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ASYMPTOTICS FOR QUADRATIC HERMITE-PADÉ POLYNOMIALS
ASSOCIATED WITH THE EXPONENTIAL FUNCTION ∗

HERBERT STAHL †

Abstract. The asymptotic behavior of quadratic Hermite-Padé polynomials pn, qn, rn ∈ Pn of type I and pn,
qn, rn ∈ P2n of type II associated with the exponential function are studied. In the introduction the background of
the definition of Hermite-Padé polynomials is reviewed. The quadratic Hermite-Padé polynomials pn, qn, rn ∈ Pn

of type I are defined by the relation

pn(z) + qn(z)ez + rn(z)e2z = O(z3n+2) as z → 0,

and the polynomials pn, qn, rn ∈ P2n of type II by the two relations

pn(z)ez − qn(z) = O(z3n+1) as z → 0,

pn(z)e2z − rn(z) = O(z3n+1) as z → 0.

Analytic descriptions are given for the arcs, on which the contracted zeros of both sets of the polynomials {pn, qn, rn}
and {pn, qn, rn} cluster as n → ∞. Analytic expressions are also given for the density functions of the asymptotic
distributions of these zeros.

The description is based on an algebraic function of third degree and a harmonic function defined on the Riemann
surface, which is associated with the algebraic function. The existence and basic properties of the asymptotic dis-
tributions of the zeros and the arcs on which these distributions live are proved, the asymptotic relations themselves
are only conjectured. Numerical calculations are presented, which demonstrate the plausibility of these conjectures.

Key words. Quadratic Hermite-Padé polynomials of type I and type II, the exponential function, German and
Latin polynomials, Hermite-Padé approximants.
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1. Introduction and Review. The first part of the talk has review character, the poly-
nomials considered in the second part of the talk are special cases of general Hermite-Padé
polynomials, which can be seen as a generalization of Padé polynomials, and therefore also as
generalizations of orthogonal polynomials. The approximants associated with the Hermite-
Padé polynomials are generalizations of the concepts of Padé approximants and continued
fractions. In order to motivate the definition of Hermite-Padé polynomials we start by repeat-
ing the definition of diagonal Padé approximants and their associated orthogonal polynomials.

1.1. Padé Approximants. Let the function f be analytic at the origin. Then there exist
polynomials pn, qn ∈ Pn such that

(1.1) pn(z) − qn(z)f(z) = O(z2n+1) as z → 0

with O(·) denoting Landau’s big ’oh’. The rational function [n/n]f := pn/qn is uniquely
determined by (1.1), and it is called the diagonal Padé approximant of degree (n, n) to the
function f . The denominator polynomial qn of [n/n]f can be characterized by orthogonality.
Let Qn(z) := znqn(1/z) denote the reversed polynomial of qn. Then the polynomial qn

satisfies relation (1.1) (together with an appropriate choice of pn) if and only if the reversed
polynomialQn satisfies the orthogonality relation

(1.2)
∮

C

ζlQn(ζ)f(1/ζ)dζ = 0, l = 0, . . . , n− 1,
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where C is an integration path around infinity. In case of Markov, Stieltjes, or Hamburger
functions, relation (1.2) transforms into an orthogonality relation defined by a positive mea-
sure on R (cf. [3], Chapter 5.3, [17], Chapter 2, or [18], Kapitel 9 & 10).

We have f ≡ [n/n]f for n sufficiently large if and only if f is a rational function. This
assertion is known as Kronecker’s Theorem. In a letter to Jacobi, Hermite raised the question
whether something similar, but more general than continued fractions (more general than
Padé approximants, we would say today) could be defined so that the algebraic character of
a function with degree m > 1 could be detected in the same way as rational functions can
be detected by continued fractions (or Padé approximants) via Kronecker’s Theorem. (Note
that rational functions are algebraic of degree 1.) A discussion of the correspondence between
Hermite and Jacobi can be found in [5], page 1-11, where one also finds further references
about this topic.

1.2. Hermite-Padé Polynomials. The question posed by Hermite led to the introduc-
tion of what is now called the Jacobi-Perron algorithm (cf. [11], [19], [17], Chapter 4.5)
and further to the definition of Hermite-Padé polynomials and their associated approximants.
Here, we will not discuss the Jacobi-Perron algorithm, which is a generalization of the con-
tinued fraction approach, and instead concentrate on the Hermite-Padé polynomials and their
associated approximants.

Let f = (f0, . . . , fm), m ≥ 1, be a system of functions, which are analytic in a neigh-
borhood of the origin.

