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A MULTIGRID ALGORITHM FOR SOLVING THE MULTI-GROUP,
ANISOTROPIC SCATTERING BOLTZMANN EQUATION USING FIRST-ORDER

SYSTEM LEAST-SQUARES METHODOLOGY∗

B. CHANG AND B. LEE †

Abstract. This paper describes a multilevel algorithm for solving the multi-group,
anisotropic scattering Boltzmann equation formulated with a first-order system least-squares
methodology. A Pn − h finite element discretization is used. The resulting angle discretiza-
tion of this Pn approach does not exhibit the so-called “ray effects,” but this discretization
leads to a large coupled system of partial differential equations for the spatial coefficients,
and, on scaling the system to achieve better approximation, the system coupling depends
strongly on the material parameters. Away from the thick, low absorptive regime, a relatively
robust multigrid algorithm for solving these spatial systems will be described. For the thick,
low absorptive regime, where an incompressible elasticity-like equation appears, an addi-
tive/multiplicative Schwarz smoother gives substantial multigrid improvement over standard
nodal smoothers. Rather than using higher-order or Raviart-Thomas finite element spaces,
which lead to complicated implementation, only low-order, conforming finite elements are
used. Numerical examples illustrating almost h−independent convergence rates and locking-
free discretization accuracy will be given.
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1. Introduction. LetR×S2×E be the Cartesian product of a bounded domainR ⊂ <3,
the unit sphere S2, and a bounded, non-negative interval E . The time-independent Boltzmann
transport equation is

[Ω · ∇+ σt(x, E)]ψ(x,Ω, E) =

∫

dE′
∫

dΩ′σs(x
′, E′ → E,Ω · Ω′)ψ(x′,Ω′, E′)

+ q(x,Ω, E) (x,Ω, E) ∈ R× S2 × E(1.1)

with boundary condition

ψ(x,Ω, E) = g(x,Ω, E) n · Ω < 0, x ∈ ∂R.(1.2)

This equation models the transport of particles through an inhomogeneous medium. In par-
ticular, the Boltzmann equation is well known to model the transport of neutrons/photons. In
this case, ψ is the angular flux, σt and σs are respectively the medium’s total and scattering
cross-sections (σa := σt − σs is the absorption cross-section), q is the external source, and
E is the energy of the particles. The integral source term describes the scattering of particles
into different directions and energies.

Unfortunately, solving the linear Boltzmann equation is difficult: standard numerical
schemes can be inaccurate and computationally inefficient. For example, the popular Sn

angle discretization (collocation in angle, [14]) produces the so-called ray effects which pol-
lute the numerical solution. This pollution can be viewed mathematically as “contamination”
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from a poorly chosen finite element space for the angle component of the discretization– i.e.,
collocation in angle is equivalent to discretization with delta basis functions, which form a
poor approximating basis set. Fortunately, a Pn discretization, which uses a better approxi-
mating basis set (i.e., spherical harmonics), eliminates these ray effects. But solving for the
expansion coefficients or “lm moments” is difficult. The coefficients couple strongly with
each other, creating a strongly coupled system of partial differential equations (PDE’s); nu-
merical algorithms for solving such strongly coupled systems are difficult to develop. In
this paper, novel algorithms for solving this coupled system are presented. In particular, a
multigrid algorithm for solving the Pn discretization of the linear Boltzmann equation using
a first-order system least-squares (FOSLS) methodology ([17]) is described. The authors are
unaware of any published work or existing codes that solve the full FOSLS Pn equations in a
multilevel fashion.

This paper is an extension of the research reported in [9]. In that paper, a preconditioned
conjugate gradient iteration with a block diagonal preconditioner was used to solve the system
of Pn equations. Each block of this preconditioner describes only a single diagonal lm-lm
coefficient coupling, but defined over the whole spatial domain rather than the full lm-l′m′

coupling. Thus, successively inverting each block of this preconditioner corresponds to suc-
cessively solving only the lm-lm scalar PDE over the whole spatial domain. The numerical
results presented in that paper confirm the non-scalibility of this algorithm with respect to
both the number of spherical harmonic terms and the number of spatial nodes used in the full
discretization. This non-scalibility reflects this scheme’s inability to handle the strong intra-
and inter-moment coupling.

In this paper, two algorithms that ameloriate some of the moment coupling are presented.
One algorithm consists of a multigrid scheme for the spatial coupling of the Pn discretization.
Here, the unknowns are updated moment-wise first and then spatial-wise. In this way, for
a Gauss-Seidel relaxation scheme, at each spatial node in turn, every moment is updated
before going to the next spatial node so that the full moment coupling is considered at a fixed
node. Physically, since the Boltzmann equation describes the balancing of particle transfer,
by solving for all the moments at a spatial node first, this relaxation somewhat enforces a
local balancing of particle transfer at each spatial node. One may also use a preconditioned
conjugate gradient iteration with a block diagonal preconditioner that describes the full l-l
(i.e., moments lm-lm′ with −l ≤ m,m′ ≤ l) intra-moment coupling. Each of the diagonal
blocks can be solved with a few cycles of this multigrid scheme restricted only to the l-l
moment block. Comparing the convergence rates of this preconditioned conjugate gradient
scheme and the above multigrid scheme will expose the relative strength of the intra- and
inter-moment coupling in the Pn equations.

A system projection multilevel algorithm using the above Gauss-Seidel smoother per-
forms well for parameter regimes that are thick and substantially absorptive. In the thick, low
absorptive regime, or so-called region 3, the 1-1 moment system resembles a time-dependent
incompressible elasticity equation. The problems with this latter equation are well known:
e.g., possible finite element locking and problematic divergence-free near-nullspace compo-
nents that impede standard multigrid performance ([3], [11], [21], [22]). For this incom-
pressible equation, higher-order or Raviart-Thomas finite element spaces are often used to
eliminate locking. These spaces also may induce discrete Helmholtz decompositions, which
in turn, may implicitly improve multigrid performance ([3], [11], [21], [22]). But a closer
look at the 1-1 system reveals that the corresponding system operator behaves more like
(I −∇∇·). Locking even for low-order conforming finite elements now does not appear to
be as severe as in the incompressible elasticity case. However, divergence-free error com-
ponents are still problematic for standard multigrid solvers. These error components can be
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highly oscillatory yet unaffected by standard nodal smoothers. But since these components
are essentially local circulations ([7], [21]), effective smoothers exist. In particular, multi-
plicative/additive Schwarz smoothers that simultaneously update all unknowns in the support
of these local circulations can effectively damp out these error components. We will use these
smoothers in the multigrid solver.

