣∣∣∣

δ1ϕ
1(x1) · · · δ1ϕ

n(x1)
...

...
δ1ϕ

1(xn) · · · δ1ϕ
n(xn)

∣∣∣∣∣∣∣ .
The same process can now be repeated on this new determinant and, after the k–th
step, we obtain for k = 1, · · · , n∣∣∣∣∣∣∣∣∣

δkPn(x) δkϕ
k(x) · · · δkϕ

n(x)
δkf(xk) δkϕ

k(xk) · · · δkϕ
n(xk)

...
...

...
δkf(xn) δkϕ

k(xn) · · · δkϕ
n(xn)

∣∣∣∣∣∣∣∣∣ = 0.

Let us multiply the row with the lower index p in this determinant by δkϕk(x)/δkϕk(xp)
for p ≥ k and subtract it from the first row. Then, for the row with the lower index
i = n, n−1, . . . , k+1, let us multiply the row with the lower index p, where k ≤ p < i,
by δkϕ

k(xi)/δkϕk(xp) and subtract it from that row. These linear combinations do
not change the value of the determinant. Making use of the definition of δk+1, we
obtain ∣∣∣∣∣∣∣∣∣∣∣

δk+1Pn(x) 0 δk+1ϕ
k+1(x) · · · δk+1ϕ

n(x)
δkf(xk) δkϕ

k(xk) δkϕ
k+1(xk) · · · δkϕ

n(xk)
δk+1f(xk+1) 0 δk+1ϕ

k+1(xk+1) · · · δk+1ϕ
n(xk+1)

...
...

...
...

δk+1f(xn) 0 δk+1ϕ
k+1(xn) · · · δk+1ϕ

n(xn)

∣∣∣∣∣∣∣∣∣∣∣
= 0.

Thus, assuming that δkϕk(xk) 6= 0, we have∣∣∣∣∣∣∣∣∣
δk+1Pn(x) δk+1ϕ

k+1(x) · · · δk+1ϕ
n(x)

δk+1f(x1) δk+1ϕ
k+1(xk+1) · · · δk+1ϕ

n(xk+1)
...

...
...

δk+1f(xn) δk+1ϕ
k+1(xn) · · · δk+1ϕ

n(xn)

∣∣∣∣∣∣∣∣∣ = 0.

It follows that

δkPn(x) = −

∣∣∣∣∣∣
0 δkϕ

k(x) · · · δkϕ
n(x)

δkf(xk) δkϕ
k(xk) · · · δkϕ

n(xk)

.

.

.

.

.

.

.

.

.
δkf(xn) δkϕ

k(xn) · · · δkϕ
n(xn)

∣∣∣∣∣∣
/∣∣∣∣∣

δkϕ
k(xk) · · · δkϕ

n(xk)

.

.

.

.

.

.
δkϕ

k(xn) · · · δkϕ
n(xn)

∣∣∣∣∣ .(3.2)

When k = n+ 1, we have

δn+1Pn(x) ≡ 0,

and thus

δn+1Pn(x) = δnPn(x) − δnf(xn)
δnϕn(xn)

δnϕ
n(x) = 0,

δnPn(x) = δn−1Pn(x) − δn−1f(xn−1)
δn−1ϕn−1(xn−1)

δn−1ϕ
n−1(x),

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ,

δ1Pn(x) = δ0Pn(x) − δ0f(x0)
δ0ϕ0(x0)

δ0ϕ
0(x).
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By summing up these equations we obtain, since δ0Pn(x) = Pn(x),

Pn(x) =
n∑
i=0

δif(xi)
δiϕi(xi)

δiϕ
i(x).(3.3)

This is the generalization of Newton’s interpolation formula obtained by Andoyer.
Of course it holds that

Pk(x) = Pk−1(x) +
δkf(xk)
δkϕk(xk)

δkϕ
k(x)(3.4)

for k = 0, 1, . . ., with P−1(x) ≡ 0.
Writing the preceding relations for an arbitrary function u and for the indexes

1, . . . , k, and summing them up, leads to

u(x) = δku(x) +Qk−1(x)(3.5)

with

Qk−1(x) =
k−1∑
i=0

δiu(xi
δiϕi(xi)

δiϕ
i(x).

By formula (3.4), Qk−1 is the unique element of span{ϕ0, . . . , ϕk−1} which satisfies
the interpolation conditions Qk−1(xi) = u(xi) for i = 0, . . . , k − 1.

Let us also remark that writing (3.5) for u ≡ Pn and subtracting from (3.3) gives

δkPn(x) =
n∑
i=k

δif(xi)
δiϕi(xi)

δiϕ
i(x)

which corresponds to (3.2).
Another by–product of the theory is a formula for the error. Replacing k by n+ 1 in
(3.5) and writing it for the function f , leads to

f(x)− Pn(x) = δn+1f(x).