DEFINITION 1.1. Hermite-Padé Polynomials of Type I (Latin polynomials in K. Mahler’s
terminology [16]): For any multi-index n = (n0, . . . , nm) ∈ Nm+1 there exists a vector of
polynomials (p0, . . . , pm) ∈ P∗

n0−1 ×Pn1−1 × . . .×Pnm−1 such that

(1.3)
m∑

j=0

pj(z)fj(z) = O(z|n|−1) as z → 0,

where |n| := n0 + . . .+nm and P∗
k := { p ∈ Pk | p monic, p 6≡ 0}. The vector (p0, . . . , pm)

is called Hermite-Padé form of type I, and its elements are the Hermite-Padé polynomials of
type I.

DEFINITION 1.2. Hermite-Padé Polynomials of Type II (German polynomials in K.
Mahler’s terminology [16]): For any multi-index n = (n0, . . . , nm) ∈ Nm+1 there exists
a vector of polynomials (p0, . . . , pm) ∈ P∗

N0
× PN1

× . . . × PNm
with Nj := |n| − nj ,

j = 0, . . . ,m, such that

(1.4) pi(z)fj(z) − pj(z)fi(z) = O(z|n|+1) as z → 0,

for i, j = 0, . . . ,m, i 6= j. The vector (p0, . . . , pm) is called Hermite-Padé form of type II,
and its elements are the Hermite-Padé polynomials of type II.

Remarks: (1) The assumption p0 ∈ P∗
n0−1 and p0 ∈ P∗

N0
implies a normalization of the

whole form (p0, . . . , pm) and (p0, . . . , pm), respectively. There may exist situations in which
a normalization by the first component is not possible; however, there always exists one of
the m+ 1 components by which a normalization is possible.

(2) In general the Hermite-Padé polynomials are not unique. Their existence is imme-
diate since both relations (1.3) and (1.4) can be rewritten as homogeneous linear systems of
equations for the coefficients of the polynomials.

(3) In (1.4) there are (m + 1)m/2 formally different relations. However, at most m of
these relations are linearly independent.
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1.3. Hermite-Padé Approximants. If one takes m = 1, f0 ≡ −1, and f1 = f , then
relation (1.3) reduces to (1.1), and by taking m = 1, f0 ≡ 1, and f1 = f , in relation (1.4)
one again gets relation (1.1). Hence, the concept of Padé polynomials pn, qn ∈ Pn defined
by (1.1) is a special case of both types of Hermite-Padé polynomials.

If f0(0) 6= 0, then one can assume without loss of generality that f0 ≡ 1, and under this
assumption we deduce from (1.4) that

(1.5) p0(z)fj(z) − pj(z) = O(z|n|+1) as z → 0 for j = 1, . . . ,m.

DEFINITION 1.3. Hermite-Padé Simultaneous Rational Approximants: For a given
multi-index n ∈ Nm+1 let p0, . . . , pm be the Hermite-Padé polynomials of type II define by
(1.5). Then the vector of rational functions

(1.6)

(
p1

p0
(z), . . . ,

pm

p0
(z)

)

,with common denominator polynomial p0 is called the (Hermite-Padé) simultaneous ratio-
nal approximant to the (reduced) system of functions fred = (f1, . . . , fm). For m = 1 we
have the Padé approximants to f1 with numerator and denominator degrees (n0, n1) as spe-
cial case of (1.6) .

Besides the simultaneous rational approximants there exists a second type of approxi-
mants: the algebraic Hermite-Padé approximants. They are defined with the help of Hermite-
Padé polynomials of type I.

Let f be a function analytic at the origin, and define the system of functions f as

(1.7) f = (f0, . . . , fm) := (1, f, . . . , fm).

DEFINITION 1.4. Algebraic Hermite-Padé Approximants: For a given multi-index n ∈
Nm+1 let p0, . . . , pm ∈ P∗

n0−1 × . . . × Pnm−1 be the Hermite-Padé polynomials of type
I defined by (1.3) with the special choice of (1.7). Let the algebraic function y = y(z) be
defined by

(1.8)
m∑

j=0

pj(z)y(z)
j ≡ 0.

From the m branches of y we select the branch y = yn which has the highest contact with
f at the origin. This branch yn is the algebraic Hermite-Padé approximant to f associated
with the multi-index n.

Again, it is immediate that, for m = 1 Definition 1.4 leads to the Padé approximants
[n0 − 1/n1 − 1]f introduced after (1.1). For m > 1 the two types of Hermite-Padé approxi-
mants introduced in Definition 1.3 and 1.4 split up in two different directions: In the first case
we continue to use rational functions as approximants, but we now approximate simultane-
ously several functions; in the second case only one function f is approximated, but now by
an algebraic function of m−th degree so that in principle againm branches of the function f
can be approximated simultaneously by the m branches of the approximant. A survey over
asymptotics of Hermite-Padé polynomials together with related results about the convergence
of Hermite-Padé approximants can be found in [2].
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1.4. Orthogonality. As in (1.2), and also in case of Hermite-Padé polynomials, one
can express the defining relations (1.3), (1.4) or (1.5) by orthogonality in an equivalent way.
Here, we discuss the orthogonality relations only for the diagonal case, i.e., we assume that
all multi-indices n ∈ Nm+1 are of the form n = (k, . . . , k) with k ∈ N. The reversed
polynomials of p0, . . . , pm and p0, . . . , pm are defined by

(1.9) Pj(z) := zk−1pj(1/z) and Pj(z) := zmkpj(1/z), j = 1, . . . ,m.

