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UNIFORM APPROXIMATION BY MINIMUM NORM INTERPOLATION*

FRANZ-JURGEN DELVOS '

Abstract. Harmonic Hilbert spaces were introduced as an extension of periodic Hilbert spaces introduced by
Babuska [1] to the non-periodic case [6]. In this paper we will investigate approximation by minimum norm inter-
polation in harmonic Hilbert spaces.
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1. Introduction. Periodic Hilbert spaces were introduced by BabuSka [1] and minimum
norm interpolation was investigated in these spaces [9, 3, 4]. We extended the construction of
periodic Hilbert spaces to the non-periodic case by introducing harmonic Hilbert spaces and
investigated minimum norm interpolation in these spaces [5]. In [6, 7] we studied approxi-
mation properties of classical cardinal interpolation in harmonic Hilbert spaces. We will in-
vestigate uniform approximation by minimum norm interpolation in the associated harmonic
Hilbert space.

2. Minimum norm interpolation. The Wiener algebra A(IR) consists of those bounded
continuous functions f which can represented as Fourier integrals of functions F' € L;(R) :

F@) = / Flt)e™tdt.
R
Let b > 0. Then the series

> F(t+ 2bk)

keZ

converges absolutely almost everywhere and defines a measurable function
Fy € Ll([—b7 b])

which is called the periodization of F' € L, (R) (see [2]). The periodization F, € L1 ([—b, b])
and the function f are related by

(2.1) sy :/ Ey(t)emsldt, r € Z.
Y

(See [2], p.33.)
The function of exponential-type

2.2) Ty(f)() = / oo (O) Fap ()™ dt

R

is called the exponential-type interpolant of f in view of

(23) L(f)(r7) = fr5), v € L.
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For Fo, € La([—b,0]) it is just the cardinal function C(f, 7) (see [11]). It possesses the
cardinal series representation

Ti(£)@) = Y fERS (k. h)(x) = C(f M), h=1 .
keZ
where

S(k,h)(z) = sine(—(z — kh))

=13

is the shifted Sinc function with step size h = 7 .
The harmonic Hilbert space Hp (R) is the subspace of functions f € A(R) such that

|F(b)?
dt < o0,
/R D(t)
where D € L;(R) is assumed to be non negative and bounded. D is called the defining func-
tion (see also [10] where Hp(R) is called a weighted Lo —space). Note that if D(¢) vanishes
at a set M of posivite measure the Fourier transform F' has to vanish almost everywhere on

the same set.
It turns out to be useful to add the additional assumptions:

(2.4) D(—t) = D(t), D(t) > D(t+ h) > 0,

and

(2.5) 0 < D(b) < Dyy(t) <Y D(kb) < 0,
k>0

foralmost all ¢, A~ > 0.
It was shown in [6] that for any f € Hp(R) we have

SOk <o, h =7,
keZ

which implies Fy, € Lo([—b,b]) and

(2.6) Ty(f) = C(f,h), f € Hp(R) .

The Fourier integral of D
d(z) = / D(t)e™dt
R

is called the generating function of the harmonic Hilbert space Hp(R). With respect to the
inner product

(f.9)p = / F(t)G@)/D(t)dt
R
we have

f@)=(f,d(- —=))p
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which shows that H,(RR) is a reproducing kernel Hilbert space (see also [10]).

Minimum norm interpolation in H(R) with respect to the uniform mesh 4= k € Z, is
solved theoretically by the projection theorem. Consider the closed linear subspace

w2 ={setom: i) =0 kezf,

and its orthogonal complement (N;” )+ which is the closure of the linear subspace generated
by shifted generating functions d(- — k:kT’T), kekZ:

(NPYE =1lin {d(- - k%”) i ke Z} .

There is a unique orthogonal projector 7;° with range (N;2)+ and kernel N;”. The projection
theorem states that 7,2 (f) is the unique function of minimum norm in the linear manifold

f+NP.

PROPOSITION 2.1 (Minimum norm interpolation).
Given f € Hp(R), its projection T,” (f) on (N L)~ is the unique minimum norm interpolant
of f € Hp(R),i. e, it minimizes the norm ||g|| , among all functions g € Hp(RR) satisfying
g('F) = f(F), ke

The minimum norm interpolant of the Sinc function S(0, &) is denoted by
SP(0,h) = T,7(S(0, h)) =: g5’
The generalized Sinc function S (0, h) is given by the Fourier integral

D(t)
Day(t)

It was shown in [6] that for any f € Hp(R) the associated minimum norm interpolant
TP (f) possesses a generalized cardinal series CP(f, h) :

1
Wmmm=%4

it = gP(x), h = %

™
T (f)(@) = Y f(kh)gi (@ — kh) = CP(f,h)(), h = 7
keZ
Note that for D(t) = x(_s,4)(t) We obtain CP(f, h) = C(f, h). For deriving error estimates
an integral representation of the minimum norm interpolant T;” () is of importance.

PROPOSITION 2.2. The generalized cardinal series CP(f, h) possesses the integral
representation

= F2b (t) eixt _ ~D . B T
= | Dy POt =COF @), k=

(2.7) TP (f) () z.

Proof. Put

CY(fn) (@) = Y f(kh)gP (z — kh),

k=—n
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- R i T
Fg(t) = % E f(kh)e= ™ h = 3
k=—n

Since
D ) = Fﬁ)(t) eizt
Cy (f,h)(z) = RD%(t)D(t) dt,
we can conclude
D
T2 (f) (@) - / Fnlt) ~ By (0)] 7 ZEIE))dt

IN

(st rsof zbé))?dt)% <1/RD<t>dt)%
) </[b,b1 Pt _F%(t)IQLdO 2 </ D(t)dt)%
) <ﬁ/[—bvb] [P (t) = P (1) dt) </D dt>

CP(f,h)(x) = lim CP(f,h)(x) = TP (f)(). O

This shows

3. Approximation by minimum norm interpolation. We start with approximation by
functions of exponential type which are defined as Fourier integrals

Sy(f)(x) = / Xiva (DF(B)e dt.

