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A FREQUENCY DECOMPOSITION WAVEFORM RELAXATION ALGORITHM
FOR SEMILINEAR EVOLUTION EQUATIONS∗

MARTIN J. GANDER†

Abstract. Semilinear evolution equations arise in many applications ranging from mathematical biology to
chemical reactions (e.g., combustion). The significant difficulty in these equations is the nonlinearity, which com-
bined with the discretized diffusion operator leads to large systems of nonlinear equations. To solve these equations,
Newton’s method or a variant thereof is often used, and to achieve convergence can require individual fine tuning for
each case. This can be especially difficult if nothing is known about the solution behavior. In addition, one observes
in many cases that not all frequency components are equally important for the solution; the frequency interaction is
determined by the nonlinearity. It is therefore of interest to work in frequency space when analyzing the unknown
behavior of such problems numerically.

We propose in this paper an algorithm which reduces the dimensionality of the nonlinear problems to be solved
to a size chosen by the user. The algorithm performs a decomposition in frequency space into subspaces, and an
iteration is used to obtain the solution of the original problem from the solutions on the frequency subspaces. We
prove linear convergence of the algorithm on unbounded time intervals, a result which is also valid for the stationary
case. On bounded time intervals, we show that the new algorithm converges superlinearly, a rate faster than any
linear rate. We obtain this result by relating the algorithm to an algorithm of waveform relaxation type. By using
time windows, one can thus achieve any linear contraction rate desired. An additional advantage of this algorithm is
its inherent parallelism.

Key words. waveform relaxation, frequency decomposition, sequential spectral method, iterative approximation
of evolution problems.
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1. Introduction. Semilinear evolution equations are an important class of equations for
modeling natural phenomena. In many of these applications, the spatial operator is rather
simple, often just representing a diffusion, whereas the major effort of the modeling goes into
the non-linear reaction terms. This often leads to infinite dimensional problems (due to the
diffusion), whose difficulty lies in the nonlinearity of the reaction terms and not in the spatial
operator. In addition, the behavior of a new nonlinear model is in general not known and
questions of existence and uniqueness of solutions arise. In such situations it is desirable to
have numerical methods available which are able to track multiple solutions and are robust
in the sense that they do not fail because the Newton method inherently necessary due to
the nonlinearity fails to converge. Applying a standard numerical method, it often requires
considerable fine tuning of the various variants of Newton’s method to obtain a solution, and
then it is difficult to detect if it is the only one. In addition, one often observes in semilinear
evolution equations that not all frequency components are of equal importance in the solution.
The important activity of the solution is often confined to a relatively small subspace.

We propose in this paper a method which is suitable to explore semilinear evolution prob-
lems whose solution properties are not yet fully understood. Tam and coworkers investigated
in [22] an algorithm which worked on frequency components of the solution individually, one
at a time. This approach reduced the dimensionality of the nonlinear systems to be solved to
one, and one dimensional nonlinear problems are much easier to handle than higher dimen-
sional ones, since solutions can be confined to intervals and multiple solutions can be detected
relatively easily. This algorithm also revealed the importance of certain frequency subspaces
in the solution in several applications, including systems of non-linear partial differential
equations, see [1]. The algorithm working on one frequency at a time is a special case of the

∗Received November 26, 2002. Accepted for publication April 22, 2004. Recommended by Daniel Szyld.
†Department of Mathematics and Statistics, McGill University, Montreal, Canada. E-mail: mgan-

der@math.mcgill.ca

181



ETNA
Kent State University 
etna@mcs.kent.edu

182 A frequency decomposition waveform relaxation algorithm

frequency decomposition waveform relaxation algorithm we present in this paper. The algo-
rithm was developed independently, and a preliminary analysis of it can be found in [12]. The
algorithm uses the eigensystem of the differential operator in the semilinear evolution equa-
tion to define subspaces in frequency space. It then evolves the solution in one subspace while
keeping it frozen in the other subspaces. A subspace iteration similar to the Schwarz iteration
for steady problems, but now in frequency space, is used to obtain a sequence of approximate
solutions, which is proved to converge to the solution of the original problem. The frequency
decomposition presented here is related to a frequency decomposition and multi-grid method
analyzed in [13] for steady state problems, but here we are interested in the coupling through
the nonlinearity and we use the eigenfunctions of the linear differential operator to decouple
the contributions of the linear part of the equation.