Further, we assume that f0 ≡ 1. Under these assumptions a vector of polynomials (p1, . . . , pm)
∈ Pk−1×. . .×Pk−1 satisfies relation (1.3) together with an appropriately chosen polynomial
p0 ∈ P∗

k−1if and only if

(1.10)
∮

C

ζl
m∑

j=1

Pj(ζ)fj(1/ζ)dζ = 0 for l = 0, . . . ,mk − 1.

A polynomial p0 ∈ P∗
mk satisfies relation (1.4) together with an appropriately chosen set of

polynomials p1, . . . , pm ∈ Pmk if and only if

(1.11)
∮

C

ζl
jP0(ζ)fj(1/ζ)dζ = 0 for l = 0, . . . , k − 1, j = 1, . . . ,m.

In both integrals C is an integration path encircling infinity. There also exist orthogonality
relations analogous to (1.11) for the other polynomials Pj , j = 1, . . . ,m, of type II.

If the functions f1, . . . , fm are of Markov, Stieltjes, or Hamburger type, then the m
orthogonality relations in (1.11) take a more conventional form (cf. [17], Chapter 4). The
polynomial P0 in (1.11) is called multiple orthogonal since it satisfies simultaneously m
different orthogonality relations, each one with a partial degree nj − 1. The total number of
restrictions provided by the multiple orthogonality relation (1.11) is |n|−n0 = n1+. . .+nm,
which is the maximally possible degree of P0. The theory of multiple orthogonality is still
in an early stage of development. Nevertheless, there exists already a considerable amount
of knowledge and special results. Surveys about the state of art in this field can be found in
[17], Chapter 4, [1], and [23].

1.5. Mahler Relations. Up to this point one may have the impression that the Defini-
tions 1.1 and 1.2 of both types of Hermite-Padé polynomials are rather independent ifm > 1.
But this is not so. Under certain ’normality’ assumptions one can calculate one type of poly-
nomials from the other one. The situation is especially simple if the system of functions f is
perfect.

DEFINITION 1.5. Perfect Systems: A System of functions f = (f0, . . . , fm) is called
perfect if for all multi-indices n ∈ Nm+1 the left-hand side of (1.3) starts with the term
Az|n|−1 and A 6= 0.

The system is called weakly perfect if this property holds true only for close-to-diagonal
multi-indices n ∈ Nm+1. More precisely, it is weakly perfect if it holds true for each multi-
index n = (n0, . . . , nm) ∈ Nm+1 with the property that there exists k ∈ N with 0 ≤ nj−k ≤
1 for all j = 0, . . . ,m.

The perfectness of special systems has been studied in [16], [7], and [12]. Weak perfect-
ness has been established for Angelesco and Nikishin systems (cf. [17], Chapter 4).

In order to define the (diagonal) Mahler relations, we introduce for each k ∈ N two sets
of multi-indices n(k)0, . . . , n(k)m ∈ Nm+1 and n(k)0, . . . , n(k)m ∈ Nm+1 with n(k)i =
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(ni0, . . . , nim), n(k)i = (ni0, . . . , nim), i = 0, . . . ,m. The nij = nij(k) and nij = nij(k)
are defined by

(1.12) nij(k) := k + δij , nij(k) := k − δij , i, j = 0, . . . ,m, k ∈ N,

where δij denotes Kronecker’s symbol. We have |n(k)i| = (m + 1)k + 1 and |n(k)i| =
(m+ 1)k − 1 for i = 0, . . . ,m.

For them+1 multi-indicesn(k)i ∈ Nm+1, i = 0, . . . ,m, and the system f = (f0, . . . , fm)
the m+ 1 vectors of Hermite-Padé polynomials of type I are denoted by

(1.13) (pi0, . . . , pim) ∈ Pk−1 × . . .×P∗
k × . . .×Pk−1, i = 0, . . . ,m.

The assumptions in (1.13) imply a normalization different from that used in Definition 1.1.
Here, the i−th component is used for normalizing the vector (pi0, . . . , pim). If the system f

is weakly perfect, then this normalization is always possible.
For the multi-indices n(k)i ∈ Nm+1, i = 0, . . . ,m, and the system f, the vectors of

Hermite-Padé polynomials of type II are denoted by

(1.14) (pi0, . . . , pim) ∈ Pmk−1 × . . .×P∗
mk × . . .×Pmk−1, i = 0, . . . ,m.

