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EFFICIENT SOLUTION OF SYMMETRIC EIGENVALUE PROBLEMS USING
MULTIGRID PRECONDITIONERS IN THE LOCALLY OPTIMAL BLOCK

CONJUGATE GRADIENT METHOD. ∗

ANDREW V. KNYAZEV† AND KLAUS NEYMEYR‡

Abstract. We present a short survey of multigrid–based solvers for symmetric eigenvalue problems. We con-
centrate our attention on “off the shelf” and “black box” methods, which should allow solving eigenvalue problems
with minimal, or no, effort on the part of the developer, taking advantage of already existing algorithms and soft-
ware. We consider a class of such methods, where the multigrid only appears as a black-box tool for constructing
the preconditioner of the stiffness matrix, and the base iterative algorithm is one of well-known off-the-shelf precon-
ditioned gradient methods such as the locally optimal block preconditioned conjugate gradient method. We review
some known theoretical results for preconditioned gradient methods that guarantee the optimal, with respect to the
grid size, convergence speed. Finally, we present results of numerical tests, which demonstrate practical effective-
ness of our approach for the locally optimal block conjugate gradient method preconditioned by the standard V-cycle
multigrid applied to the stiffness matrix.
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1. Introduction. At the end of the past Millennium, the multigrid technique has ma-
tured to the level of practical industrial applications. The progress in developing an alge-
braic multigrid has made possible implementing efficient algebraic multigrid preconditioners
in commercial codes. Linear and nonlinear multigrid solvers have established a new high
standard of effectiveness for the numerical solution of partial differential equations. Using
multigrid for eigenvalue problems has also attracted significant attention.

Let us first present here a short and informal overview of different multigrid- based ap-
proaches for numerical solution of eigenvalue problems.

The most traditional multigrid approach to an eigenvalue problem is to treat it as a
nonlinear equation and, thus, to apply a nonlinear multigrid solver; e.g., an FAS (full ap-
proximation scheme) [7], sometimes explicitly tuned for the eigenvalue computations, e.g.,
[4, 5, 24, 25, 26, 27, 28, 29, 30].

Such a solver can often be readily applied to nonlinear eigenvalue problems; see [10, 11]
for the FAS applied to the nonlinear Schrödinger-Poisson equations and [5] for a homotopy
continuation methods. For linear eigenvalue problems, this technique may not be always effi-
cient. It may not be able to take advantage of specific properties of eigenvalue problems, if a
general nonlinear solver is used. Tuning a nonlinear code for eigenvalue computations may,
on the other hand, require elaborate programming. Nonlinear multigrid eigensolvers often
involve special treatment of eigenvalue clusters, which further complicates their codes. An-
other known drawback is high approximation requirements on coarse grids, when a nonlinear
multigrid solver needs accurate eigenfunctions on coarse grids, cf. [26].

The second popular approach is to use an outer eigenvalue solver, e.g., the Rayleigh
quotient iteration (RQI) [43], which requires solving linear systems with a shifted stiffness
matrix. The multigrid is used as an inner solver in such inner-outer iterations. The Newton
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neymeyr@na.uni-tuebingen.de

38



ETNA
Kent State University 
etna@mcs.kent.edu

A. V. Knyazev, K. Neymeyr 39

method for the Rayleigh quotient [1] or a homotopy continuation [40, 60] can be used here as
an outer method instead of RQI, which allows one to consider such methods also in the first
category, i.e. nonlinear solvers. The use of the shifted stiffness matrix typically leads to a very
fast convergence of the outer iterative solver provided a high accuracy of the inner iterations,
but requires a special attention as the linear systems, solved by multigrid, are nearly singular,
e.g., [9]. In the well-known Jacobi–Davidson method [48, 52], this difficulty is somewhat
circumvented by introducing a correction equation, which can be solved by multigrid [27].
The problem of choosing a proper stopping criteria for inner multigrid iterations is nontrivial
as the choice may significantly affect the effectiveness of the inner-outer procedure.

More complex variants of the multigrid shift-and-invert methods, where the grids are
changed in outer iterations as well, are known, e.g., [56]. In [57, 58], such a multigrid tech-
nique is adopted for so–called source iteration methods of solving spectral problems for sys-
tems of multigroup diffusion equations describing the steady state of nuclear reactors, and its
implementation for the popular Russian WWER and BN reactors is described.

A very similar technique is to use the classical inverse iterations, often inverse subspace
iterations, as an outer solver and the multigrid as an inner solver for systems with the stiffness
matrix, e.g., [3, 42]. The linear convergence of the traditional inverse iterations is known to
be slower compared to usually super-linear, e.g., cubic in some cases, convergence of the
shift-and-invert iterations discussed in the previous paragraph, but one does not face now
the troubles of nearly singular linear systems. Moreover, when the systems are solved in-
accurately by inner iterations, which is desired to reduce the number of inner steps, the fast
convergence of shift-and-invert outer iterations is typically lost. In this case, the convergence
speed of outer iterations based on the inverse of the stiffness matrix and on the shift-and-invert
techniques may be comparable; e.g., see [53] for comparison of inexact inverse and Rayleigh
quotient iterations.

