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LOCAL APPROXIMATION ESTIMATORS
FOR ALGEBRAIC MULTIGRID∗

JAN MANDEL†

Abstract. In Smoothed Aggregation Algebraic Multigrid, the prolongator is defined by smoothing of the output
of a simpler tentative prolongator. The weak approximation property for the tentative prolongator is known to give
a bound on the convergence factor of the two-level and even multilevel method. It is known how to bound the
constants in the weak approximation property when the system matrix is given as the sum of positive semidefinite
local matrices. In practice, however, the local matrices are often not known to the solver, or the problem is given in
terms of local matrices and additional constraints. We characterize the matrices that can be decomposed into a sum
of local positive semidefinite matrices with only given rows and columns allowed to be nonzero, and we show that
such a decomposition may not always exist. We then propose a construction of approximate local matrices that may
be used for local estimates. Finally, we show how eliminating the constraints from the local matrices can be used to
obtain rigorous bounds.
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1. Introduction. We are concerned with the development of Algebraic Multigrid
(AMG) for symmetric, positive definite linear systems arizing from finite element
discretization of elliptic partial differential equations. AMG methods attempt to create coarse
levels from the algebraic system automatically, using no or only a minimum of additional
information. The basic idea of the multigrid algorithm is that fine level error on which the
smoothing process is not effective should be reduced by the coarse correction. Therefore,
a-priori estimates of the approximation of fine level functions by coarse level function are
important to guide the design of robust AMG methods, cf., [2, 3], and references therein.

A number of coarsening schemes will work well on “reasonable” scalar problems
which typically result in M-matrices, such as the Laplace equation discretized by linear
elements on a non-degenerate unstructured grid [7, 16]. Methods that incorporate rigid body
modes, such as the Smoothed Aggregation AMG [19], work also very well for elasticity.
Realistic problems, however, typically include elements violating shape limits, large jumps
of coefficients, special kinds of elements, and additional constraints on the values of degrees
of freedom, enforced by large penalties (“stiff spring” or “contact” elements in engineering
parlance), or even arbitrary additional equations that are eliminated before the matrix is
passed to the solver (“multiple point constraints”). Such problems are hard to solve by AMG
even if they are symmetric and positive semidefinite. Without a-priori numerical estimates of
the rate of convergence, with a rigorous foundation, an AMG algorithm is based simply on
the hope that the problem will not have anything unexpected and things will work out in the
end.

One common estimate that can be computed a-priori is the weak approximation property,
which bounds the error of the best approximation in Euclidean norm of a fine grid vector
by the prolongation of a coarse grid vector in terms of the energy norm of the fine grid
vector. The weak approximation property for the prolongator is known to imply a bound on
the two-level convergence factor [8, 13, 1], albeit a fairly pessimistic one [12]. The weak
approximation property is used as an a-priori indicator in element based AMG [2, 3]. In the
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smoothed aggregation method [17, 19], two-level convergence bounds [20, 21] as well as
multilevel convergence bounds [18] can be obtained from the weak approximation property
for the so-called tentative prolongator, which is similar to piecewise constant interpolation.
Hence, the constants in the weak approximation property are relatively easy to compute
and estimate. The actual prolongator used in the multigrid algorithm is then obtained by
smoothing the output of the tentative prolongator. For more details and further developments
of Smoothed Aggregation AMG, see [4, 5, 6, 9, 14, 19]

In the absence of multiple point constraints, the constant in the weak approximation
property can be bounded rigorously from the solution of eigenvalue problems based on local
element matrices. In [3], it was proposed to select the columns of the tentative prolongator as
the eigenvectors of the local problems and to control the convergence of algebraic multigrid
by choosing the number of the eigenvectors and by selecting the amount of smoothing of the
prolongator.

In practice, the problem to be solved is most conveniently given in terms of a single
global stiffness matrix with all constraints incorporated. Then the information contained in
the local stiffness matrices is lost, and to bound the constant in the weak approximation
property rigorously by the solution of local eigenvalue problems, one would need to
decompose the global matrix into the sum of positive semidefinite local matrices. We show
that, in general, such a decomposition does not exist. To estimate the contribution of a single
aggregate (or, equivalently, of a block of coarse basis functions) to the constant in the weak
approximation property, we decompose the global matrix into local matrices corresponding
to the decomposition of the set of all nodes into the given aggregate and its complement.
We also present further approximation techniques to reduce the cost of the estimation. The
resulting estimates are not rigorous but they are still practically useful.