Decomposition and subspace iteration has been a field of high activity during the last
decades, see for example the survey papers by Xu [25], Xu and Zou [26] and the references
therein. Most of the analysis however involves steady problems and this paper’s focus is on
evolution equations. The classical approach in that case is to discretize the time component
uniformly over the whole domain by an implicit scheme, and then to apply the decomposi-
tion and subspace iteration at each time step to solve the steady problems obtained by the
time discretization. For an analysis of this approach in the parabolic case see [16, 4], and for
hyperbolic problems see [2, 24]. Another, more recent approach for evolution problems is
the following: one still decomposes the spatial domain, but solves time dependent subprob-
lems during the subspace iteration. This approach has been known for ordinary differential
equations under the name waveform relaxation, and the first link with domain decomposi-
tion was made by Bjørhus in [3] for first order hyperbolic problems. For the heat equation
and an overlapping Schwarz decomposition, this approach was analyzed in [11, 10], and for
more general parabolic problems in [8, 6]. This analysis has led to the class of overlapping
Schwarz waveform relaxation algorithms. The application of such algorithms to the second
order wave equation has been studied in [7]. A different type of splitting is used in the multi-
grid waveform relaxation algorithm, which was motivated by the multigrid techniques for
steady problems, see for example [23], [21], [14], [15] and references therein. All algorithms
in the class of waveform relaxation algorithms have the advantage that one does not need to
impose a uniform time discretization for all subspaces, and also that one does not need to
communicate information at each time step. The frequency decomposition waveform relax-
ation algorithm presented in this paper is an algorithm in this class, but with a new type of
splitting, namely in frequency space.

In Section 2, we introduce the semilinear parabolic equation for which we study the fre-
quency decomposition waveform relaxation algorithm, and we give basic existence results
on which our analysis later is based. In Section 3, we introduce the frequency subspace
decomposition. The formulation is kept general and the frequency subspaces are character-
ized by invariant subspaces of the spatial operator. In Section 4, we analyze the frequency
decomposition waveform relaxation algorithm for both bounded and unbounded time inter-
vals. The convergence results obtained differ considerably. On unbounded time intervals, we
prove linear convergence of the algorithm under a strong Lipschitz condition on the nonlinear
term. This case is of importance, since it also proves convergence of the algorithm for the
steady state case, which is often significantly harder to handle numerically. On bounded time
intervals, the convergence behavior is even better: we prove superlinear convergence of the
algorithm, assuming that the nonlinear function is Lipschitz for an arbitrary constant. In all
the analysis, we provide complete estimates for the contraction rates and constants involved.
Section 5 shows the performance of the frequency decomposition waveform relaxation algo-
rithm on two model problems, a double well potential in one dimension and a combustion
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problem in two dimensions.

2. Problem Formulation. We present the frequency decomposition waveform relax-
ation algorithm for a general evolution problem using the theory of semigroups of linear
operators. This has the advantage that the results are valid both at the continuous level and
for various types of discretizations. We start by recalling results from [18], which we need
later in the analysis of the algorithm. We consider the initial value problem

du(t)
dt + Au(t) = f(t, u(t)), t > t0,

u(t0) = u0,
(2.1)

where −A is the infinitesimal generator of an analytic semigroup on a Banach space X with
the norm || · ||. A is a sectorial operator, and by the assumptions on A, fractional powers Aα

of A can be defined for 0 ≤ α ≤ 1, and Aα is a closed, linear, invertible operator with domain
D(Aα). The closedness of Aα implies that D(Aα) endowed with the graph norm of Aα, i.e.,
the norm |||x||| := ||x|| + ||Aαx||, is a Banach space. Since Aα is invertible, its graph norm
||| · ||| is equivalent to the norm || · ||α := ||Aα · ||. Thus D(Aα) equipped with the norm || · ||α
is a Banach space, which we denote by Xα. The main assumption on the nonlinear function
f for existence and uniqueness of a solution is

ASSUMPTION 2.1. Let U be an open subset of IR+ × Xα. The function f : U −→ X
satisfies Assumption 2.1, if, for every (t, u) ∈ U , there is a neighborhood V ⊂ U and
constants L ≥ 0, 0 < δ ≤ 1, such that

||f(t1, u1) − f(t2, u2)|| ≤ L(|t1 − t2|
δ + ||u1 − u2||α)(2.2)

for all (ti, ui) ∈ V .
THEOREM 2.2. Let −A be the infinitesimal generator of an analytic semigroup G(t)

satisfying ||G(t)|| ≤ M , and assume further that 0 ∈ ρ(−A), the resolvent set of A. If f sat-
isfies Assumption 2.1, then, for every initial data (t0, x0) ∈ U , the initial value problem (2.1)
has a unique local solution u ∈ C([t0, t1[: X)∩C1(]t0, t1[: X), where t1 = t1(t0, u0) > t0.