There are other methods, specifically designed multigrid eigensolvers, that do not fit our
classification above, e.g., multilevel minimization of the Rayleigh quotient [9, 41], called the
Rayleigh quotient multigrid (RQMG). This method has been integrated into an adaptive 2D
Helmholtz eigensolver used for designing integrated optical chips [12, 13].

A class of methods we want to discuss in details in the present paper has two distinc-
tive features: there are no inner-outer iterations and the multigrid can be used only as a
preconditioner, not as a complete linear solver, nor as an eigensolver. These methods are
usually called preconditioned gradient methods as historically the first method of this kind,
suggested in [51], minimizes the Rayleigh quotient on every iteration in the direction of
the preconditioned gradient. They have been studied mostly in the Russian literature; see,
e.g., [17, 21, 23, 32, 34] as well as the monograph [18] and a recent survey [35], which
include extensive bibliography. The most promising preconditioned gradient eigensolvers,
the locally optimal preconditioned conjugate gradient (LOPCG) method and its block ver-
sion (LOBPCG), suggested and analyzed in [33, 34, 35, 36], shall play the main role in the
present paper.

Let us briefly mention here some relevant and even more recent results for symmetric
eigenproblems. Paper [49] obtains asymptotic convergence rate estimate of the generalized
Davidson method similar to that by [51] for the preconditioned steepest descent. In [44, 45],
the second author of the present paper derives the first sharp nonasymptotic convergence
rate estimates for the simplest method in the class, the preconditioned power method with
a shift, called in [44, 45] the preconditioned inverse iteration (PINVIT) method. In [46],
these estimates are generalized to similar subspace iterations. The most recent work, [37],
written by the authors of the present paper, finds a short and elegant simplification of estimates
of [44, 45, 46] and extends the results to generalized symmetric eigenproblems. We shall
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describe one of the main estimates of [37] in Section 4.
Preconditioned gradient methods can be easily linked to the inexact inner-outer iterative

solvers discussed earlier in the section. PINVIT is interpreted in [44, 45] as a perturbation of
the classical inverse iterations. The same method can be also viewed as an inexact RQI with
only one step of a preconditioned linear iterative solver performed on every outer iteration,
e.g., [32, 34].

Preconditioned gradient methods for computing several extreme eigenpairs of symmetric
eigenvalue problems have several advantages compared to other preconditioned eigensolvers:

• algorithmic simplicity;
• low costs per iteration and minimal memory requirements;
• practical robustness with respect to initial guesses;
• robust computation of eigenvalue clusters as a result of using block methods as that

by the classical inverse subspace iterations;
• fast convergence, comparable to that of the block Lanczos applied to A−1B, when

a good preconditioner and an advanced preconditioned gradient method, e.g., the
LOBPCG method, are used;

• designed to operate in a matrix-free environment and equally efficient for regular,
Ax = λx, and generalized, Ax = λBx, symmetric eigenvalue problems;

• relatively well developed theory, which, in particular, guarantees optimal, with re-
spect to the mesh size, convergence with multigrid preconditioning;

• trivial multigrid implementation, e.g., simply by using black-box multigrid precon-
ditioning of the stiffness matrix.

The main drawback of present preconditioned gradient methods is their inability to com-
pute efficiently eigenvalues in a given interval in the middle of the spectrum. For this and
nonsymmetric cases, we refer the reader to preconditioned shift-and-invert methods reviewed
in [2].

Multigrid preconditioned gradient methods are popular for applications, e.g., in structural
dynamics [8] and in electronic structure calculations for carbon nanotubes [22], where two
slightly different versions of the block preconditioned steepest descent are used.

Preconditioning for gradient methods is not limited to multigrid, e.g., band structure
calculations in two- and three-dimensional photonic crystals in [15, 16] are performed by
using the fast Fourier transform for the preconditioning.

Some eigenvalue problems in mechanics, e.g., vibration of a beam supported by springs,
lead to equations with nonlinear dependence on the spectral parameter. Preconditioned eigen-
solvers for such equations are analyzed in [54, 55], where, in particular, a generalization of
the theory of a preconditioned subspace iteration method of [19, 20] is presented.

Here, we use multigrid only as a preconditioner so that all iterations are performed on
the finest grid. This implementation separates completely iterative methods from the grid
structure, which significantly simplifies the code and, we repeat, allows the use of black-
box multigrid, e.g., one of algebraic multigrid preconditioners. Our recommended choice
to precondition the stiffness matrix without any shifts further simplifies the algorithm as it
removes a possibility of having singularities typical for preconditioning of shifted stiffness
matrices.

In research codes, well-known multigrid tricks could also be used, such as nested iter-
ations, where first iterations are performed on coarser grids and the grid is refined with the
number of iterations, e.g., [18]. We note, however, that doing so would violate the off-the-
shelf and black-box concepts, thus, significantly increasing the code complexity. Neverthe-
less, adaptive mesh refinement strategies are available for the eigenproblem [47] where the
adaptive eigensolver is based on the finite element code KASKADE [14]. The efficiency of
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such schemes has been demonstrated in [12, 39].
Let us finally highlight that in the multigrid preconditioned gradient eigensolvers we

recommend, no eigenvalue problems are solved on coarse grids; thus, there are no limitations
on the coarse grid size associated with approximation of eigenfunctions.