PrRoPOsSITION 3.1. Forany f € Hp(R) the error estimate

£(@) = Sl < (2bZD<kb>> ( [ 0=y 5 dt)

k>1

holds.
Proof . Since

|f(x) = Se(f)(2)] <
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and

/R(l_X[—b,b](t)) D(t)dt _2/ D(t)dt <2bZD (bk),

k=1
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the proof is complete. O

PROPOSITION 3.2. Let f € Hp(R) and define h(x) = Sp(f)(x). Then the error
estimate

k>1

: o\
vmw—ﬂﬂmuﬂs2(%§:D@w) (AXP“Wﬂ524ﬁ>

holds.

Proof. Note that

) = [ H@ed 1) = O
R
Moreover, we have

Hop(8)X[—,6) (1) = X[—b,0) (1) F'(¢)

for almost all . Then we can conclude

M@—ﬁ%Wﬂé/WmWW@—mwb@w
R

s/mw@hw—ﬁfi@w

[0
/m.@mﬁ f@wmw
|| - [eonte 5 P

— [ a2 28 o)
+AMM]MM|ﬁ [ X))
Ambmlhmb()wmw

+ [ @ O = [ O pans PO d
2AmbMMmu>Dwﬂ§%w
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This shows

[E()]
Doy (1)

2 (/R X(—b5)(8) | Dan(t) — D(#)[? D;,(t) dt> ’ </R X[-b,6)(8) |117?2(Z()t|) dt)

2 (/R X[—b,b] (5) |D2b(t) - D(t) ) |

i FoP )\
<2 (21);13(1@)) </RX[_b7b](t) D) dt)

which completes the proof. O

dt

(o) = T ()@)] <2 [ Xi-0(5) 1 Daslt) = DIt
R
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Our main result is the error estimate for minimum norm interpolation in the associated
harmonic Hilbert space.

THEOREM 3.3. Let f € Hp(R). Then the estimate
i CrEor,)
|£(@) = TP (£)( >\s4(bg0<kb>) (/ 510 dt)

holds.

Proof . We have

|f(x) = Se(f)(2)] < (2172 D(kb)

k>1
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195(F) (@) — T2 (Sy()) ()] <2 (%ZD(kb)) < / Nieoy (0 E! dt) |

k>1
Moreover,

G
12| < [ F2 b = [ s ica@la < [ 1G]
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Then we obtain

‘f(x) _TbD(f)’

< (@) = S(f) ()] + rsb () = T2 (Sy(F)(@)] + | TP (Su(1) (@) — T (F)(@)|
/RI—X[ o) () [F@)] dt -+ |S(F) () — T2 (S5(F)(@)]
(%;M) (/L )
<4<bZDkb) /'F dt). a0
kE>1

We consider two examples.

COROLLARY 3.4. Let f € Hp(R)and D(t) = (1+127) ", r > 1. Then the estimate

[F(@) = TP (1) ()] < ab~7 412 <2T_ 1>% </ F@)E 1+ 27) dt)

holds.
Proof: We have
oo 1 )
> D(kb) < D(b) + / (1 + (bt)%) dt <b ¥+ / Ol I
1 1 2r —1

k>1

COROLLARY 3.5. Let f € Hp(R) and D(t) = e~*I!l o > 0. Then the estimate

1f<sc>—TbD<f><z>1s4eab/2<“b“> < / F (o) ‘”'dt)
holds.

Proof: We have

1) ab+1

ZD (kb) < e + / et — g—ab (1 ) = e . 0
= 1 ab ab

4. Improved error estimates. We recall that the error estimate is based on investigating

1F(@) = Sy(f)(@)] < / (1= Xy (8)) |[F(0) dt,

T (F)(x) = T (Sp(£) ()] < /R (1= x—b0 (1)) [ F (1)) dt,

SN =TSN <2 [ 3 (t) (Daslt) = D(O) s
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Following the idea of Golomb [8, 3, 4] for the periodic case, we assume that the function

flx) = / F(t)e™tdt
R
satisfies the smoothness condition
/ \F(8)] /D(t)dt < .
R
Then we can conclude

|f(@) = Sp(f)(2)] < D(b)/ (1= X—on (@) [F(®)] /D(t)dt

R

T (F)(@) = T, (Su(f) ()| < D(0) /R (1= X)) [F ()] /D(t)dt

|S6(f) () = TP (Su(f)(@)| < 2 D(kb) /RXH”Z’] () [F ()] / D(t)dt.

k=1

This implies

PROPOSITION 4.1. Assume that f satisfies the smoothness condition

/ \F(t)] /D(t)dt < .
R

Then the error estimate

F(@) — TP (@) <23 Dkb) / [F(t)| /D(t)dt

k=1

holds.
We consider two examples.

COROLLARY 4.2. Let D(t) = (1+ tr”)*l ,7 > 1 and assume that f satisfies

/ |[F(t)] (1+ ) dt < oo.
R
Then the estimate
4
1) -T2 <0 2 [ 1FO] @+
2T — 1 R
holds.

Proof . We have

2r

§ D(kb) < b —— [
2r—1
k>1
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COROLLARY 4.3. Let D(t) = e~°l*l o > 0, and assume that f satisfies

/|F(t)|ealf\dt < .
R
Then the estimate
|f(@) = TP ()] <e (2 + 3) / |F ()| eMdt < oo
Ofb R
holds.

Proof . We have

ab+1 _ .
D(kb) < @ 0
> D(kb) < ——e
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