Proof. The proof can be found in [18, page 196].
Under a stronger Lipschitz condition of similar type, global existence and uniqueness

can also be established, see [18].
Since we have applications in mind with diffusion, differential operators are of interest.

Let Ω be a bounded domain in IRn with smooth boundary ∂Ω. Consider the differential
operator

A(x, D) :=
∑

|σ|≤2m

aσ(x)Dσ ,

where σ is a multi index and D denotes the derivative. The following theorem from [18] is
of key importance:

THEOREM 2.3. If A(x, D) is a strongly elliptic operator of order 2m, then the operator
−A defined by Au = A(x, D)u is the infinitesimal generator of an analytic semigroup of
operators on L2(Ω).

3. Subspace Decomposition. To simplify notation, we consider in the sequel only non-
linear functions f in (2.1) which do not depend explicitly on time, f = f(u), and we consider
the fixed bounded time interval [0, T ], T < ∞. We also restrict the formulation of our algo-
rithm to the special case where the Banach space X is a Hilbert space, equipped with the inner
product (x, y) for x, y ∈ X , and with it the associated norm ||x|| :=

√

(x, x) for x ∈ X .
Suppose we have a decomposition of the Hilbert space X into n subspaces Xi, which might
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be disjoint or overlapping, X = span{X1, X2 . . .Xn}. For the frequency decomposition we
have in mind, we use the normalized eigenfunctions Aφj = λjφj to define the subspaces, and
we assume that the eigenpairs are ordered, |λ1| ≤ |λ2| ≤ . . .. For example, two subspaces
could be defined by

X1 := span{φ1, φ2, . . . , φm1}, X2 := span{φm2 , φm2+1, . . . , φm},

where m2 ≤ m1 + 1. Note that the subspaces are overlapping if this inequality is strict.
Also the second subspace might be infinite dimensional, m = ∞. We could also select
subspaces which do not separate low and high frequencies, and thus both could be infinite
dimensional. In applications however truncations are common. We define the orthogonal
projector IPi : X −→ Xi to be the unique linear self-adjoint operator with range Xi such that
IP2

i = IPi. For the frequency decomposition introduced above, we would have, for a given
u ∈ X ,

IP1u =

m1
∑

j=1

ujφj , IP2u =

m
∑

j=m2

ujφj , uj = (u, φj).

Our interest here is in subproblems coupled through the non-linearity and not through A,
therefore we require the decomposition to be such that A and IPi commute, which is the
case for the frequency decomposition. Applying the projection operators IPi to the evolution
equation (2.1), we get a sequence of n subproblems,

dvi

dt
+ Avi = IPif(u), 0 < t < T,

vi(0) = IPiu0,
(3.1)

i = 1, 2, . . . , n, where vi := IPiu. We also select operators IRi : Xi −→ X , such that

u =

n
∑

i=1

IRivi,(3.2)

and we assume that they commute with A as well. In the case of the frequency decomposition,
we have

IR1v1 = IR1

m1
∑

j=1

ujφj =

m2−1
∑

j=1

ujφj +

m1
∑

j=m2

αjujφj ,

IR2v2 = IR2

m
∑

j=m2

ujφj =

m1
∑

j=m2

βjujφj +

m
∑

j=m1+1

ujφj ,

for some weights αj + βj = 1, j = m2, . . . , m1. Using the operators IRi, we can define the
new function

f̂(v1, v2, . . . , vn) := f(

n
∑

i=1

IRivi),

and write the sequence of subproblems of the evolution equation as

dvi

dt
+ Avi = IPif̂(v1, v2, . . . , vn), 0 < t < T,

vi(0) = IPiu0.
(3.3)
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Now evolving the solution in some subspaces Xi, i ∈ S, where S denotes a subset of indices
in {1, 2, . . . , n}, while fixing the solution in the remaining subspaces Xj , j /∈ S, is equivalent
to relaxing some of the arguments of f̂ . Doing this, we obtain an algorithm of waveform
relaxation type [17]. For example, a Picard iteration, where all the arguments are relaxed,
would read

dvk+1
i

dt
+ Avk+1

i = IPif̂(vk
1 , . . . , vk

n), 0 < t < T,

vk+1
i (0) = IPiu0,

(3.4)

and thus all the subproblems in the corresponding subspaces Xi would be linear and decou-
pled. A Jacobi relaxation would lead to the subproblems

dvk+1
i

dt
+ Avk+1

i = IPif̂(vk
1 , . . . , vk

i−1, v
k+1
i , vk

i+1, . . . , v
k
n), 0 < t < T,

vk+1
i (0) = IPiu0,

(3.5)

and thus all the nonlinear subproblems in the corresponding subspaces Xi are decoupled and
their dimension is the dimension of the corresponding subspace. If the dimension is chosen to
be one, we obtain the algorithm proposed in [22], which analyzes the solution one eigenmode
at a time. Applying IRi to equation (3.5) and summing over i, we obtain

duk+1

dt
+ Auk+1 = f̃(uk+1, uk), 0 < t < T,

uk+1(0) = u0,
(3.6)

where we used the identity u =
∑m

i=1 IRiIPiu that follows from (3.2), and we have defined
the new function

f̃(uk+1, uk) :=

m
∑

i=1

IRiIPif̂(IP1u
k, . . . , IPi−1u

k, IPiu
k+1, IPi+1u

k, . . . , IPnuk).