The rest of the paper is organized as follows. Section 2 introduces the notation and
presents main assumptions. In Section 3, we describe the LOBPCG method of [33, 34, 35,
36], and a simpler, but slower, method, the block preconditioned steepest descent (BPSD),
analyzed in [6]. Section 4 reproduces the most recent convergence rate estimate for the two
methods, derived in [37].

Numerical results for a model problem, the Laplacian on the unit square, using a few
typical choices of the multigrid preconditioning are given in Section 5. We compare several
preconditioned eigensolvers: PSD, LOPCG and their block versions. These numerical ex-
periments provide clear evidence for regarding LOBPCG as practically the optimal scheme
(within that class of preconditioned eigensolvers we consider). Moreover, we compare the
LOBPCG method with the preconditioned linear solvers: the standard preconditioned con-
jugate gradient (PCG) method for Ax = b and the PCG applied to computing a null–space
of A− λminB (see our notation in the next section), called PCGNULL in [36]. The latter
experiments suggest that LOBPCG is a genuine conjugate gradient method.

2. Mesh symmetric eigenvalue problems. We consider a generalized symmetric pos-
itive definite eigenvalue problem of the form (A− λB)x = 0 with real symmetric positive
definite n-by-n matrices A and B. That describes a regular matrix pencil A−λB with a dis-
crete spectrum (set of eigenvalues λ). It is well known that the problem has n real positive
eigenvalues

0 < λmin = λ1 ≤ λ2 ≤ . . . ≤ λn = λmax,

and corresponding (right) eigenvectors xi, satisfying (A− λiB)xi = 0, which can be chosen
orthogonal in the following sense: (xi,Ax j) = (xi,Bx j) = 0, i 6= j.

In our notation, A is the stiffness matrix and B is the mass matrix. In some applications,
the matrix B is simply the identity, B = I, and then we have the standard symmetric eigenvalue
problem with matrix A. For preconditioned gradient eigensolvers, it is not important whether
the matrix B is diagonal; thus, a mass condensation in the finite element method (FEM) is not
necessary.

We consider the problem of computing m smallest eigenvalues λi and the corresponding
eigenvectors xi.

Let T be a real symmetric positive definite n-by-n matrix. T will play the role of the
preconditioner; more precisely, an application of a preconditioner to a given vector x must be
equivalent to the matrix vector product Tx. In many practical applications, T , as well as A
and B, is not available as a matrix, but only as a function performing Tx, i.e., we operate in a
matrix–free environment. The assumption that T is positive definite is crucial for the theory,
but T does not have to be fixed, i.e. it may change from iteration to iteration. This flexibility
may allow us to use a wider range of smoothers in multigrid preconditioning.

When solving a linear system with the stiffness matrix, Ax = b, it is evident that the
preconditioner T should approximate A−1. For eigenvalue problems, it is not really clear
what the optimal target for the preconditioning should be. If one only needs to compute
the smallest eigenvalue λ1, one can argue [34] that the optimal preconditioner would be the
pseudoinverse of A−λ1B.

Choosing the stiffness matrix A as the target for preconditioning in mesh eigenvalue
problems seems to be a reasonably practical compromise, though it may not be the optimal
choice from a purely mathematical point of view. On the one hand, it does provide, as we
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shall see in Section 4, the optimal convergence in a sense that the rate of convergence does
not deteriorate when the mesh gets finer. On the other hand, it simplifies the theory of block
preconditioned eigensolvers and streamlines the corresponding software development.

To this end, let us assume that

δ0(x,T x) ≤ (x,A−1x) ≤ δ1(x,T x), ∀x ∈ Rn, 0 < δ0 ≤ δ1.(2.1)

The ratio δ1/δ0 can be viewed as the spectral condition number κ(TA) of the preconditioned
matrix TA and measures how well the preconditioner T approximates, up to a scaling, the
matrix A−1. A smaller ratio δ1/δ0 typically ensures faster convergence. For mesh problems,
matrices A−1 and T are called spectrally equivalent if the ratio is bounded from above uni-
formly in the mesh size parameter; see [18]. For variable preconditioners, we still require that
all of them satisfy (2.1) with the same constants.

3. Algorithms: the block preconditioned steepest descent and the locally optimal
block preconditioned conjugate gradient method. In the present paper, we shall consider
two methods: the preconditioned steepest descent (PSD) and the locally optimal precondi-
tioned conjugate gradient method (LOPCG) as well as their block analogs: the block pre-
conditioned steepest descent (BSPD) and the locally optimal block preconditioned conjugate
gradient method (LOBPCG), in the form they appear in [34, 36].

For brevity, we reproduce here the algorithms in the block form only. The single-vector
form is simply the particular case m = 1, where m is the block size, which equals to the
number of sought eigenpairs.