This paper proceeds as follows. In section 2, a brief presentation of the notation and
functional setting used throughout this paper is given. In section 3, a summary of the FOSLS
theory developed in [17] for the mono-energetic, isotropic scattering Boltzman equation is
reviewed. This theory shows that locally away from the material interfaces, by appropriately
scaling the system of PDE’s, the second-order moment coupling essentially describes the
whole coupled system of PDE’s. This fact will be used to develop our numerical schemes. In
section 4, the Pn − h finite element discretization for the FOSLS formulation is developed.
The system of PDE’s is explicitly described, and from this description, one can observe the
difficulties in region 3. In section 5, a multigrid scheme is described for the mono-energetic,
isotropic scattering case. Multigrid components (relaxation and coarse grid correction), and
methods of homogenization of the fine grid material and scaling coefficients will be exam-
ined. In subsection 5.1, an algorithmic extension to the full multi-group, anisotropic scat-
tering case will be given. Section 6 presents some numerical results. Computational scal-
ing studies for the mono-energetic, isotropic scattering case will be presented for both the
multigrid and preconditioned conjugate gradient schemes. For the multigrid scheme, these
results show good scalibility with respect to the number of spatial nodes and linear growth
with respect to the number of moments. For the preconditioned conjugate gradient scheme,
these results show mild non-scalibility with respect to the number of spatial nodes and linear
growth with respect to the number of moments. This difference signals a spatially smooth
inter-moment coupling error mode that is not handled by the latter scheme. Section 6 also
will present multigrid and discretization convergence results for region 3 problems and for a
full multi-group, anisotropic scattering problem. These latter results, together with the ana-
lyis in Section 4, indicate that locking may not be severe for realistic Boltzmann transport
problems.

2. Notation. We briefly present some of the notation and functional setting used through-
out this paper. First, for any non-negative integer s, letHs(R) denote the usual Sobolev space
of order s defined over R and with norm denoted by ‖ · ‖s,R (cf. [1]). For s = 0, the L2(R)
is denoted by ‖ · ‖R. When it is obvious that the norm is defined over R, subscript R will
be omitted. Occasionally, we will have need of a general Hilbert space X . Its norm will be
denoted by ‖ · ‖X .

Further notations and definitions are needed for the FOSLS functional. This functional
involves an L2 term defined over R × S2. We denote this norm by ‖ · ‖R,Ω. This functional
is also defined over the Sobolev space

V :=
{

v ∈ L2(R× S2) :
(

S−1Ω · ∇v,Ω · ∇v
)

R,Ω
+ (Tv, v)R,Ω <∞

}

with norms

‖v‖2V :=
(

S−1Ω · ∇v,Ω · ∇v
)

R,Ω
+ (Tv, v)R,Ω

and

‖v‖2V1
:= ‖v‖2V +

∫

∂R

∫

n·Ω<0

ψψ|n · Ω| dΩdσ.

Here, S−1 and T are linear operators that essentially act on the angular variable of a function
ψ(x,Ω).
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To analyze the Pn equations, we will derive several relations involving the normalized
spherical harmonics

Ylm =

{

alm pl,m(cos θ) cosmφ m ≥ 0
alm pl,|m|(cos θ) sin |m|φ m < 0,

where

alm =

√

(2l + 1)(l − |m|)!
2π(1 + δm0)(l + |m|)!

,

where θ and φ are related to Ω by Ω = (sin θ cosφ, sin θ sinφ, cosφ), and where pl,m is the
lm′th associated Legendre polynomial ([15]). To notationally simplify these derivations, we
will use the Dirac bra-ket notation ([20]). Considering the linear vector space generated by
{Ylm}lm, vector element Ylm will be denoted by

|lm > the ket vector.

Its dual vector is denoted by

< lm| the bra vector.

Given a linear operatorA acting on ket |lm >, the L2(Ω) inner product betweenA|lm > and
< l′m′| is denoted

< l′m′|A|lm > .

Finally, since {Ylm}lm forms a complete orthonormal set, we note that the completeness
property

I =
∑

lm

|lm >< lm|

holds.

3. Theory. For self-containment, we review some of the existing theory for the FOSLS
formulation of (1.1)-(1.2). Except for the scaling operator for anisotropic scattering, which
was communicated to us by T. Manteuffel ([18]), these results were derived in ([17]).

Theory for the FOSLS formulation of (1.1)-(1.2) has been developed only for the mono-
energetic, isotropic scattering form of the Boltzmann equation. This simplified form of the
Boltzmann equation is obtained by assuming the approximate energy separatibility of ψ and
taking a truncated Legendre series expansion of σs ([14]):

(i) ψ(x,Ω, E) ≈ f(E)ψg(x,Ω), Eg < E < Eg+1, g = 1, · · · , N, where f is a
normalization function and

ψg(x,Ω) :=

∫ Eg+1

Eg

dE ψ(x,Ω, E);

(ii)

σs(x
′, E → E′,Ω · Ω′) =

M
∑

j=0

σs,j(x
′)pj(Ω · Ω′)

=

M
∑

j=0

σs,j(x
′, E,E′)

1

2j + 1

j
∑

m=−j

Yjm(Ω)Y jm(Ω′),
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where pj is the j′th Legendre polynomial and Yjm is the jm′th spherical harmonic
([14], [15], [20]).

A simple calculation then shows that (1.1) becomes a system PDE for the group fluxes
ψg(x,Ω) with matrix operator











[

Ω · ∇+ σ00
t −

∑

jm σ0,0
s,jPjm

]

−∑

jm σ0,1
s,jPjm · · · −∑

jm σ0,N
s,j Pjm

−∑

jm σ1,0
s,jPjm

[

Ω · ∇+ σ11
t −

∑

jm σ1,1
s,jPjm

]

· · · −∑

jm σ1,N
s,j Pjm

...
...

. . .
...











.

Here, the superscripts in the cross-section coefficients denote the g − g ′ energy group cou-
pling, and Pjm is the spherical harmonic projection onto Yjm. In particlar, for a single energy
group and isotropic scattering (σs,j = 0, j = 1, · · · ,M ), supressing the super/subscripts, the
boundary value problem is

{

[Ω · ∇+ σtI − σsP ]ψ(x,Ω) = q (x,Ω) ∈ R× S2

ψ(x,Ω) = g x ∈ ∂R, n · Ω < 0,
(3.1)

where the scattering term is

Pψ(x,Ω) =

∫

S2

ψ(x,Ω) dΩ.