2. Matrix notation. We will work with real matrices denoted by A = (aij), with entries
denoted by aij = (A)ij , and column vectors (n × 1 matrices) denoted by x, y, etc. The
notation A ≥ 0 means that A is symmetric positive semidefinite, A > 0 means that A is
symmetric positive definite, and A ≤ B means A − B ≥ 0. If A is an m × n matrix and
I ⊂ {1, . . . , m}, J ⊂ {1, . . . , n}, then A(I, J) is the submatrix of A consisting of rows
i ∈ I and columns j ∈ J . The notation A(:, J) means the submatrix of all rows j ∈ J .
Let ΠI be the n × n diagonal matrix with (ΠI)ii = 1 if i ∈ I and (ΠI)ii = 0 otherwise.
The support of a matrix is defined as the set of all indices of nonzero rows, denoted by
supp A = {i | ∃ j : aij 6= 0}. If A and B are of the same size m× n, their inner product is
defined by

〈A, B〉 =

m
∑

i=1

n
∑

j=1

aijbij .

If A ≥ 0, the energy (semi)norm associated with A is denoted by ‖u‖A =
√

uT Au. The
Euclidean norm of a vector is ‖u‖ =

√
uT u. Finally, ρ(A) is the spectral radius of A, t

denotes the transpose, Ker is the nullspace, and Im is the range.

3. Multilevel algorithm and the weak approximation property. We consider the
basic two-level variational scheme for the solution of a linear system Ax = b, where A > 0
is an n× n matrix.

ALGORITHM 3.1.
1. pre-smoothing: x← x−M(Ax− b),
2. coarse correction: P T (A(x + Py)− b) = 0, x← x + Py,
3. post-smoothing: x← x−MT (Ax− b).
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The multilevel algorithm is obtained by recursion, solving the correction problem
approximately by one or two steps of the same method starting with y = 0. The matrix
P is called the prolongator. The matrix M is the smoother preconditioner, obtained, e.g.,
from the Gauss-Seidel or Jacobi methods, or simply is a multiple of I .

It is well known [1, 8, 1] that, under suitable conditions on A, if the weak approximation
property holds, which is given by

∀u ∃v : ‖u− Pv‖2 ≤ c1

ρ(A)
‖u‖2A,(3.1)

the convergence factor of Algorithm 3.1 in the ‖.‖A norm is at least (1 − c(M)/c1). Here,
c(M) is a (small) constant, depending on the details of the form of M but not on the
condition number of A. This estimate, however, does not generalize to guarantee multilevel
convergence independent (or weakly dependent) on the number of levels.

In Smoothed Aggregation AMG, the prolongator is defined as P = SP̂ , where S =
I − (ω/ρ(A)), ω ≤ 3/2, is a prolongator smoother and P̂ is a tentative prolongator. If the
tentative prolongator P̂ satisfies the weak approximation property

∀u ∃v : ‖u− P̂ v‖2 ≤ c1

ρ(A)
‖u‖2A,(3.2)

then, under suitable assumptions on M , the convergence factor of Algorithm 3.1 in the ‖.‖AS

norm can be bounded by (1− c(M)/c1). Here, again, c(M) is a small constant that does not
depend on the condition number of A. The estimate can be generalized to convergence in the
‖.‖A norm and the multilevel methods, cf., [18, 21].

The tentative prolongator is constructed from an aggregation of variables as follows. The
index set is split into disjoint aggregates,

{1, . . . , n} = A1 ∪ . . . ∪ Am,

and P̂ is required to be of the form

P̂ = [P1, . . . , Pm], supp Pi ⊂ Ai.(3.3)

In [19], the nonzero rows in Pi are constructed by orthogonalizing a restriction of the vectors
of rigid body modes ontoAi.

Let the matrix A be given as an assembly of local matrices, as usual in the finite element
method,

A = A1 + . . . + Ak, Aj ≥ 0.(3.4)

We find it convenient to consider local element matrices embedded in a global zero matrix;
supp Aj then plays the role of the indices of the degrees of freedom associated with element
j. It is well known that a computational verification of the weak approximation property
is then possible by a simple summation argument. We are concerned here with the special
case of weak approximation propery for the tentative prologation of the form (3.3), and we
proceed by covering each aggregate by a set of elements Ji.

LEMMA 3.2. Suppose that J1, . . . , Jm ⊂ {1, . . . , n} satisfy

Ai ⊂
⋃

j∈Ji

supp Aj , i = 1, . . . , m,
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let Ãi =
∑

j∈Ji
Aj be the subassembled matrices corresponding to Ji, and assume that the

local approximation property holds,

∀i ∈ {1, . . . , m} ∀u ∃vi : ‖ΠAj
(u− P̂jvj)‖2 ≤

Cj

ρ(A)
uT Ãju.(3.5)

Then the weak approximation property (3.2) for the tentative prolongator holds with c1 =
N maxj Cj , where N = maxj{i | j ∈ Ji} is the maximum number of overlapping sets Ji.