First, we present Algorithm 3.1 of the BPSD method, which is somewhat simpler.

ALGORITHM 3.1 : BPSD.
Input: m starting vectors x(0)

1 , . . .x(0)
m , functions to compute: matrix-vector products

Ax, Bx and T x for a given vector x and the vector inner product (x,y).

1. Start: select x(0)
j , and set p(0)

j = 0, j = 1, . . . ,m.
2. Iterate: For i = 0, . . . , Until Convergence Do:

3. λ(i)
j := (x(i)

j ,Ax(i)
j )/(x(i)

j ,Bx(i)
j ), j = 1, . . . ,m;

4. r j := Ax(i)
j −λ(i)

j Bx(i)
j , j = 1, . . . ,m;

5. w(i)
j := Tr j , j = 1, . . . ,m;

6. Use the Rayleigh–Ritz method for the pencil A−λB on the trial subspace

span{w(i)
1 , . . . ,w(i)

m ,x(i)
1 , . . . ,x(i)

m } to compute the next iterate x(i+1)
j

as the j-th Ritz vector corresponding to the j-th smallest Ritz value, j = 1, . . . ,m;
7. EndDo

Output: the approximations λ(i+1)
j and x(i+1)

j to the smallest eigenvalues
λ j and corresponding eigenvectors, j = 1, . . . ,m.

A different version of the preconditioned block steepest descent is described in [8], where
the Rayleigh–Ritz method on step 6 is split into two parts, similar to that of the LOBPCG II
method of [36] which we discuss later. Other different versions are known, e.g., the successive
eigenvalue relaxation method of [50]. Our theory replicated in the next section covers only
the version of the preconditioned block steepest descent of Algorithm 3.1.

Our second Algorithm 3.2 of the LOBPCG method is similar to Algorithm 3.1, but uti-
lizes an extra set of vectors, analogous to conjugate directions used in the standard precondi-
tioned conjugate gradient linear solver.
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ALGORITHM 3.2 : LOBPCG.
Input: m starting vectors x(0)

1 , . . .x(0)
m , functions to compute: matrix-vector products

Ax, Bx and T x for a given vector x and the vector inner product (x,y).

1. Start: select x(0)
j , and set p(0)

j = 0, j = 1, . . . ,m.
2. Iterate: For i = 0, . . . , Until Convergence Do:

3. λ(i)
j := (x(i)

j ,Ax(i)
j )/(x(i)

j ,Bx(i)
j ), j = 1, . . . ,m;

4. r j := Ax(i)
j −λ(i)

j Bx(i)
j , j = 1, . . . ,m;

5. w(i)
j := Tr j , j = 1, . . . ,m;

6. Use the Rayleigh–Ritz method for the pencil A−λB on the trial subspace

span{w(i)
1 , . . . ,w(i)

m ,x(i)
1 , . . . ,x(i)

m , p(i)
1 , . . . , p(i)

m } to compute the next iterate

x(i+1)
j := ∑k=1,...,m α(i)

k w(i)
k + τ(i)

k x(i)
k + γ(i)

k p(i)
k

as the j-th Ritz vector corresponding to the j-th smallest Ritz value, j = 1, . . . ,m;

7. p(i+1)
j := ∑k=1,...,m α(i)

k w(i)
k + γ(i)

k p(i)
k ;

8. EndDo

Output: the approximations λ(i+1)
j and x(i+1)

j to the smallest eigenvalues
λ j and corresponding eigenvectors, j = 1, . . . ,m.

Here, on Step 6 the scalars α(i)
k , τ(i)

k , and γ(i)
k are computed implicitly as components of

the corresponding eigenvectors of the Rayleigh–Ritz procedure.
We want to highlight that the main loop of Algorithm 3.2 of LOBPCG can be imple-

mented with only one application of the preconditioner T , one matrix-vector product Bx and
one matrix-vector product Ax, per iteration; see [36] for details.

Storage requirements are small in both Algorithms 3.1 and 3.2: only several n-vectors,
and no n-by-n matrices at all. Such methods are sometimes called matrix-free.

For the stopping criterion, we compute norms of the preconditioned residual w(i) on every
iteration. Residual norms provide accurate two-sided bounds for eigenvalues and a posteriori
error bounds for eigenvectors; see [32].

A different version of the LOBPCG, called LOBPCG II, is described in [36], where the
Rayleigh–Ritz method on step 6 of Algorithm 3.2 is split into two parts. There, on the first
stage, the Rayleigh–Ritz method is performed m times on three-dimensional trial subspaces,

spanned by w(i)
j , x(i)

j , and p(i)
j , j = 1, . . . ,m, thus, computing m approximations to the eigen-

vectors. In the second stage, the Rayleigh–Ritz method is applied to the m-dimensional sub-
space, spanned by these approximations. In this way, the Rayleigh–Ritz method is somewhat
less expensive and can be more stable, as the dimension of the large trial subspace is reduced
from 3m to m. We do not yet have enough numerical evidence to suggest using LOBPCG II
widely, even though a similar preconditioned block steepest descent version of [8] is success-
fully implemented in an industrial code Finite Element Aggregation Solver (FEAGS).