For simplicity, we will assume that R is of unit diameter.
In the FOSLS formulation of (3.1), the Boltzmann operator is rewritten with the absorp-

tion cross-section

L : = Ω · ∇+ σt(I − P ) + σaP

= Ω · ∇+ T,(3.2)

where T := σt(I − P ) + σaP. Now introducing the scaling operator

S =















I σt ≤ 1 region 1 : thin

σt(I − P ) + σaP σt ≥ 1 and σa ≥ 1
σt

region 2 : thick with absorption

σt(I − P ) + 1
σt
P σt ≥ 1 and σa ≤ 1

σt
region 3 : thick with little absorption

with inverse

S−1 =















(I − P ) + P σt ≤ 1

1
σt

(I − P ) + 1
σa
P σt ≥ 1 and σa ≥ 1

σt

1
σt

(I − P ) + σtP σt ≥ 1 and σa ≤ 1
σt

= c1(I − P ) + c2P,(3.3)

the space-angle FOSLS formulation is to minimize the scaled least-squares functional

F(ψ; q, g) :=
∥

∥

∥
S− 1

2 (Lψ − q)
∥

∥

∥

2

R,Ω
+ 2

∫

∂R

∫

n·Ω<0

(ψ − g)(ψ − g)|n · Ω| dΩdσ(3.4)

over an appropriate Sobolev space. Note that because of the boundary integral in the least-
squares functional, the inflow boundary condition need not be enforced on this Sobolev space.
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FIG. 3.1. Parameter regimes defined by scaling operator S.

The appropriate Sobolev space is V. It was shown in [17] that F is equivalent to the
V1−norm over V. Thus, functional

F(ψ; 0, 0) =
(

S−1Ω · ∇ψ,Ω · ∇ψ
)

R,Ω
+

(

S−1Tψ,Ω · ∇ψ
)

R,Ω
+

(

S−1Ω · ∇ψ, Tψ
)

R,Ω

+ (Tψ, Tψ)R,Ω + 2

∫

∂R

∫

n·Ω<0

ψψ|n · Ω| dΩdσ

is equivalent to

‖ψ‖2V1
=

(

S−1Ω · ∇ψ,Ω · ∇ψ
)

R,Ω
+ (Tψ, ψ)R,Ω +

∫

∂R

∫

n·Ω<0

ψψ|n · Ω| dΩdσ.

That is, the first-order terms
(

S−1Tψ,Ω · ∇ψ
)

R,Ω
and

(

S−1Ω · ∇ψ, Tψ
)

R,Ω
are majorized

by the second-order term
(

S−1Ω · ∇ψ,Ω · ∇ψ
)

R,Ω
.

Minimizing F over V is effectively solving the variational equation

a(ψ,w) : =
(

S−1Lψ,Lw
)

R,Ω
+ 2

∫

∂R

∫

n·Ω<0

ψw|n · Ω| dΩdσ

= (q, S−1Lw)R,Ω + 2

∫

∂R

∫

n·Ω<0

gw|n · Ω| dΩdσ(3.5)

for all v ∈ V. Because of the norm equivalence, one essentially needs to develop an effective
solver or preconditioner for the discrete system corresponding to the bilinear form

b(v, w) : =
(

S−1Ω · ∇v,Ω · ∇w
)

R,Ω
+ (Tv, w)R,Ω +

∫

∂R

∫

n·Ω<0

vw|n · Ω| dΩdσ.

A scalable solution method for the minimization of the least-squares functional will require a
scalable solver for this latter system.

For the multi-group, anisotropic scattering case, the FOSLS formulation is generalized
by using the scaling operator

S− 1
2 = c1I +

M
∑

j=0

cjPj
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=























I σt ≤ 1

1√
σt
I +

√

σs,j

σt(σt−σs,j)
Pj σt > 1 and (σt − σs,0) ≥ 1

σt

1√
σt
I +

√

(σt− 1
σt

)
σs,j
σs,0

σt

[

σt+(σt− 1
σt

)
σs,j
σs,0

] Pj σt > 1 and (σt − σs,0) <
1
σt
.

in (3.4) ([18]).

4. Spherical Harmonic-h (Pn − h) Finite Element Discretization. Two of the advan-
tages of a FOSLS formulation are that it leads to symmetric positive-definite linear systems,
and that it is endowed with a computable a posteriori error measure ([8]). For the Boltzmann
equation, the symmetric positive-definiteness allows such efficient linear system solvers as
multigrid and preconditioned conjugate gradient schemes to be used on the Pn discretization
of the FOSLS variational form, and the a posteriori error measure leads to good, simple local
grid refinement strategies. Indeed, standard Galerkin Pn discretizations of the Boltzmann
equation lead to non-symmetric linear systems that are difficult to solve efficiently, and stan-
dard Galerkin Pn discretizations do not naturally lead to simple computable error measures.
There are efficient Petrov-Galerkin formulations of the Sn discretization, but this discretiza-
tion suffers from the ray effect in the thin region and in thick regions when the source is close
to the points of observation (e.g., points along the boundary). Nevertheless, the Pn FOSLS
method is not immuned from problems itself, as will be shown later. But even with these
difficulties, the Pn FOSLS method is a scheme that can handle all parameter regimes, with
the above attractive FOSLS features.

The Pn discretization consists of taking a truncated spherical harmonic expansion of the
angular flux:

ψ(x,Ω) ≈ ψN (x,Ω)

=

N
∑

l=0

l
∑

m=−l

φlm(x)Ylm(Ω).(4.1)

The φlm’s are the moments or generalized Fourier coefficients. We will consider only the
mono-energetic, isotropic scattering problem. Substituting ψN into bilinear form a(·, ·), and
testing it against v(x)Yl′m′(Ω), l′ = 0, ..., N and m′ = −l′, ..., l′, a semi-discretization is
obtained. Now because P acts only on the angular variable, we have

[I − P ]φl,m(x)Ylm(Ω) = φl,m(x)[(I − P )Ylm(Ω)],

and so, T and S−1 simply project the zero and non-zero moments differently. Moreover,
because of the V1 norm equivalence, to analyze this semi-discrete system, only the zeroth-
order and second-order terms need to be considered.