Proof. Let u be given, let vj be from (3.5), and define

v =







v1

...
vk






.

Then

‖u− P̂ v‖2 =

m
∑

j=1

‖Πj(u− P̂jvj)‖2 ≤
m

∑

j=1

Cj

ρ(A)
uT Ãju ≤ N max

j
Cj uT Au,

because the aggregates are disjoint.
The best constant Cj in the local weak approximation property (3.5) can be computed as

the largest eigenvalue of the generalized eigenvalue problem

(ΠAj
− P̂j(P̂

T
j P̂j)

−1P̂ T
j )(supp Ãj , supp Ãj)u = λ

Ãj(supp Ãj , supp Ãj)

ρ(A)
u.(3.6)

The matrices on the right-hand and left-hand sides of the generalized eigenvalue
problem (3.6) are singular. However, the usual construction of the tentative prolongator
P̂ from rigid body modes [19] implies that if Ãj(supp Ãj , supp Ãj)u = 0 then u is the
restriction of a rigid body mode vector, (ΠAj

− P̂j(P̂
T
j P̂j)

−1P̂ T
j )(supp Ãj , supp Ãj)u = 0.

Hence, the generalized eigenvalue problem (3.6) reduces modulo Ker Ãj(supp Ãj , supp Ãj)
to a problem with the matrix on the right-hand side positive definite.

To guarantee (3.2) with a given maximal Cj and with N = 1, it was proposed in [3] to
choose the aggregates Ak as the variables in disjoint clusters of elements, with the variables
shared between the clusters assigned to one of the aggregates only, and columns of P̂j as
eigenvectors of Ãj(supp Ãj , supp Ãj), restricted to Aj .

4. Decomposition into local matrices. Let V be the space of all n× n real symmetric
matrices, V = {A ∈ IRn×n | A = AT }. It is easy to see that the cone of positive semidefinite
matrices in V is self-dual:

LEMMA 4.1. Let A ∈ V . Then A ≥ 0 if and only if 〈A, B〉 ≥ 0 for all B ∈ V , B ≥ 0.
Proof. Let A ∈ V . The matrix A has spectral decomposition A =

∑n

i=1 λiuiu
′
i, where

{ui | i = 1, . . . , n} is an orthonormal basis of IRn consisting of eigenvectors of A. Then

〈A, B〉 =

n
∑

i=1

λi〈uiu
′
i, B〉 =

n
∑

i=1

λiu
′
iBui.

Now A ≥ 0 if and only if all eigenvalues λi ≥ 0. If A ≥ 0 and B ≥ 0, then u′
iBui ≥ 0,

hence 〈A, B〉 ≥ 0. On the other hand, if λi < 0 for some i, the choice B = uiu
′
i gives B ≥ 0

and 〈A, B〉 = λi < 0.
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The following theorem provides a characterization of matrices that can be decomposed
into sums of positive semidefinite matrices with given supports.

THEOREM 4.2. Let A ∈ V , A ≥ 0, and Ii ⊂ {1, . . . , n}, i = 1, . . . , m. Then there exist
matrices Ai ∈ V , Ai ≥ 0, such that supp Ai ⊂ Ii, i = 1, . . . , m, and A =

∑m

i=1 Ai, if and
only if there is no matrix B ∈ V such that B|Ii

≥ 0, k = 1, . . . , m, and 〈A, B〉 < 0.
Proof. It is easy to see that the condition is necessary. Namely, if A =

∑n
i=1 Ai, Ai ≥ 0,

and B|Ii
≥ 0, then using Lemma 4.1, 〈A, B〉 =

∑n

i=1〈Ai, B〉 ≥ 0. On the other hand,
suppose that no decomposition of A into the sum of the matrices Ai such as in the theorem
exists. This means that A is not an element of the convex cone C, defined by

C =

{

m
∑

i=1

Ai | Ai ∈ V, Ai ≥ 0, suppAk ⊂ Ii

}

.

From the separation theorem for convex sets, there exists a hyperplane separating the cone C
and the point A in the space V . That is, there exist B ∈ V and b ∈ IR such that 〈X, B〉 ≥ b
for all X ∈ C and 〈A, B〉 < b. Because 0 ∈ C, it follows that b ≤ 0, hence 〈A, B〉 < 0.
Let X ∈ C. Then, for all t > 0, tX ∈ C, hence t〈X, B〉 ≥ b. Letting t → ∞, we obtain
〈X, B〉 ≥ 0.