Other versions of LOBPCG are possible, e.g., the successive eigenvalue relaxation tech-
nique of [50] can be trivially applied to the LOBPCG. However, only the original version of
the LOBPCG, shown in Algorithm 3.2, is supported by our theory of the next section.

Comparing the BPSD and LOBPCG algorithms, one realizes that the only difference is

that the LOBPCG uses an extra set of directions p(i)
j in the trial subspace of the Rayleigh–Ritz

method. In single-vector versions PSD and LOPCG, when m = 1, this leads to a difference
between using two and three vectors in the iterative recursion. Such a small change results
in considerable acceleration, particularly significant when the preconditioner is not of a high
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quality, as demonstrated numerically in [34, 35]. In Section 5, we observe this effect again in
our numerical tests with multigrid preconditioning.

A seemingly natural idea is to try to accelerate the LOPCG and LOBPCG by adding
more vectors to the trial subspace. Let us explore this possibility for the single vector (m = 1)
method, LOPCG, by introducing a group of methods we call LOPCG+k, k ≥ 1 in Section 5.
It is explained in [36] that in our Algorithm 3.2 with m = 1 the trial subspace can be written
in two alternative forms:

span
{

w(i),x(i), p(i)
}

= span
{

w(i),x(i),x(i−1)
}

.

Here and until the end of the section we drop the lower index j = 1 for simplicity of notation.
The former formula for the subspace, used in Algorithm 3.2, is more stable in the presence of
round-off errors. The latter formula is simpler and offers an insight for a possible generaliza-
tion: for a fixed k ≥ 1 we define the method LOPCG+k by using the following extended trial
subspace

span
{

w(i),x(i),x(i−1), . . . ,x(i−1−k)
}

in the Rayleigh-Ritz method. When k is increased, the trial subspace gets larger, thus provid-
ing a potential for an improved accuracy.

We test numerically LOPCG+k methods for a few values of k, see Section 5, and observe
no noticeable accuracy improvement at all. Based on these numerical results, we come to
the same conclusion as in [36], namely, that the LOPCG method is apparently the optimal
preconditioned eigensolvers; in particular, it cannot be significantly accelerated by adding
more vectors to the trial subspace.

This conclusion, however, is not yet supported by a rigorous theory. In the next section,
we discuss known theoretical results for BPSD and LOBPCG methods.

4. Available theory. The following result of [37] provides us with a short and elegant
convergence rate estimate for Algorithms 3.1 and 3.2.

THEOREM 4.1. The preconditioner is assumed to satisfy (2.1) on every iteration step.

For a fixed index j ∈ [1,m], if λ(i)
j ∈ [λk j ,λk j+1[ then it holds for the Ritz value λ(i+1)

j com-

puted by Algorithm 3.1, or 3.2, that either λ(i+1)
j < λk j (unless k j = j), or λ(i+1)

j ∈ [λk j ,λ
(i)
j [ .

In the latter case,

λ(i+1)
j −λk j

λk j+1 −λ(i+1)
j

≤
(

q
(

κ(TA),λk j ,λk j+1
))2 λ(i)

j −λk j

λk j+1 −λ(i)
j

,(4.1)

where

q
(

κ(TA),λk j ,λk j+1
)

= 1−

(

1−
κ(TA)−1
κ(TA)+1

)

(

1−
λk j

λk j+1

)

.(4.2)

In the context of multigrid preconditioning, the most important feature of this estimate is
that is guarantees the optimal, with respect to the mesh size, convergence rate, provided that
κ(TA) is uniformly bounded from above in the mesh size parameter h and that the eigenvalues
of interest do not contain clusters, so that λk j −λk j+1 is large compared to h. Estimate (4.1)
can be trivially modified to cover the case of multiple eigenvalues.
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For the block case, m > 1, there is only one other comparable nonasymptotic convergence
rate result, but it is for a simpler method, see [6]. This estimate is not applicable to BPSD and
LOBPCG as it cannot be used recursively.

For the single vector case, m = 1, which is, of course, much simpler, more convergence
results are known, e.g., see [32, 34, 35, 36, 37] and references there. In particular, an estimate
of [31, 32] for the PSD is in some cases, e.g., for high quality preconditioners, sharper than
that of Theorem 4.1. Asymptotically this estimate is similar to the estimate of [51]. We
present it in the next section for comparison.

Advantages of the Theorem 4.1 are that:
• it is applicable to any initial subspaces,
• the convergence rate estimate can be used recursively,
• the estimates for the Ritz values are individually sharp for the most basic PINVIT

scheme; see [37] for details,
• the convergence rate estimate for a fixed index j is exactly the same as for the single–

vector scheme, cf. [37].
One serious disadvantage of the estimate (4.2) is that it deteriorates when eigenvalues of
interest λ1, . . . ,λm include a cluster. The actual convergence of Algorithms 3.1 and 3.2 in
numerical tests is known not to be sensitive to clustering of eigenvalues, and the estimate of
[6] does capture this property, essential for subspace iterations.