The resulting algorithm (3.6) is now a waveform relaxation algorithm in classical notation.
Note that any other relaxation scheme in frequency space would lead to a system of the form
(3.6) as well. It thus suffices in the analysis of the frequency decomposition and subspace
iteration algorithm to investigate iterations of the form (3.6). This is accomplished in the next
section.

REMARK 3.1. The analysis presented in the sequel applies to any splitting leading
to a system of the form (3.6). In particular, one could also choose a decomposition of the
nonlinear function f(u) directly into a function f̃(u, v) such that f̃(u, u) = f(u), which
would be motivated by different means than the frequency decomposition.

4. Convergence Analysis. We derive linear and superlinear bounds on the convergence
rates of the frequency decomposition and subspace iteration algorithm for solving the evolu-
tion equation (2.1). We will need

LEMMA 4.1. If A is a sectorial operator and Re(λ1) > δ > 0, then for any α ≥ 0, there
exists a constant K = K(α), such that

||e−At||α ≤ Kt−αe−δt, ∀t > 0.

Proof. The proof can be found in [19].
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4.1. Gronwall Type Estimates. We also need an estimate for a particular kernel, which
is recursively applied in the analysis of the waveform relaxation algorithm. This estimate is
established in this section. Denoting by Γ(x) the Gamma function,

Γ(x) =

∫ ∞

0

zx−1e−zdz,

and the infinity norm of a bounded function f(x) by

||f(·)||T := sup
0<t<T

|f(t)|,

where T can be infinite, we have the following results:
LEMMA 4.2. Suppose for some 0 ≤ α < 1 and T < ∞ we have a sequence of functions

pk : [0, T ] 7→ IR with pk(0) = 0 for k = 0, 1, . . . satisfying the inequality

pk+1(t) ≤

∫ t

0

1

(t − τ)α
(C1p

k+1(τ) + C2p
k(τ))dτ

for some constants C1 ≥ 0 and C2 > 0. Then we have

pk(t) ≤
(CΓ(1 − α))

k

Γ(k(1 − α) + 1)
tk(1−α)||p0(·)||T ,

where the constant C = C(C1, C2, T, α) is given by

C = C2e
(C1Γ(1−α))n+1

Γ((n+1)(1−α))
T (n+1)(1−α)



2
n

∑

j=1

(C1Γ(1 − α))jT j(1−α) + 1



 ,(4.1)

and n =
⌈

α
1−α

⌉

.

Proof. The proof is obtained by induction. The result clearly holds for k = 0. So suppose
it holds for k. Then we have

pk+1(t) ≤ C1

∫ t

0

1

(t − τ)α
pk+1(τ)dτ + C2

∫ t

0

(CΓ(1 − α))
k

Γ(k(1 − α) + 1)

τk(1−α)

(t − τ)α
dτ ||p0(·)||T .

To be able to estimate the term containing pk+1 on the right, we follow an idea used in [5].
We iterate the inequality n times using each time the identity

∫ t

τ

(t − s)x−1(s − τ)y−1ds = (t − τ)x+y−1B(x, y), x, y > 0,

where B(x, y) denotes the Beta function, Euler’s integral of the first kind [9],

B(x, y) =

∫ 1

0

(1 − s)x−1sy−1ds.

We obtain now a bounded kernel, namely

pk+1(t) ≤ E

∫ t

0

1

(t − s)(n+1)α−n
pk+1(s)ds + D(k, t)t(k+1)(1−α),(4.2)
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with E and D(k, t) given by

E = Cn+1
1

n
∏

j=1

B(j(1 − α), 1 − α),

D(k, t) = C2||p
0(·)||T

(CΓ(1 − α))k

Γ(k(1 − α) + 1)
B(1 − α, k(1 − α) + 1)

×





n
∑

j=1

Cj
1B(j(1 − α), (k + 1)(1 − α) + 1)

j−1
∏

l=1

B(l(1 − α), 1 − α)tj(1−α) + 1



 .