For the zeroth-order term, since T acts only on the angular variable, we have

(TψN , vYl′,m′)
R,Ω =

∑

lm

< Ylm|T |Ylm > (φlm, v)R ,(4.2)

where < ·|A|· > is the bra-ket notation for the angular inner product with operator A acting
on ket |· >, and where (·, ·)R is the spatial inner product over R. For the second-order term,
we have

(

S−1Ω · ∇ψN ,Ω · ∇vYl′,m′

)

R,Ω
=

3
∑

i=1

3
∑

j=1

∑

lm

(

S−1ΩiYlmφlm,i,ΩjYl′m′vj

)

R,Ω
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=

3
∑

i=1

3
∑

j=1

∑

lm

< Ylm|ΩiS
−1Ωj |Yl′m′ > (φlm,i, vj)R

.(4.3)

Here, i and j denote spatial differentiation. Note that the sparsity pattern of the second-order
stiffness matrix depends on both the spatial differentiation operators and the moment coupling
created through

< Ylm|ΩiS
−1Ωj |Yl′m′ > .

Consider the diagonal lm-lm element of < Ylm|ΩiS
−1Ωj |Yl′m′ > . This element can be

viewed as a full 3×3 tensor describing the “diffusive” interaction of moment φlm with itself.
Viewed this way, < Ylm|ΩiS

−1Ωj |Yl′m′ > is a (N + 1)2 × (N + 1)2 block matrix of
3 × 3 tensors with each lm-l′m′ tensor describing the spatial anisotropy coupling between
φlm and φl′m′ . Fortunately, this block matrix of tensor has some structure. To see this, the
completeness property

∑

l′′m′′

|Yl′′m′′ >< Yl′′m′′ | = I

of spherical harmonics ([20]) is needed. Applying this identity twice, we have

< Ylm|ΩiS
−1Ωj |Yl′m′ > =

∑

l′′m′′

< Ylm|ΩiS
−1|Yl′′m′′ >< Yl′′m′′ |Ωj |Yl′m′ >

=
∑

l′′m′′

∑

l′′′m′′′

< Ylm|Ωi|Yl′′′m′′′ >

< Yl′′′m′′′ |S−1|Yl′′m′′ >< Yl′′m′′ |Ωi|Yl′m′ > .

But S−1 simply scales the ket |Yl′′m′′ > by
{

c1 l′′ 6= 0
c2 l′′ = 0

(cf., equation (3.3)). The orthogonality of spherical harmonics then implies

< Yl′′′m′′′ |S−1|Yl′′m′′ >=

{

c1 δl′′l′′′δm′′m′′′ l′′ 6= 0
c2 δl′′0δm′′0 l′′ = 0,

and so,

< Ylm|ΩiS
−1Ωj |Yl′m′ > =

∑

l′′m′′

cl′′m′′ < Ylm|Ωi|Yl′′m′′ >< Yl′′m′′ |Ωj |Yl′m′ >,(4.4)

where cl′′m′′ = c1 if l 6= 0 and c00 = c2. Moreover, it can be shown that

< Yl̃m̃|Ωi|Yl̂m̂
>6= 0

only when l̂ = l̃ ± 1. Thus, < Ylm|ΩiS
−1Ωj |Yl′m′ > is a weighted product of two block

tridiagonal matrices, which implies that it is block pentadiagonal. In fact, further properties
of spherical harmonics show that this block pentadiagonal matrix is nonzero only when l =
l′ ± 2. Hence, the even and odd moments decouple in the second-order term. Figure 4.1
illustrates this structure for N = 4, where the ‘×’ blocks are the non-zero block entries
and the small diagonal blocks are the lm-lm 3 × 3 tensors. Finer structure of this block
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FIG. 4.1. Intra-moment coupling structure with diagonal lm-lm blocks.

pentadiagonal matrix can be found by using additional properties of the spherical harmonics
(with respect to m).

Now, assume a finite element discretization of the spatial component. Using the test
function bβ(x)Yl′m′(Ω), where {bβ}β is a basis set for the spatial finite element space, the
second-order term becomes

3
∑

i=1

3
∑

j=1

∑

lm

∑

α

< Ylm|ΩiS
−1Ωj |Yl′m′ > (bα,i, bβ,j)R φlm,α =

3
∑

i=1

3
∑

j=1

∑

lm

∑

α

[

∑

l′′m′′

cl′′m′′ < Ylm|Ωi|Yl′′m′′ >< Yl′′m′′ |Ωj |Yl′m′ >

]

(4.5)

× (bα,i, bβ,j)R φlm,α.

Here, if bα at spatial node α is the standard hat function, then φlm,α is the value of the
lm moment at that node. Using the structure of < Ylm|ΩiS

−1Ωj |Yl′m′ >, the structure
of the full discrete second-order term is also block pentadiagonal with total size M(N +
1)2 ×M(N + 1)2 where M is the number of spatial nodes. Corresponding to each 3 × 3
tensor of< Ylm|ΩiS

−1Ωj |Yl′m′ > is anM ×M submatrix describing the discretized spatial
coupling of moment lm to l′m′. Alternatively, assuming R to be tessalated into tetrahedral
elements and assuming {bα} to be trilinear finite elements, the second-order term can be
re-ordered to have a 27 block stripe structure corresponding to the 27 point stencil of the
spatial differentiation operator. Each block on any stripe gives the < Ylm|ΩiS

−1Ωj |Yl′m′ >
coupling at a spatial point. Such ordering is better for computation.

Since bilinear form b(·, ·) also contains (4.3), an effective solver or preconditioner must
be able to efficiently invert this complicated linear system. However, for some parameter
regimes, a more sophisticated spatial discretization and a non-standard multigrid scheme may
be needed. A problem arises because scaling coefficients c1 and c2 may differ by orders of
magnitude. Thus, on one hand, the scaling operator leads to the correct asymptotic limiting
equation in these regimes ([16], [17]), but on the other, a complicated discretization and
multigrid scheme may be required.