Theorem 4.1 provides us with the only presently known nonasymptotic theoretical con-
vergence rate estimate of the LOBPCG with m > 1. Numerical comparison of PINVIT, PSD
and LOBPCG according to [34, 35, 36] demonstrates, however, that the LOBPCG method is
much faster in practice. Therefore, our theoretical convergence estimate of Theorem 4.1 is not
sharp enough yet to explain excellent convergence properties of the LOBPCG in numerical
simulations, which we illustrate next.

5. A numerical example. We consider an eigenproblem for the Laplacian on [0,π]2

with the homogeneous Dirichlet boundary conditions. The problem is discretized by using
linear finite elements on a uniform triangle mesh with the grid parameter h = π/64 and 3969
inner nodes. The discretized eigenproblem is a generalized matrix eigenvalue problem for the
pencil A−λB, where A is the stiffness matrix for the Laplacian and B is the mass matrix.

Our goal is to test PSD, BPSD, LOPCG and LOBPCG methods using multigrid precon-
ditioners for the stiffness matrix A:

• V (i, i)–cycle preconditioners performing each i steps of Gauss–Seidel symmetric
pre- and post-smoothing (alternatively Jacobi–smoothing) on a hierarchy of grids
hl = π/2l, l = 2, . . . ,6, with the exact solution on the coarsest grid,

• a hierarchical basis (HB) preconditioner [59] for hl , l = 1, . . . ,6, so that the coarsest
finite element space consists only of a single basis function.

5.1. Comparison of convergence factors. To begin with, we compare the computed
convergence factors for the schemes PSD, LOPCG, PCGNULL and PCG, which are each
started with the same initial vectors out of 200 randomly chosen. By PCGNULL we denote
the standard PCG method applied to the singular system of linear equations

(A−λ1B)x1 = 0,

where we suppose λ1 to be given; i.e., we compute the eigenvector x1 as an element of the
null–space of A−λ1B by PCG. PCGNULL was suggested by the first author of the present
paper in [36] as a benchmark. For the PCG runs, when solving Ax = b, we choose random
right–hand sides b.

In the following we apply the same preconditioners to the eigensolvers and to linear
solvers PCGNULL and PCG; and we consider only preconditioners for the stiffness matrix
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(4.2) (5.3) PSD (5.4) PCGNULL LOPCG PCG for Ax = b

V (2,2) 0.43 0.30 0.26 0.15 0.13 0.13 0.03
V (1,1) 0.48 0.36 0.29 0.19 0.17 0.16 0.06

HB 0.96 0.96 0.9 0.76 0.7 0.7 0.7

TABLE 5.1
Actual and theoretical convergence factors.

A. We test the V (i, i)–cycle preconditioners using Gauss–Seidel smoothing for i = 1,2 and
the HB preconditioner.

The iterations of PSD and LOBPCG are stopped if λ(i)
1 −λ1 is less than 10−8. In all our

tests they converge for each random initial vector tried to the extreme eigenpair (u1,λ1). In
other words, iterations do not get stuck in eigenspaces corresponding to higher eigenvalues.
The schemes PCGNULL and PCG are stopped if (r,Tr) < 10−10, where r denotes the actual
residual vector: r = (A−λ1B)x in PCGNULL and r = Ax−b in PCG.

The computed convergence factors and corresponding theoretical estimates are listed in
Table 5.1.

The convergence factors for PSD and LOPCG in Table 5.1 are the mean values of all
convergence factors

√

√

√

√

λ(i+1)
1 −λ1

λ2 −λ(i+1)
1

λ2 −λ(i)
1

λ(i)
1 −λ1

(for all 200 initial vectors) computed from the numerical data recorded when λ < λ2. The
convergence factors for PCGNULL and PCG in Table 5.1 are computed by calculating the
ratio of Euclidean norms of the initial and the final residuals and then taking the average ratio
per iteration.

The theoretical convergence factor q given by formula (4.2) of Theorem 4.1 is computed
as follows. We first roughly estimate the spectral condition number of TA using the actual
convergence factors of PCG. Let qPCG be the convergence factor of PCG as given in Table
5.1. From the standard PCG convergence rate estimate we get

qPCG ≈

√

κ(TA)−1
√

κ(TA)+1
;(5.1)

therefore, we take

κ(TA) :=

(

1+qPCG

1−qPCG

)2

.(5.2)

Then, inserting this κ(TA) and λ1 = 2 and λ2 = 5 in (4.2) gives the corresponding column of
Table 5.1.

We also provide two other theoretical convergence rate factors, for the PSD and the
PCGNULL, correspondingly. They are based on the spectral condition number κ(T (A−λ1B)),
which is defined as a ratio of the largest and the smallest nonzero eigenvalues of the matrix
T (A−λ1B). Namely, the asymptotic convergence rate factor of the PSD is

κ(T (A−λ1B))−1
κ(T (A−λ1B))+1

,(5.3)
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FIG. 5.1. LOPCG vs. PCGNULL.

see [31, 32, 51], while the convergence rate factor of the PCGNULL per iteration is approxi-
mately equal [36] to

√

κ(T (A−λ1B))−1
√

κ(T (A−λ1B))+1
.(5.4)

According to Theorem 3.1 of [32],

κ(T (A−λ1B)) ≤ κ(TA)

(

1−
λ1

λ2

)−1

.(5.5)

Thus, knowing the values κ(TA) from (5.2) and λ1 = 2, λ2 = 5 we compute convergence
factors (5.3) and (5.4) and present them in Table 5.1.