The main result of this section is that a decomposition of a positive semidefinite matrix
into local positive semidefinite matrices does not always exists, as demonstrated by the
following counterexample.

EXAMPLE 4.3. Let n = 3 and I1 = {1, 2}, I2 = {2, 3}, I3 = {1, 3} and

B =





1 2 1
2 4 1
1 1 1



 .

The eigenvalues of B are λ1 ≈ −0.23, λ2 ≈ −0.82, λ3 ≈ 5.41, and B|Ii
≥ 0, i = 1, 2, 3.

Let u1 be an eigenvector of B corresponding to the eigenvalue λ1. Then, according to
Theorem 4.2, the matrix A = u1u

′
1 ≥ 0 has no decomposition A = A1 + A2 + A3, Ai ≥ 0,

supp Ai ⊂ Ii, since 〈B, A〉 < 0.

5. Approximate decomposition into local matrices. Let A be n×n matrix, A > 0, and
A ⊂ {1, . . . , n}. We want to construct a matrix that would play the role of the local matrix
forA, i.e., what the local stiffness matrix might be if A were the set of degrees of freedom of
an element. Because exact decomposition into local matrices may not exist, we can only get
approximate local matrices. We choose to construct one approximate local matrix at a time.
For this purpose, let

S1 = {i ∈ A | ∀j ∈ {1, . . . , n} \ A : aij = 0},
S2 = {i ∈ A | ∃j ∈ {1, . . . , n} \ A : aij 6= 0},
S3 ⊂ {1, . . . , n} \ A.

The index sets S1 and S2 can be interpreted as the interior and the boundary ofA, respectively.
The choice of S3 will be specified later. Let

S = S1 ∪ S2 ∪ S3.

For systems that arise in elasticity, the numbers 1, . . . , n are indices of nodes and aij are
blocks rather than scalars.
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In the block form corresponding to the index sets S1, S2, S3, we have

A(S, S) =





A11 A12 0
A21 A22 A23

0 A32 A33



 .

It is assumed that the diagonal blocks A11, A22, A33 are positive definite, which is the case
when A is the stiffness matrix from the Finite Element method.

We wish to decompose the matrix A(S, S) as

A(S, S) = A(1) + A(2),(5.1)

where

A(1) =





A11 A12 0

A21 A
(1)
22 0

0 0 0



 ≥ 0,

A(2) =





0 0 0

0 A
(2)
22 A23

0 A32 A33



 ≥ 0.

We then take the pseudolocal matrix

Apseudolocal
A

=

[

A11 A12

A21 A
(1)
22

]

(5.2)

as an approximate local matrix for A.
The following lemma is well known [10].
LEMMA 5.1. Let

B =

[

B11 B12

B21 B22

]

be symmetric and B11 > 0. Then B ≥ 0 if and only if B22 ≥ B21B
−1
11 B12.

From Lemma 5.1, we get that A
(1)
22 and A

(2)
22 have to at least satisfy

A
(1)
22 ≥ A21A

−1
11 A12, A

(2)
22 ≥ A23A

−1
33 A32.

Splitting the difference evenly so that A22 = A
(1)
22 + A

(2)
22 , we construct

A
(1)
22 = A21A

−1
11 A12 + (A22 −A21A

−1
11 A12 −A23A

−1
33 A32)/2

= (A22 + A21A
−1
11 A12 −A23A

−1
33 A32)/2,

A
(2)
22 = A23A

−1
33 A32 + (A22 −A21A

−1
11 A12 −A23A

−1
33 A32)/2

= (A22 −A21A
−1
11 A12 + A23A

−1
33 A32)/2.

It remains to specify the choice of the index set S3. If S3 = {1, . . . , n} \ A, the
decomposition (5.1) gives a decomposition of A into two local matrices, one for A and one
for its complement. However, the the usefulness of such a decomposition is limited, because
both local matrices are dense. Moreover, operating with A−1

33 is expensive. We propose to
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Problem Matrix (MB) Equations Iterations CPU sec
1 54 118401 20 35
2 102 110211 34 118
3 693 1698525 no convergence n/a

TABLE 7.1
Test problems and AMG results

take S3, to be a maximal independent set of neighbors of A, that is, a maximal set S3 such
that

S3 ⊂ {i ∈ {1, . . . , n} \ A | ∃j ∈ A : aij 6= 0},
∀i, j ∈ S3 : aij = 0.