This formula should be compared to the error formula given by Mühlbach [17].
The technique of Andoyer for reducing the order of the determinants is essen-

tially the same as the method proposed by Felice Chiò (Crescentino, 29.4.1813 –
Torino, 28.5.1871) in 1853 [8]. It is called compression or condensation, see [1,
p.46], and it was virtually used by Carl Friedrich Gauss (Braunschweig, 23.04.1777 –
Göttingen, 22.02.1855) more than forty years earlier when evaluating symmetric de-
terminants. The transformation of a determinant into one of the next lower order can
also be viewed as a generalization of the procedure given by Charles Hermite (Dieuze,
24.12.1822 – Paris, 14.01.1901) in 1849 [11] for the order 4. On these questions,
consult [21, pp.79–81].

4. The connection.

We shall now prove that the formula (2.1) of Mühlbach and the formula (3.4) of
Andoyer, when p is always chosen to be equal to k, are the same. For that purpose,
we have to show that

δkf(xk)
δkϕk(xk)

=
[
ϕ0 · · · ϕk

x0 · · · xk

∣∣∣∣ f]
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and that gk(x) = δkϕ
k(x).

Let us begin by proving the last result. Since (3.4) holds for any function f , we
have for f ≡ ϕk

Rk(x) = Rk−1(x) + δkϕ
k(x).

But, since Rk, ϕk ∈ span
{
ϕ0, . . . , ϕk

}
, we have Rk ≡ ϕk, and it follows that

ϕk(x)−Rk−1(x) = gk(x) = δkϕ
k(x).

This result can also be obtained directly from (3.5) by taking u ≡ ϕk since, in that
case, Qk−1 ≡ Rk−1.

The first result will now be proved by induction. It is true for k = 0 and for any
function f . Let us assume that the result is true for the index k. We have, from the
recursive definition of δk+1, and for the choice p = k that

δk+1f(xk+1)
δk+1ϕk+1(xk+1)

=
δkϕ

k(xk)δkf(xk+1)− δkϕk(xk+1)δkf(xk)
δkϕk(xk)δkϕk+1(xk+1)− δkϕk(xk+1)δkϕk+1(xk)

.

Dividing the numerator and the denominator in the right hand side by δkϕk(xk)δkϕk(xk+1),
this ratio is equal to

δkf(xk+1)
δkϕk(xk+1)

− δkf(xk)
δkϕk(xk)

δkϕ
k+1(xk+1)

δkϕk(xk+1)
− δkϕ

k+1(xk)
δkϕk(xk)

which is the recurrence formula of Mühlbach for its generalized divided differences
since

δkf(xk+1)
δkϕk(xk+1)

=
[
ϕ0 · · · ϕk

x1 · · · xk+1

∣∣∣∣ f]
and since the result holds for any function f .

Thus, we proved that the formulae of Mühlbach and Andoyer (when p = k) are
the same.

Let us also remark that

δkf(xk)
δkϕk(xk)

=
f(xk)− Pk−1(xk)

δkϕk(xk)

and that the procedure of Andoyer and the preceding results can be extended to the
general interpolation problem as described in [9] and developed in [5].

Acknowledgments: I would like to thank the referee for pointing me out the
work by Chiò and for the remark of section 3.
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[15] G. Mühlbach, C̆ebys̆ev–Systeme, Lipschitzklassen und Saturation der Operatorfolgen vom

Voronoskaja–Typ, Habilitationsschrift, TU Hannover, 1971.
[16] , A recurrence formula for generalized divided differences and some applications, J. Ap-

prox. Theory, 9 (1973), pp. 165–172.

[17] , Newton– und Hermite–Interpolation mit C̆ebys̆ev–Systemen, Z. Angew. Math. Mech.,
54 (1974), pp. 541–550.

[18] , Neville–Aitken algorithms for interpolation by functions of C̆ebys̆ev–systems in the
sense of Newton and in a generalized sense of Hermite, in Theory of Approximation, with
Applications, A.G. Law and B.N. Sahney, eds., Academic Press, New York, 1976, pp.
200–212.

[19] , The general Neville–Aitken–Algorithm and some applications, Numer. Math., 31 (1978)
97–110.

[20] , The general recurrence relation for divided differences and the general Newton–
interpolation–algorithm with applications to trigonometric interpolation, Numer. Math.,
32 (1979), pp. 393–408.

[21] T. Muir, The Theory of Determinants in the historical Order of Development, vol.2, Macmillan
and Co., London, 1911.

[22] I. Newton, Philosophiae Naturalis Principia Mathematica, London, 1687.
[23] T. Popoviciu, Sur le reste dans certaines formules linéaires d’approximation de l’analyse,
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