Let us now discuss the numerical data of Table 5.1. We first observe that our theoretical
convergence factor q given by (4.2) of Theorem 4.1 does provide an upper bound for the
actual convergence factors, thus supporting the statement of Theorem 4.1. However, this
upper bound is clearly pessimistic even for the PSD. The asymptotic convergence rate factor
(5.3) fits better the actual convergence rate of the PSD. Let us notice, however, comparing
the first two lines with the data that an improvement of the quality of the preconditioner from
V (1,1) to V (2,2) reduces the value of q of (4.2) and accelerates the actual convergence of the
PSD 1.1 times, while the value of (5.3) gets smaller 1.2 times. This observation suggests that
neither (4.2), nor (5.3) captures accurately the actual convergence behavior of the PSD. The
problem of obtaining a sharp nonasymptotic convergence rate estimate of the PSD remains
open, except for the case T = A−1, which we discuss at the end of the subsection.

Equation (5.4) provides an accurate estimate of the convergence rate of the PCGNULL,
as expected.

The convergence factors of LOPCG and those of PCGNULL are nearly identical in Table
5.1. This supports the supposition of [33] that the convergence rate factor of LOPCG depends
on κ(TA) the same way as the convergence rate factor (5.4) of PCGNULL; see [36] for
extensive numerical comparison of LOPCG and PCGNULL.

A direct comparison, as presented in Table 5.1, of the convergence factors of LOPCG
with those of PCGNULL must be done with care as we tabulate different quantities: the
square root of ratios of differences of eigenvalue approximations for the former, but the ratios
of the residuals for the latter. We scrutinize this potential discrepancy by a direct comparison
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FIG. 5.2. PSD and LOPCG with V (2,2)–Gauss–Seidel (left) and HB (right) preconditioning.

of the convergence history lines for LOPCG and PCGNULL on Figure 5.1. Both schemes
with the same V(2,2) Gauss–Seidel preconditioner are applied to the same initial guess, in
this case simply a vector with all components equal to one. For LOPCG we draw the error

λ(i)
1 −λ1 as well as the square of the Euclidean norm of the residual of the actual eigenvector

approximation and for PCGNULL only the square of the Euclidean norm of the residual.
We observe not only a similar convergence speed but a striking correspondence of the error
history lines. This confirms a conclusion of [36], which can also be drawn from Table 5.1,
that the LOPCG appears as a genuine conjugate gradient method.

Not surprisingly, knowing results of numerical tests of [34, 35, 36], LOPCG converges
significantly faster than PSD, according to Table 5.1. We additionally illustrate this on Figure
5.2.

Figure 5.2 displays the convergence history of PSD and LOPCG using the V (2,2) Gauss–

Seidel and HB preconditioners. Therein, λ(i)
1 − λ1 is plotted versus the iteration index for

15 different randomly chosen initial vectors. The slope of the bold line in Figure 5.2 is
determined by (4.1) for q as given in the (4.2) column of Table 5.1, i.e., we have drawn
q2i(λ2 −λ1) against the iteration index i.

Looking at the last column of Table 5.1, we notice that the PCG for the linear system
Ax = b converges much faster than the PCGNULL for V (2,2) and V (1,1) preconditioners,
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but about with the same speed when the HB preconditioner is used. The reason for this is
that the preconditioner T here is chosen to approximate the stiffness matrix A without any
shifts, for the reasons already discussed in the introduction. Therefore, according to (5.5),
PCG should always converge faster than the PCGNULL, but it would be mostly noticeable
for preconditioner of a high quality. This is exactly the behavior of actual convergence factors
of PCGNULL and PCG in Table 5.1.

Our final comments on Table 5.1 concern the data in the raw corresponding to the V (2,2)
preconditioner. For our problem, this preconditioner provides an excellent approximation
to the stiffness matrix with κ(TA) ≈ 1.1; thus, practically speaking, in this case we have
T ≈ A−1 up to scaling. If T = A−1 we have additional theoretical convergence rate estimates
for eigensolvers we can compare with.

The PSD method with T = A−1 is studied in details in [38], where a sharp convergence
factor is obtained. In our notation that is

1−ξ
1+ξ

= .25, where ξ = 1−
λ1

λ2
= 0.6.(5.6)

Let us note that the earlier presented asymptotic PSD convergence factor (5.3) turns into (5.6),
when κ(TA) = 1. As κ(TA) ≈ 1.1 for the V (2,2) preconditioner, we get the value .25 from
(5.6) consistent with the actual PSD convergence factor, which is in this case .26, and with
the value .3 of (5.3).