Such a maximal set is easily found by the greedy algorithm (i.e., add indices to the set as long
as it is possible). The matrix A33 is then diagonal (or block diagonal in case of systems).

The constant in the weak approximation property is then estimated by using the
pseudolocal matrices (5.2) on the right-hand side of (3.6) in place of Ãi(supp Ãi, supp Ãi).

6. Local matrices and constraints. In practice, the Finite Element model has
additional constraints, usually written in the form

u =

[

u(1)

u(2)

]

, u(2) = Cu(1).(6.1)

The variables in u(1) are called masters and the variables in u(2) are called slaves. The
problem to be solved is then to minimize the energy functional 1

2uT Au− bT u subject to the
constraints (6.1), which is equivalent to solving the system of linear equations for the masters,

Acu(1) =

[

I
C

]T

b, Ac =

[

I
C

]T

A

[

I
C

]T

u(1).

If A is given by assembly of local matrices (3.4), we have

Ac =
n

∑

i=1

Ac
i , Ac

i =

[

I
C

]T

Ai

[

I
C

]

.(6.2)

The estimates developed in Section 3 can be then used with the matrices Ac
i in place of the

matrices Ai. The support of the matrices Ac
i , however, depends on the sparsity pattern of the

constraint matrix C.

7. Computational results. We have evaluated the estimate from (3.6) for three test
problems, with the pseudolocal matrices from (5.2) in place of Ãi. The aggregates were
generated by a version of the greedy algorithm from [19]. The matrix A was scaled in
advance to have unit diagonal and ρ(A) was estimated by the 1-norm. An approximation
of the largest eigenvalue of the generalized eigenvalue problems was obtained by few
iterations of the LOBPCG code of Knyazev [11], preconditioned by the block diagonal
matrix diag([A11, A22]). These maximal eigenvalues have the interpretation of the reciprocal
of the smallest nonzero eigenvalues of the pseudolocal matrices. Because the matrix A is
scaled to have unit diagonal, the spectral radii of the pseudolocal matrices are O(1), hence
the approximate maximal eigenvalues are referred to as condition estimates in the figures.
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FIG. 7.1. Estimates for Problem 1
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FIG. 7.2. Estimates for Problem 2

We have tested the estimates on three isotropic elasticity problems, summarized in
Table 7.1. Problem 1 is a block discretized by a reasonable nonuniform 20-noded tetra-mesh.
Problem 2 is a block discretized by a regular mesh of elements with very high aspect ratios.
Problem 3 is a difficult industrial problem with irregular geometry and numerous multiple
point constraints. Iteration counts and CPU times are reported for relative `2-residual of
10−4 and the AMG algorithm implemented in ANSYS 5.7 [15], running on one processor of
500MHz Compaq AlphaServer DS20. The algorithm converges fast for easy problems and
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FIG. 7.3. Estimates for Problem 3

makes many valiant attempts to salvage convergence for hard problems before giving up. For
details and more performance results, see [15].

It should be noted that the current implementation of AMG in ANSYS computes
the eigenvalues of the submatrices of the stiffness matrix to assess the “difficulty” of
the aggregates. This calculation takes less than 3% of the overall solver time, which is
dominated by sparse matrix and vector multiplications. An estimate based on the weak
approximation property for pseudolocal matrices should be no more than twice as expensive.
The computations reported here were done in MATLAB, using a dump of the problem data
and the aggregates from AMG in ANSYS. A practical implementation and the effect of the
new estimates on the convergence of the AMG algorithm will be reported elsewhere.

The distribution of the estimates of c1 from the weak approximation property is in
Figs. 7.1, 7.2, 7.3, respectively. The estimates roughly correspond to the difficulty of solving
these problems by AMG. Problem 1 is relatively easy to solve and the basic AMG algorithm
from [19] works well. The steps in the estimate distribution for Problem 2 are caused by
the fact that the mesh is regular, and certain configurations of nodes in the aggregates repeat
often. This is a much more difficult problem and the method of [15] employs automatic
semicoarsening and other strategies to deal with the high aspect ratios. Problem 3 is extremely
difficult, as evidenced by high values of the estimates.

We have experimented with optimization of the aggregates based on estimates using
pseudolocal matrices, but the optimization algorithm often found an aggregate where the
pseudolocal estimate was low but the aggregate was in fact not good at all, resulting in no
convergence of the multigrid method.

8. Conclusion. Our estimates based on the weak approximation property and
pseudolocal matrices are useful to assess the difficulty of the problem. However, they are
not suitable for optimization of method components. Apparently rigorous local estimates
have to be used for that purpose. This will be studied elsewhere.
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