To see the scaling problem, from (4.4), we see that only the l′′−m′′ =0-0 column and row
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of < Ylm|Ωi|Yl′′m′′ > and < Yl′′m′′ |Ωj |Yl′m′ >, respectively, are scaled by
√
c2. All other

rows and columns are scaled by
√
c1. Because < Ylm|Ωi|Yl′′m′′ > and < Yl′′m′′ |Ωj |Yl′m′ >

are block tridiagonal and because< Ylm|ΩiS
−1Ωj |Yl′m′ > is nonzero only when l′ = l± 2,

then only diagonal moment blocks l-l =0-0 and l-l =1-1 of the second-order term can contain
c2 scaled terms. In particular, for regions 1, 2, and 3 respectively, these blocks are

[

− 1
3∇ · ∇ 0

0 − 1
5∆− 6

15∇∇·

]

c1 = 1, c2 = 1,

[

− 1
3σt
∇ · ∇ 0

0 − 1
5σt

∆−
(

1
3σa

+ 1
15σt

)

∇∇·

]

c1 =
1

σt

, c2 =
1

σa

,

and
[

− 1
3σt
∇ · ∇ 0

0 − 1
5σt

∆−
(

σt

3 + 1
15σt

)

∇∇·

]

c1 =
1

σt

, c2 = σt

([17]). Block l-l =0-0 is Laplacian, so poses no problems. However, block l-l =1-1 contains
the grad-div operator∇∇·, whose nullspace consists of divergence-free functions. In partic-
ular, in region 3 and region 2 when σt � 1 and σa ≈ 1

σt
, since the 1-1 block is majorized

by the grad-div operator, divergence-free components create problems for standard iterative
solvers.

These problems remain even when both the zeroth and second-order terms of b(·, ·) are
considered. Now the diagonal blocks in regions 2 and 3 are

[

σaI − 1
3σt
∇ · ∇ 0

0 σtI − 1
5σt

∆−
(

1
3σa

+ 1
15σt

)

∇∇·

]

,(4.6)

and
[

σ2
aσtI − 1

3σt
∇ · ∇ 0

0 σtI − 1
5σt

∆−
(

σt

3 + 1
15σt

)

∇∇·

]

.(4.7)

These divergence-free components are approximate eigenfunctions of the l-l =1-1 block
corresponding to eigenvalue σt.

To further expose the difficulties of the 1-1 block, one can compare it to a semi-discrete
form of a time-dependent incompressible elasticity equation:

{

[cI −∆− λ∇∇·] u = f in R
u = 0 on ∂R

(4.8)

with c = O(1/∆t) and λ� 1. Not only do divergence-free error components complicate the
system solver, but also the locking effect degrades uniform discretization convergence with
respect to λ ([4], [5], [6]). Assuming conforming piecewise linear finite elements and full
H2-regularity, this non-uniformity can be anticipated from the usual error estimate

‖u− u
h‖1 ≤ C(λ)h‖u‖2(4.9)

with constant C(λ) dependent on λ. But to examine locking more precisely, let a0 be a
continuous, coercive bilinear form defined over a Hilbert space X (i.e., α‖v‖2X ≤ a0(v, v) ≤
β‖v‖2X ∀v ∈ X), let B : X → L2 be a continuous mapping, and consider the weak equation

a0(uλ, v) + λ(Buλ, Bv) = (f, v) ∀v ∈ X.
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Locking occurs over the finite element space Xh if

Xh ∩N(B) = {0}(4.10)

and if

‖vh‖X ≤ C(h)‖Bvh‖ ∀vh ∈ Xh.(4.11)

For (4.8), X = H2(R) ∩H1
0 (R),

a0(uλ,v) = (∇uλ,∇v) + (cu,v),

and B = ∇ · . Conditions (4.10)-(4.11) guarantee that for any fixed h and sufficiently large
λ, there is a v ∈ H2(R) ∩H1

0 (R) satisfying

[cI −∆− λ∇∇·] v = fv

such that the relative error is bounded below by a constant independent of h :

C ≤ |v − v
h|1

‖fv‖
.(4.12)

Following the technique in [6], one can show that v is divergence-free with ‖v‖1 > 0.Hence,
since the solution of (4.8) becomes more incompressible as a function of λ, discretization
convergence will not be uniform in λ.

Note that for a divergence-free function v with nonzero H1-norm, fv is nonzero and
independent of λ. Using (4.9) and (4.12), we have

C ≤ |v − v
h|1

‖fv‖
≤ C2C(λ)h‖v‖2

‖fv‖
,(4.13)

where C2 independent of λ. From (4.13), we see that the severity of locking can be reduced
if ‖fv‖ depends similarly on λ as C(λ) does.

Now consider the 1-1 block in (4.7) or (4.6) when σt ≈ 1
σa
� 1. In either case, one has

the approximate form
[

c1σ
2
t I −∆− c2σ2

t∇∇·
]

u =
[

σ2
t (c1I − c2∇∇·)−∆

]

u

= σtf := fu.(4.14)

Since a FOSLS Pn formulation of (3.1) leads to a “displacement” formulation of (4.14),
a0(u,v) = (∇u,∇v) and Bu = (c1u, c2∇ · u)t :

(∇u,∇v) + σ2
t [(c1u,v) + (c2∇ · u,∇ · v)] = (fu,v).

Also, using linear finite elements, we have (4.9) with

C(σ2
t ) ≈ σ2

t .(4.15)

Clearly, (Bu, Bv) corresponds to a scaled H(div) norm of u, and hence N(B) = {0}, and
consequently fu must depend on σ2

t . Indeed, from (3.5), the righthand-side associated with
the 1-1 block is

f =
σt

3
∇q00 + lower order σt terms,
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where q00 is the zero’th moment of the external source q. For neutronic problems, ‖∇q00‖ =
O(1) ([13], [16]) in the region 3. Thus,

fu = C3σ
2
t f̃ .(4.16)

Substituting (4.15)-(4.16) into (4.13), we have

|u− u
h|1

‖fu‖
≤ C2σ

2
t h‖u‖2

C3σ2
t ‖f̃‖

=
C4h‖u‖2
‖f̃‖

.(4.17)

But, even though (4.14) and (4.16) imply that u approximately satisfies

[c1I − c2∇∇·]u = C3f̃ ,

the upper bound in (4.17) does not imply uniform convergence. Consider the case when
u = (u1, u2, u3) satisifies any of the following conditions:







u2
yx + u3

zx = O(σ2
t )

u1
xy + u3

zy = O(σ2
t )

u1
xz + u2

yz = O(σ2
t ).

For this u, ‖u‖2 can be O(σ2
t ).

5. A Multigrid Algorithm. The solution procedure involves minimizing F over an
appropriate subspace of V. To accomplish this, a Rayleigh-Ritz finite element method is em-
ployed in the spatial discretization. Let Th be a triangulation of domain R into elements of
maximal length h = max {diam(K) : K ∈ Th} , and let V h be a finite dimensional subspace
of V having the approximation property

inf
vh∈V h

‖v − vh‖1,R ≤ Ch‖v‖2,R

for all v ∈
[

H2(R)× L2(S2)
]

. The Pn − h finite element space is then

V h
N :=

{

vh
N ∈ V h : vh

N =
N

∑

l=0

l
∑

m=−l

φh
lm(x)Ylm(Ω)

}

.