The LOPCG method is not yet theoretically investigated even with T = A−1. Instead,
let us show here the convergence factor of the classical Lanczos method, applied to find the
smallest eigenvalue of A−1B. The standard estimate, based on Chebyshev polynomials, gives
the following convergence factor per iteration:

1−
√

ξ
1+
√

ξ
= 0.13.(5.7)

This is a perfect fit with the actual convergence factor of the LOPCG, which suggests that
LOPCG is a natural extension of the Lanczos method in the class of preconditioned eigen-
solvers.

5.2. The optimal convergence of LOPCG. Next, we compare results of PSD, LOPCG
and LOPCG+k, where we use the V (2,2)–cycle preconditioner with two steps of Jacobi pre-
and post-smoothing each.

Figure 5.3 displays the error λ(i) −λ1 of the computed eigenvalue approximations λ(i)

versus the iteration number i. Each curve represents the case of the poorest convergence
toward λ1 for 100 random initial vectors, the same for each scheme. The relatively poor
convergence in the first steps accounts for attraction to eigenvalues different from λ1, when
λ(i) > λ2. The bold straight line is drawn based on the theoretical convergence factor q given
by (4.2) of Theorem 4.1 in an analogous way as that described above.

The outcome of this experiment exemplifies that:
• The convergence factor q of (4.2) is a pessimistic upper bound for PSD and LOPCG.
• PSD is slower than LOPCG.
• Most importantly, LOPCG appears as the optimal scheme of those tested, since the

slope of the convergence curves for LOPCG+k, k = 1,2,3, is approximately the
same as the one of LOPCG, but LOPCG+k, k > 0 methods are more expensive as
they involve optimization over larger trial subspaces.

The optimality of LOPCG is described by the first author of the present paper in [33, 36]
with more details.
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FIG. 5.3. Convergence of PSD, LOPCG and LOPCG+k, k = 1,2,3 for V(2,2)–Jacobi.

5.3. Convergence of subspace schemes. Here, we report on the results of precondi-
tioned subspace iteration for V (2,2) Gauss–Seidel preconditioning. Therefore, we construct
a 7–dimensional initial subspace U (0) ∈ Rn×7 whose kth column is given as the grid restric-
tion of the function (x/π)k/2 +(y/π)k/3. Block versions, BPSD and LOBPCG are each started
on U (0).

On Figure 5.4 we plot the differences λ(i)
j − λ j, for j = 1, . . . ,4, versus the iteration

number i. The iteration is stopped if λ(i)
4 − λ4 ≤ 10−8. This is the case after 13 BPSD

iterations but only 8 LOBPCG steps, which again shows the superiority of LOBPCG.
Figure 5.4 demonstrates several properties of LOBPCG that we also observe in other

similar tests:
• The convergence rate is better for the eigenpairs with smaller indexes.
• For the first eigenpair, the convergence of the block version is faster than the conver-

gence of the single-vector version, i.e. the increase of the block size of the LOBPCG
accelerates convergence of extreme eigenpairs.

The LOBPCG in this test behaves similarly to the block Lanczos method applied to
A−1B.

5.4. Optimality with respect to the mesh size. In our final set of numerical simulations
we test scalability with respect to the mesh size. According to the theoretical convergence
rate estimates we already discussed, the convergence should not slow down when the mesh
gets finer. Combined with well-known efficiency of multigrid preconditioning, this should
lead to overall costs depending linearly on the number of unknowns.

To check these statements numerically for our model problem we run the LOPCG method
preconditioned using V (2,2) Jacobi for the initial vector with all components equal to one on
a sequence of uniform grids with N = (2k −1)2, k = 3, . . . ,10 nodes. After ten iterations the
residuals drop below 10−6 for all k, which supports the claim of a uniform in N convergence
rate. The number of flops, measured by MATLAB, grows proportionally to N1.1 in these tests,
which is in a good correspondence with the theoretical prediction of the linear dependence.

Conclusion.
• A short survey of multigrid–based solvers for symmetric eigenvalue problems is

presented with particular attention to off-the-shelf and black-box methods, which
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FIG. 5.4. Preconditioned subspace iterations BPSD and LOBPCG with V(2,2) preconditioning.

should allow solving eigenvalue problems with minimal, or no, effort on the part of
the developer, taking advantage of already existing algorithms and software.

• A class of such methods, where the multigrid only appears as a black-box tool of
constructing the preconditioner of the stiffness matrix, and the base iterative algo-
rithm is one of well-known off-the-shelf preconditioned gradient methods, such as
the LOBPCG method, is argued to be a reasonable choice for large scale engineering
computations.

• The LOBPCG method can be recommended as practically the optimal method on
the whole class of preconditioned eigensolvers for symmetric eigenproblems.

• The multigrid preconditioning of the stiffness matrix is robust and practically effec-
tive for eigenproblems.

• Results of numerical tests, which demonstrate practical effectiveness and optimality
of the LOBPCG method preconditioned by the standard V-cycle multigrid applied
to the stiffness matrix are demonstrated.

• An efficient multigrid preconditioning of the stiffness matrix used in the LOBPCG
method leads to a “textbook multigrid effectiveness” for computing extreme eigen-
pairs of symmetric eigenvalue problems.
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