Now we use the fact that the Beta function can be written in terms of the Gamma function
[9],

B(x, y) =
Γ(x)Γ(y)

Γ(x + y)
.

Substituting this expression into the products in E and D(t, k) reveals that the products are
telescopic. We obtain

E =
(C1Γ(1 − α))

n+1

Γ((n + 1)(1 − α))
,

D(k, t) = C2||p
0(·)||T

Ck (Γ(1 − α))
k+1

Γ((k + 1)(1 − α) + 1)

×





n
∑

j=1

Γ((k + 1)(1 − α) + 1) (C1Γ(1 − α))j

Γ((k + j + 1)(1 − α) + 1)
tj(1−α) + 1



 .

Now we need to estimate D(k, t) by a constant independent of t to apply the standard Gron-
wall Lemma, and we want to have the sum independent of k. We estimate in D(k, t) the
terms

tj(1−α) ≤ T j(1−α) and
Γ((k + 1)(1 − α) + 1)

Γ((k + j + 1)(1 − α) + 1)
≤ 2,

and the kernel in the integral of (4.2) by

1

(t − s)(n+1)α−n
≤ T n−(n+1)α,

where the exponent on the right is positive with the condition on n, to obtain

pk+1(t) ≤ ET n−(n+1)α

∫ t

0

pk+1(s)ds + D̃(k)t(k+1)(1−α),

with

D̃(k) = C2||p
0(·)||T

Ck (Γ(1 − α))
k+1

Γ((k + 1)(1 − α) + 1)



2

n
∑

j=1

(C1Γ(1 − α))
j
T j(1−α) + 1



 .

Now we apply the standard Gronwall Lemma and obtain

pk+1(t) ≤ D̃(k)eET (n+1)(1−α)

t(n+1)(1−α).
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Using the definition of the constant C leads to the desired result.
LEMMA 4.3. Suppose we have for some 0 ≤ α < 1

pk+1(t) ≤

∫ t

0

e−δ(t−τ)

(t − τ)α
(C1p

k+1(τ) + C2p
k(τ))dτ

for some constants C1 ≥ 0, C2 > 0, δ > 0 such that

δ1−α > C1Γ(1 − α).

Then

||pk(·)||∞ ≤

(

C2Γ(1 − α)

δ1−α − C1Γ(1 − α)

)k

||p0(·)||∞.

Proof. We have

|pk+1(t)| ≤

∫ t

0

e−δ(t−τ)

(t − τ)α
dτ(C1||p

k+1(·)||∞ + C2||p
k(·)||∞).

Applying the variable transform z = δt(1 − τ/t) leads to

|pk+1(t)| ≤
1

δ1−α

∫ δt

0

e−z

zα
dz(C1||p

k+1(·)||∞ + C2||p
k(·)||∞)

=
1

δ1−α
Γδt(1 − α)(C1||p

k+1(·)||∞ + C2||p
k(·)||∞),

where Γy(x) denotes the incomplete Gamma function,

Γy(x) =

∫ y

0

zx−1e−zdz.

Taking the limit as t goes to infinity, we obtain

||pk+1(·)||∞ ≤
Γ(1 − α)

δ1−α
(C1||p

k+1(·)||∞ + C2||p
k(·)||∞).

Now using δ1−α > C1Γ(1 − α), the result follows.

4.2. Convergence Results. We consider now solution algorithms of the form (3.6) for
the evolution equation (2.1). The equations for the error ek+1 are given by

dek+1

dt
+ Aek+1 = f̃(u, u) − f̃(uk+1, uk), 0 < t < T,

ek+1(0) = 0.
(4.3)

THEOREM 4.4 (Linear Convergence). If f̃ is Lipschitz from Xα to X (0 ≤ α < 1) in
both arguments,

||f̃(u2, v) − f̃(u1, v)|| ≤ L1||u2 − u1||α, ∀u1, u2, v ∈ Xα,

||f̃(u, v2) − f̃(u, v1)|| ≤ L2||v2 − v1||α, ∀u, v1, v2 ∈ Xα,
(4.4)
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for some Lipschitz constants L1 and L2 satisfying

L1 <
δ1−α

KΓ(1 − α)
, L2 <

δ1−α

KΓ(1− α)
− L1,

with K = K(α) and δ the constants given in Lemma 4.1, then iteration (3.6) converges at
least linearly on unbounded time intervals,

sup
t>0

||ek(t)||α ≤ γk sup
t>0

||e0(t)||α,

with

γ =
L2KΓ(1 − α)

δ1−α − L1KΓ(1 − α)
< 1.