The discrete fine grid minimization problem is
• Find ψh

N ∈ V h
N such that

F(ψh
N ; q, g) = min

vh
N
∈V h

N

F(vh
N ; q, g).

Equivalently, the discrete problem is
• Find ψh

N ∈ V h
N such that

a(ψh
N , v

h
N ) =

(

q, S−1Lvh
N

)

R,Ω
+ 2

∫

∂R

∫

n·Ω<0

gvh
N |n · Ω| dΩdσ

for all vh
N ∈ V h

N .



ETNA
Kent State University 
etna@mcs.kent.edu

144 A Multigrid Algorithm for Solving the Boltzmann Equation

(Although one actually solves for the moments φh
lm, we will not make this notational distinc-

tion in the algorithm.)
A standard projection multilevel scheme for solving either discrete problem is fairly

straightforward. Let

T2m−1h ⊂ T2m−2h ⊂ · · · ⊂ T2h ⊂ Th

be a conforming sequence of coarsenings of triangulation Th, let

V m
N ⊂ V m−1

N ⊂ · · · ⊂ V 2
N ⊂ V 1

N := V h
N

be a set of nested coarse grid subspaces of V 1
N , the finest subspace, and let

Bj =
{

bjν,lm

}

be a suitable (generally local in space) basis set for V j
N . (For example, bjν,lm = bjνYlm, where

bjν is the standard piecewise linear hat function.) Given an initial approximation ψh
N on level

j, the level j relaxation sweep consists of the following cycle
• for each ν = 1, 2, ...,Mj , (Mj being the number of spatial nodes on grid j)

for each lm, 0 ≤ l ≤ N, −l ≤ m ≤ l,

ψh
N ← ψh

N + αbjν,lm,

where α is chosen to minimize

F
(

ψh
N + αbjν,lm; q, g

)

.(5.1)

Since F
(

ψh
N + αbjν,lm; q, g

)

is a quadratic function in α, this local minimization process is

simple, and is, in fact, a Gauss-Seidel iteration. Moreover, note that the loops range over the
moments first so that all moments are updated at a fixed spatial node before going onto the
next spatial node. Note also that the search direction may involve more than one element of
Bj . For such subspace iteration, denoting the direction by b

j
ν , one then needs to find α that

minimizes

F
(

ψh
N + αb

j
ν ; q, g

)

.

A good choice for b
j
ν is the subset

{bjνYlm : 0 ≤ l ≤ N, −l ≤ m ≤ l, ν fixed}

which results in a block Gauss-Seidel iteration that simultaneously updates all the moments
at node ν.

Now, given a fine grid approximation ψh
N on level 1, the level 2 coarse grid problem is

to find a correction ψ2h
N such that

F
(

ψh
N + ψ2h

N ; q, g
)

= min
v2h

N
∈V 2

N

F
(

ψh
N + v2h

N ; q, g
)

.

Having obtained this correction, ψh
N is updated according to

ψh
N ← ψh

N + ψ2h
N .
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Applying this procedure recursively yields a multilevel scheme in the usual way.
Away from the thick diffusive regime and for homogeneous material, this multigrid al-

gorithm has the usual optimal multigrid efficiency. But for inhomogeneous materials even
in the thin diffusive regime, when the material and scaling coefficients have fine-scale struc-
ture, the computational efficiency of this algorithm degrades; i.e., to preserve these fine-scale
structures on the coarse grid, fine-scale computation is needed on the coarser levels. For a
matrix-free implementation, the total cost of this fine-scale coarse grid computation is not
nominal. For this reason, these coefficients should be homogenized to coarse-scale resolu-
tion and then used on the coarse grid. Coarse grid calculations now can be performed with
coarse-scale computation.

Assuming that the coefficient jumps are grid-aligned on the finest grid, a simple ho-
mogenization method that can be applied is an averaging process. For example, the material
and scaling coefficients can be arithmetically and harmonically averaged, respectively ([2],
[10], [19], [23]): if {clm,µh

j
}, {σt,µh

j
}, and {σa,µh

j
} are the coefficients in disjoint elements

{µh
j }rj=1 on grid h, and if the coarse grid element γ2h is composed of the agglomerate

γ2h = ∪r
j=1 µ

h
j ,

then

clm,γ2h =
r

∑r
j=1

1
c

lm,µh
j

(5.2)

σt,γ2h =
1

r

r
∑

j=1

σt,µh
j

(5.3)

σa,γ2h =
1

r

r
∑

j=1

σa,µh
j
.(5.4)

Here, harmonic averaging is more suitable for the scaling coefficients because they contribute
to the diffusion tensors ([10]).

But one should note that using homogenized coefficients on coarser grids leads to a viola-
tion of a projection multilevel principle. Each coarse grid problem corresponds to a different
minimization problem (i.e., non-nested bilinear forms). Thus, a coarse grid correction now is
not an optimal subspace correction to the fine grid problem. In particular, for rapidly varying
coefficients, it is possible for a coarse grid correction from a very coarse level to completely
pollute the fine grid solution. Thus, more sophisticated homogenization schemes may be
needed for complicated physics.

A sophisticated technique is also needed for region 3. Recall that the algebraically
smooth error in this regime is predominantly controlled by the divergence-free error com-
ponents of the 1-1 block. Since these components can be geometrically oscillatory, the
smoother must eliminate the highly oscillatory ones. But since divergence-free functions
are intrinsically vector quantities that are represented well only over the union of several el-
ements, a point/nodal smoother is not sufficient. Rather, following [3], [11], and [21], an
additive/multiplicative Schwarz smoother should be used. This block smoother must resolve
the smallest representable circulation, or local divergence-free functions. Hence, the direc-
tions b

j
ν for this smoother have small spatial suppport so that the block solvers in a relaxation

sweep involve only small linear systems for only the 1-1 block.
We now have a well-defined multigrid algorithm for all parameter regimes and for in-

homogeneous material. Using an appropriate direction in the relaxation, one may handle the
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local intra- and inter-moment coupling well. One can also restrict this multigrid algorithm to
the l-l blocks to produce a block preconditioner. Unlike the preconditioner described in [9],
this preconditioner considers the full intra-moment coupling. By comparing the performances
of this preconditioned conjugate gradient method and the multigrid algorithm defined over all
lm-l′m′ coupling, one may be able to deduce the nature of the intra- and inter-moment cou-
pling in the Pn equations.