REMARK 4.5. The Lipschitz condition (4.4) is similar to the Lipschitz condition (2.2)
required for a unique solution. In the case of Theorem 4.4, there are however additional con-
straints on the size of the Lipschitz constants to obtain linear convergence. These constraints
will be removed in Theorem 4.6 for superlinear convergence.

Proof. The solution of the error equations can formally be written as

ek+1(t) =

∫ t

0

e−A(t−τ)(f̃(u(τ), u(τ)) − f̃(uk+1(τ), uk(τ)))dτ.

Applying Aα on both sides and taking norms, we obtain

||ek+1(t)||α ≤

∫ t

0

||e−A(t−τ)||α||f̃(u(τ), u(τ)) − f̃(uk+1(τ), uk(τ))||dτ.

Using the Lipschitz condition on f̃ and Lemma 4.1, we get

||ek+1(t)||α ≤ K

∫ t

0

e−δ(t−τ)

(t − τ)α
(L1||e

k+1(τ)||α + L2||e
k(τ)||α)dτ.

Now denoting by pk+1(t) := ||ek(t)||α and applying Lemma 4.3, the result follows.
THEOREM 4.6 (Superlinear Convergence). If f̃ is Lipschitz from Xα to X (0 ≤ α < 1)

in both arguments (4.4) with arbitrary Lipschitz constants L1 and L2, then iteration (3.6)
converges superlinearly on bounded time intervals, 0 < t < T , with at least the rate

sup
0<t<T

||ek(t)||α ≤
(CΓ(1 − α))k

Γ(k(1 − α) + 1)
T k(1−α) sup

0<t<T

||e0(t)||α,

where the constant C is given by

C = KL2e
(KL1Γ(1−α))n+1

Γ((n+1)(1−α))
T (n+1)(1−α)



2

n
∑

j=1

(KL1Γ(1 − α))jT j(1−α) + 1



 ,

n =
⌈

α
1−α

⌉

, and the constant K = K(α) is given in Lemma 4.1.

Proof. Proceeding as in Theorem 4.4, we get

||ek+1(t)||α ≤ K

∫ t

0

e−δ(t−τ)

(t − τ)α
(L1||e

k+1(τ)||α + L2||e
k(τ)||α)dτ.
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FIG. 5.1. Linear convergence on a long time interval on the left, and superlinear convergence on a shorter
time interval on the right.

Now denoting by pk+1(t) := eδt||ek(t)||α and applying Lemma 4.2, the result follows.
Note that the bound on the convergence rate is superlinear, since the Gamma function

grows faster than any constant to the power k. It is also interesting to note that, while the
linear convergence bound depends in an essential way on the dissipation represented by the
parameter δ, the superlinear convergence bound is independent of this parameter.

5. Numerical Examples. We show two sets of numerical experiments, first a double
well potential in one dimension, and then a combustion problem in two dimensions. The
first problem illustrates the two different types of convergence rates the analysis predicts,
and shows the dependence of the convergence rate on the splitting of the algorithm. The
combustion experiment is motivated by [1], where the algorithm was used to investigate sub-
critical and super-critical solutions.

5.1. Double Well Potential Model Problem. The double well potential model problem
we consider is

∂u

∂t
−

∂2u

∂x2
= C(u − u3), 0 < x < 1, 0 < t < T,

with a given initial condition, and homogeneous boundary conditions. First we investigate
the special case of the Picard iteration, where all the arguments of the nonlinear function are
relaxed,

∂uk+1

∂t
−

∂2uk+1

∂x2
= C(uk − (uk)3), 0 < x < 1, 0 < t < T,

and thus all the subproblems to be solved are linear and decoupled. This illustrates the two
different convergence behaviors of the algorithm.

We solve the equation by discretizing in space by centered finite differences on a grid
with 100 nodes, and integrate in time using backward Euler and 300 time steps. We set
C = 1, and use as initial condition u(x, 0) = x(1 − x). In a first experiment, we choose
a long time interval, T = 3, where we expect the algorithm to be in the linear convergence
regime. We start the iteration with a constant initial guess u0 = 0. Figure 5.1 on the left
shows how the algorithm converges linearly. The error is measured throughout this section in
the discrete L2 norm in space (including the mesh parameter and thus corresponding to the
continuous L2 norm), and in the L∞ norm in time. By error we always denote the difference
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Error, L2 in space and L∞ in time
k m1 = 1 m1 = 2 m1 = 3 m1 = 5
0 1.7726e-02 1.7726e-02 1.7726e-02 1.7726e-02
1 1.7485e-06 1.7485e-06 4.5537e-08 3.8604e-09
2 1.7471e-09 1.7471e-09 1.2516e-11 4.4270e-13
3 4.0306e-13 4.0306e-13 1.7345e-15 4.0523e-17

TABLE 5.1
Dependence of the convergence of the frequency decomposition for the double well potential on the splitting

parameter m1.

between the converged solution and the iterates. The solid line depicts the convergence rate
according to Theorem 4.4 with K = 1 and δ = π2, the first eigenvalue of the operator
under consideration. The dashed line shows the measured convergence rate in the numerical
simulation. Note how the convergence rate agrees quite well with the predicted rate.

To observe superlinear convergence, we reduce the time interval to T = 1/10 and use
again the initial guess u0 = 0 to start the iteration. Figure 5.1 shows on the right how the
algorithm converges superlinearly. As before, the error is measured in the discrete L2 norm in
space and in the L∞ norm in time, and the solid line depicts the convergence rate according to
Theorem 4.6 and the dashed line the measured convergence rate in the numerical simulation.
Note how the convergence rate becomes better as the iteration progresses. The superlinear
rate is predicted quite well by the theoretical bound.

Next, we consider a frequency decomposition for the discretized spatial operator. We
choose two subspaces, the first one span by the first m1 eigenfunctions, and the second one
by the remaining eigenfunctions, thus obtaining a splitting without overlap. Note that the fast
Fourier transform is the ideal tool for the frequency decomposition on a discretized operator,
where geometry permits. We use the same numerical method as for the first experiment with
T = 1. Table 5.1 shows the dependence of the convergence rate on the splitting parameter
m1. First note that the first and the second column show the same convergence rate, it does
not matter if the second frequency is in the first or second subspace. This is due to the
symmetry in the problem: the second frequency is irrelevant for the solution and thus also
for the algorithm. This is also the case for all the other even frequencies, and they are thus
not considered in the computation in Table 5.1. Second note the fast convergence, which
indicates a weak coupling through the nonlinearity u − u3. The convergence rate increases
when more of the low frequencies are included in the first subspace. Finally, we computed
how much of the solution is contained in the low frequencies in the above experiment. The
first subspace with one frequency only, m1 = 1, contains after the first iteration 97% of the
solution. With two frequencies, the first and the third one, m1 = 3, the first subspace contains
after one iteration 99.5% of the solution, and with three frequencies 99.9%. This motivates
the qualitative study of the behavior of nonlinear problems using a low dimensional frequency
subspace, as it was done in [22] and [1].

5.2. Combustion Model Problem. Combustion problems have the inherent property
that a small change in a parameter or in the initial data can change the solution drastically:
either it explodes or it does not [20]. It can be very difficult to trace such a sensitive path
in the non-linear solution process with many variables arising from the spatial discretization.
It was therefore proposed in [22] to analyze each frequency separately, one at a time. For
one frequency at a time, the nonlinear problem is one dimensional and can always be solved
safely, sometimes even analytically. An iteration of the type presented here then leads to the
global solution, if desired.
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Error, L2 in space and L∞ in time
k m1 = 1 m1 = 5 m1 = 6 m1 = 11
0 1.7279e-01 1.7279e-01 1.7279e-01 1.7279e-01
1 5.0731e-03 1.0854e-03 1.0854e-03 5.3048e-04
2 9.2856e-04 7.4087e-05 7.4082e-05 1.5452e-05
3 8.7745e-05 3.7472e-06 3.7471e-06 8.6243e-07
4 1.6778e-05 2.4962e-07 2.4961e-07 2.8455e-08
5 1.5979e-06 1.3166e-08 1.3165e-08 1.5902e-09

TABLE 5.2
Dependence of the convergence of the frequency decomposition for the combustion problem on the splitting

parameter m1 in the sub-critical case.

We analyze here the combustion problem

∂u

∂t
− ∆u = Ce

αu

α+u , 0 < x, y < 1, 0 < t < T,

with homogeneous boundary conditions and a given initial condition u(x, y, 0). It is well
known that for large values of α solutions grow to order eα; they are called super-critical. For
small values of α, solutions stay order one and are called sub-critical. In between at some
point, a sudden change takes place. A similar dependence can also be shown for the initial
data.

An experiment working directly with the continuous, normalized eigenfunctions associ-
ated with the linear spatial part,

φi,j = 2 sin(iπx) sin(jπy), i, j = 1, 2, . . .

is performed in the thesis [1], to trace the evolution of each mode separately. A clear sep-
aration between sub-critical and super-critical solutions depending on the initial data was
obtained considering the first eigenmode only.