5.1. An Algorithm for the Multi-Group, Anisotropic Scattering Equation. In sec-
tion 3, we saw that (1.1) can be semi-discretized into a block system with mono-energetic,
anisotropic scattering equations along the diagonal. Each of these diagonal equations can be
solved with either the multigrid or preconditioned conjugate gradient algorithms described in
the previous section. Thus, one obtains a scheme for solving the full multi-group, anisotropic
scattering Boltzmann equation by using an outer block Gauss-Seidel iteration over the groups.
For the important down-scattering problems in photon/neutron applications (i.e., particles can
be scattered only into lower energy groups), this block iteration becomes a back solve. For
general scattering, since the differential operators majorize the integral projection operators,
the block system is diagonally dominant, and so, this block Gauss-Seidel iteration should
perform well.

6. Numerical Experiments. The above Pn − h finite element discretization of the
FOSLS formulation was implemented. Angle integrals involving spherical harmonics were
computed using analytical formulas, and the spatial moments were discretized with piece-
wise trilinear functions on rectangular solids. We conducted three sets of experiments. The
first set examines the scalability of our code for region 1 and 2 problems. We consider both
scalability with respect to the spatial meshsize, and scalability with respect to the number
of processors used. The second set of experiments examines region 3 problems. Since our
code does not have a parallel implementation of our multiplicative Schwarz smoother, only
scalibility with respect to the spatial meshsize is considered. However, we also examine dis-
cretization convergence to illustrate locking-free error for region 3 problems. Finally, the
third set of experiments examines a full multi-group, anisotropic scattering problem. Both
multigrid convergence rates and discretization error are considered.

i) Regions 1 and 2 Scaling Studies. The goal in these experiments is to investigate scalabil-
ity with respect to the number of spatial nodes and spherical harmonics, and scali-
bility with respect to the number of processors. Only the mono-energetic, isotropic
scattering equation was considered since solving the diagonal equations in the semi-
discrete multi-group, anisotropic scattering problem is the major task in the block
Gauss-Seidel iteration described in Section 5.1. Also, only homogeneous mate-
rial was considered. Results for the test suite Kobayashi problems ([12]) involving
inhomogeneous material with large jumps will be presented in a future paper. Con-
vergence rates for these benchmark problems are very similar to the rates presented
here. For the current experiments, the source terms were taken to be zero and the
initial guess was random for all moments. V (1, 1) cycles with “nodal moment”
Gauss-Seidel relaxation were used in the multigrid and preconditioned conjugate
gradient schemes. For the latter scheme, only one cycle was performed in the pre-
conditioning solve. The stopping criterion was

√

F(ψn; 0, 0)−
√

F(ψn−1; 0, 0)
√

F(ψ0; 0, 0)
< 10−7.

Results are tabulated in Tables 6.1 and 6.2.
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Region N h # Procs # Unks/Proc Iter Time

1 1/32 1 143, 748 9 279
1 1/64 8 137, 313 9 261
1 1/128 64 134, 168 9 267
1 1/256 512 132, 614 9 270
3 1/16 1 78, 608 20 511

1 3 1/32 8 71, 874 20 472
3 1/64 64 68, 656 20 495
3 1/128 512 67, 084 20 534
6 1/16 8 30, 092 41 1, 493
6 1/32 64 27, 514 43 1, 607
6 1/64 512 26, 282 45 1, 743
6 1/128 512 205, 444 47 10, 191

1 1/32 1 143, 748 10 313
1 1/64 8 137, 313 10 294
1 1/128 64 134, 168 10 296
1 1/256 512 132, 614 10 302
3 1/16 1 78, 608 14 359

2 3 1/32 8 71, 874 15 356
3 1/64 64 68, 656 17 413
3 1/128 512 67, 084 19 467
6 1/16 8 30, 092 19 698
6 1/32 64 27, 514 24 903
6 1/64 512 26, 282 29 1, 142
6 1/128 512 205, 444 30 6, 320

TABLE 6.1
V-cycle results- region 1: σt = .1 and σa = .05, region 2: σt = 10 and σa = 5.

From Table 6.1, we see that the number of iterations for the region 1 case is about
constant as h is refined. Thus, in region 1, the multigrid algorithm appears to be
scaling well spatially. However, the number of iterations increases linearly as the
number of spherical harmonic terms is increased (e.g., 9 iterations for N = 1 but
20 iterations for N = 3). This growth should not be surprising since the size of
the system PDE grows quadratically in N. This convergence growth also reveals
several properties of the moment coupling. First, the slower but spatially scaled
convergence rate for N = 3 indicates that relaxation is not effective on some high
frequencies of the system PDE. (If the slowly converging components were smooth,
then the convergence rate would not scale with h.) Since nodal Gauss-Seidel takes
account of the full coupling at a node, these moment-coupling high frequencies must
“spread out” spatially. A block Gauss-Seidel that involves the moments over more
spatial nodes may give better scaling.
Note that a smooth frequency coupling may also be creeping in as the number of
spherical harmonics is increased, as indicated by the slight increase in iterations as
h is refined for N = 6. This smooth frequency coupling is also more pronounced in
region 2 problems, as indicated by the logarithmic growth in the number of iterations
as h is refined.
Further features of the moment coupling can be deduced from the preconditioned
conjugate gradient results. The overall increase in iteration counts reflects the “strength”
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Region N h # Procs # Unks/Proc Iter

1 1/32 1 143, 748 17
1 1/64 8 137, 313 18
1 1/128 64 134, 168 18
1 1/256 512 132, 614 18
3 1/16 1 78, 608 31

1 3 1/32 8 71, 874 32
3 1/64 64 68, 656 33
3 1/128 512 67, 084 34
6 1/16 8 30, 092 59
6 1/32 64 27, 514 60
6 1/64 512 26, 282 63
6 1/128 512 205, 444 65

1 1/32 1 143, 748 42
1 1/64 8 137, 313 54
1 1/128 64 134, 168 60
1 1/256 512 132, 614 62
3 1/16 1 78, 608 19

2 3 1/32 8 71, 874 23
3 1/64 64 68, 656 26
3 1/128 512 67, 084 29
6 1/16 8 30, 092 29
6 1/32 64 27, 514 41
6 1/64 512 26, 282 52
6 1/128 512 205, 444 53

TABLE 6.2
Pcg with 1 V (1, 1) preconditioning- region 1: σt = .1 and σa = .05, region 2: σt = 10 and σa = 5.

of the inter-moment coupling since these couplings are not handled well with a block
diagonal preconditioner that considers only the intra-moment couplings. However,
the peculiar behaviour for N = 1 in region 2 is difficult to explain. For N = 1,
the moments couple only through the boundary functional. Thus, this boundary
coupling may be stronger than expected.
Processor scalability is best observed in region 1 results. As the ratio of unknowns
per processor is kept roughly constant, the time taken to perform the same amount
of computation should be roughly constant. This can be observed in region 1 for
N = 1, 3, where the number of iterations remains constant as h is refined- e.g., for
N = 3, with the number of unknowns/processor roughly 70,000, the overall run
time is roughly 500 seconds for each refinement.

ii) Region 3. The above multigrid scheme performs poorly; the asymptotic convergence rate
approaches 1. Thus, to handle the problematic divergence-free error components, a
multiplicative Schwarz smoother is used on the 1-1 moments. The block solves in
this smoother simultaneously update the 1-1 moments at the 27 nodes comprising an
eight element agglomerate. Table 6.3 tabulates some results. Since the asymptotic
convergence rate increases from .58 for N=1 to .68 for N=3, the convergence rate
again depends on the number of spherical harmonic terms.
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N h Rate

1 1/16 0.36
1 1/32 0.56
1 1/64 0.56

3 1/16 0.48
3 1/32 0.64
3 1/64 0.68

TABLE 6.3
V (1, 1) convergence rates for region 3: σt = 10 and σa = 0.001.

To investigate locking, we consider the boundary value problem

{

[Ω · ∇+ σtI − σsP ]ψ(x,Ω) = q (x,Ω) ∈ [0, 1]3 × S2

ψ(x,Ω) = 0 x ∈ ∂[0, 1]3, n · Ω < 0
(6.1)

with exact solution

φlm =

{

sin(2πx) sin(2πx) sin(2πz) l < N = 2
0 l = 2,

and σa = 0.005. Relative V 1 and H1 norms of the error in φh and relative H1

norm of the error in (φh
1,−1, φ

h
1,0, φ

h
1,1)

t are given in Table 6.4. The theory in [17]
guarantees only order h convergence in the V 1, as confirmed by the results in Table
6.4- as h is halved, the error in the V 1 norm is halved also. Note that irrespective of
the magnitude of σt, as h is halved, the discretization error in (φh

1,−1, φ
h
1,0, φ

h
1,1)

t in
theH1 norm decreases about 60%. Since this accuracy improvement is independent
of σt, we see locking-free error.

σt h V 1 H1 H1:1-1

1/16 1.11e-1 1.52e-1 1.61e-1
10 1/32 5.49e-2 6.33e-2 6.51e-2

1/64 2.74e-2 2.93e-2 2.96e-2
1/16 1.09e-1 1.77e-1 1.92e-1

50 1/32 5.45e-2 7.05e-2 7.43e-2
1/64 2.73e-2 3.15e-2 3.24e-2
1/16 1.09e-1 1.82e-1 1.98e-1

100 1/32 5.44e-2 7.43e-2 7.90e-2
1/64 2.73e-2 3.39e-2 3.55e-2

TABLE 6.4
Locking-free discretization error for region 3 problems: σt = 10, 50, 100, and σa = 0.005. V 1 is the

V 1 norm of the total error; H1 is the H1 norm of the total error, and H1:1-1 is the H1 norm of the error in
(φh

1,−1
, φh

1,0, φh
1,1)t.

iii) Multi-group, Anisotropic Scattering. The last experiment examines the discretization
error for a two-group, anisotropic scattering problem:

{

[Ω · ∇+ σg
t I ]ψ

g =
∑2

g=1

[

∑2
j=0 σ

gg′

sj Pjψ
g′

]

+ qg in [0, 1]3 × S2

ψg = 0 n · Ω < 0, x ∈ ∂[0, 1]3
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σgg′

s0 =

(

8 0
8 8

)

, σgg′

s1 =

(

2 0
2 2

)

, σgg′

s2 =

(

1 0
1 1

)

,

σ1
t = σ2

t = 10.0,

and

exact solution : φg
lm =

{

sin(2πx) sin(2πy) sin(2πz) l < N
0 l = N

.

This is a down-scattering problem. Table 6.5 shows the multigrid convergence rates
for each energy group. Again, these rates reflect spatial scaling, and growth with
respect to the number of spherical harmonic terms. Also, from Table 6.6, again as h
is halved, the V 1 norm of the error is also halved. Thus, we see order h discretization
accuracy.

Group N h Iter

3 1/32 13
3 1/64 13

1 3 1/128 13
6 1/32 16
6 1/64 18
6 1/128 18

3 1/32 13
3 1/64 13

2 3 1/128 13
6 1/32 16
6 1/64 18
6 1/128 18

TABLE 6.5
V (1, 1) convergence rate for multigroup, anisotropic scattering problem.

Group h N = 3 N = 6

1/32 3.88e-2 3.37e-2
1 1/64 1.89e-2 1.63e-2

1/128 9.39e-3 8.08e-3
1/32 3.88e-2 3.38e-2

2 1/64 1.89e-2 1.63e-2
1/128 9.39e-3 8.08e-3

TABLE 6.6
Relative V 1 norm of error for multigroup, anisotropic scattering problem.

7. Conclusion. In this paper, we presented two system multigrid algorithms for solving
the anisotropic scattering Boltzmann equation formulated as a FOSLS minimization problem.
Used in the inner loop of a block-group Gauss-Seidel iteration, either algorithms gives an ef-
ficient solver for many important multi-group, anisotropic scattering Boltzmann equations.
Morever, using a multiplicative Schwarz smoother instead of a nodal Gauss-Seidel smoother,
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we are able to get an efficient algorithm for the region 3 1-1 block. Because of the favor-
able scaling of this time-depedent incompressible elasticity-like problem, locking seems to
be less severe than as in the case of general incompressible elasticity problems. Numerical re-
sults demonstrate that locking does not occur even for low-order, conforming finite elements.
Other numerical results demonstrate that these new multigrid algorithms scale better than the
PCG iteration examined in [9] for region 1 and 2 problems. However, numerical results also
indicate that the higher moments couple through high frequency modes. To handle these error
modes better, more sophisticated smoothers need to be designed. This is the topic of current
research.
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