Here, we work with the discretized spatial operator and the associated eigenfunctions.
We use as initial condition u(x, y, 0) = 100xy(1−x)(1−y), and set the constant C = 1. We
discretize uniformly in space using finite differences on an 11× 11 spatial grid, and integrate
in time using Backward Euler with 20 time steps. We use again a spectral decomposition with
the first m1 modes in the first subspace and with the remaining ones in the second subspace.
Table 5.2 shows the convergence for various sizes of the first spectral subspace for α = 34
in the sub-critical case, where again we denote by error the difference between the converged
solution and the iterates. Note again that not all frequencies contribute to the solution. By
symmetry we can exclude all the eigenmodes with an even component in either the x or the
y direction or both. Therefore, the table only shows convergence rates for m1 = 1, where
the mode 1-1 is the only mode in the first subspace, then for m1 = 5, where the mode 1-3 is
added to the first subspace, for m1 = 6, where the mode 3-1 is added, and finally m1 = 11,
when the mode 3-3 is added. Note that splitting the two modes 1-3 and 3-1 between the two
subspaces leaves the convergence rate practically like having both modes in the first subspace.

Similarly to the case of the double well potential, adding more and more of the low
modes to the first subspace enhances the performance of the frequency decomposition algo-
rithm. Again the solution is dominated by the low modes. After one iteration with only the
lowest mode in the first subspace, the approximation in that subspace contains already 98%
of the solution, while when keeping the three lowest modes, after one iteration 99.2% of the
solution are confined to the first subspace. Note however that the convergence is slower than
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Error, L2 in space and L∞ in time
lower resolution higher resolution

k m1 = 1 m1 = 6 m1 = 11 m1 = 1 m1 = 6 m1 = 11
0 3.2515e-01 3.2515e-01 3.2515e-01 1.5395e-01 1.5395e-01 1.5395e-01
1 3.2095e-02 1.0777e-02 6.6680e-03 1.4512e-02 4.7042e-03 2.8117e-03
2 9.9649e-03 3.7754e-03 2.0804e-03 4.3384e-03 1.5362e-03 7.9829e-04
3 2.3353e-03 6.9933e-04 3.3455e-04 9.2008e-04 2.6130e-04 1.1908e-04
4 4.6069e-04 1.4275e-04 6.1936e-05 1.6445e-04 4.7106e-05 1.9287e-05
5 7.1504e-05 1.9062e-05 7.4141e-06 2.2138e-05 5.5585e-06 2.0696e-06

TABLE 5.3
Dependence of the convergence of the frequency decomposition for the combustion problem on the splitting

parameter m1 in the super-critical case, for two different resolutions in the discretization.

for the double well potential, which indicates a stronger coupling of the frequencies by this
nonlinearity.

Finally, Table 5.3 shows the convergence of the algorithm in the super-critical case
α = 35. Here we were required to shorten the time interval to T = 0.01 in accordance
with Theorem 4.6 to achieve convergence. Note that higher frequencies are becoming more
important in the super-critical case: if the first subspace contains one frequency only, m1 = 1,
after the first iteration only 92% of the solution is contained in this subspace, compared to
98% in the sub-critical case. In Table 5.3, we also show a second numerical experiment on a
refined grid, both in space and in time the number of grid points were doubled. The numerical
results show that this has only little influence on the convergence behavior of the method.

6. Conclusion. We have analyzed a generalized version of the nonlinear eigenfunction
expansion algorithm proposed in [22] to explore the behavior of solutions of nonlinear evo-
lution equations. This algorithm has two main interests: the first one is that the solution of a
large system of nonlinear equations at each time step is reduced to solutions of many inde-
pendent scalar nonlinear problems, for which fail-safe algorithms are available. Second, the
algorithm permits to explore individual frequency subspaces separately to investigate in a nu-
merically sound way rapid changes occurring typically in nonlinear problems of combustion
type. A third advantage, which should not be neglected, is the parallelism of this algorithm,
when a full solution of the problem is desired.

We showed that the generalized version of the frequency decomposition algorithm con-
verges under a strong Lipschitz condition on unbounded time intervals and therefore also for
the steady state. On bounded time intervals, convergence was proved under a Lipschitz con-
dition controled by the length of the time interval. Hence by shortening the time interval, the
algorithm can always be made to converge. In this case, the technique of time windowing
often used in waveform relaxation can be useful: one decomposes the time interval of inter-
est [0, T ] into smaller time windows, and uses the algorithm sequentially on the small time
windows where rapid convergence occurs.

More needs to be understood for the frequency decomposition algorithm, in particular
the question of how to choose the subspaces. The present convergence analysis does not
reveal this dependence because of the general Lipschitz conditions used. But the numerical
experiments suggest that if there is a way of a priory knowing which frequencies are relevant
as the solution evolves, those should be put into one subspace.
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