Again, the normalization implied by (1.14) is different from that used in Definition 1.2. The
vector of polynomials in (1.13) and (1.14) are put together in two matrices:

(1.15) P :=




p00 · · · p0m

...
...

pm0 · · · pmm


 , P :=




p00 · · · p0m

...
...

pm0 · · · pmm


 .

THEOREM 1.6. Let f = (f0, . . . , fm) be a weakly perfect system. If the matrices P and
P of polynomials are defined as in (1.12) - (1.15), then we have

(1.16) P P t = z(m+1)kIm+1

with Im+1 denoting the identity matrix with m+ 1 rows and columns.

Remark. Identity (1.16) is called a Mahler relation. It shows that at least in case of weakly
perfect systems there exists a functional relationship between the Hermite-Padé polynomials
of both types.

We shall see in the more detailed investigation of Hermite-Padé polynomials associated
with the exponential function that despite of the functional relationship the properties of both
types of polynomials can be rather different.

1.6. Hermite-Padé Polynomials to the Exponential Function. In the second part of
the talk we are concerned with the asymptotic behavior of quadratic Hermite-Padé polyno-
mials associated with the exponential function. In a general situation a system of exponential
functions is of the form

(1.17) f(z) = (f0(z), . . . , fm(z)) := (1, ez, . . . , emz), j = 1, . . . ,m.

From Definition 1.1 we know that for a multi-index n = (n0, . . . , nm) ∈ Nm+1 the corre-
sponding Hermite-Padé polynomials pj,n ∈ Pnj−1, j = 1, . . . ,m, of type I are now defined
by the relation

(1.18) p0,n(z) + p1,n(z)ez + . . .+ pm,n(z)emz = O(z|n|−1) as z → 0,
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FIG. 1.1. The zeros of the polynomials p30 (stars), q30 (boxes), r30 (diamonds), and some of the zeros of the
error term e30 (triangles). (Notice that the axes have different scales.)

and the Hermite-Padé polynomials pj,n ∈ P|n|−nj
, j = 1, . . . ,m, of type II are defined by

the m relations

(1.19) pj,n(z) − p0,n(z)ejz = O(z|n|+1) as z → 0, j = 1, . . . ,m.

The polynomials of both types have been introduced in [10], and they have been used and
intensively studied in number theory and approximation theory (cf. [14]-[16], [7], [24]).

1.7. Quadratic Hermite-Padé Polynomials. After moving from the general problem
to the more special situation of a system of exponential functions, we continue to specialize,
and restrict our interest now to quadratic Hermite-Padé polynomials, i.e., to the case m =
2, which is the simplest situation that does not coincide with the much studied and well
understood case of Padé approximants to the exponential function. The (diagonal, quadratic)
Hermite-Padé polynomials of type I associated with the exponential function ez are denoted
by pn, qn, rn ∈ Pn, and they are defined by the relation

(1.20) en(z) := pn(z) + qn(z)ez + rn(z)e2z = O(z3n+2) as z → 0.

The (diagonal, quadratic) Hermite-Padé polynomials of type II of degree 2n are denoted
by p2n, q2n, r2n ∈ P2n, and corresponding to Definition 1.2, they are defined by the two
relations

e1,2n(z) := p2n(z)ez − q2n(z) = O(z3n+1) as z → 0,(1.21)

e2,2n(z) := p2n(z)e2z − r2n(z) = O(z3n+1) as z → 0.(1.22)

Note that in (1.20) the polynomials pn, qn, rn are of degree n, and not of degree n − 1, as
assumed in Definition 1.1.
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FIG. 1.2. The zeros of the polynomials p60 (stars), q60 (boxes), r60 (diamonds). (Notice that the axis have
different scales.)

The polynomials pn, qn, rn are basic for the definition of quadratic approximants

(1.23) αn(z) :=
1

2rn(z)

(
−qn(z) ±

√
qn(z)2 − pn(z)rn(z)

)

to ez developed at z = 0, and the polynomials p2n, q2n, r2n lead to simultaneous rational
approximants to the system (ez, e2z) defined by

(1.24) r1,2n(z) := q2n/p2n(z) and r2,2n(z) := r2n/p2n(z).

These are the two types of approximants that have been introduced in the Definitions 1.4 and
1.3.

In the remainder of the talk the asymptotic behavior of the polynomials of both types
will be investigated for n→ ∞. Detailed studies of the polynomials pn, qn, rn can be found
in [6], [8], and [9]. In [6] among other things a 4-term recurrence relation and very precise
asymptotic estimates for the polynomials pn, qn, rn and for the error term en have been de-
rived. While in [6], like in (1.20), only the diagonal case has been studied, the investigations
have been extended to the non-diagonal case in [8] and [9]. Interesting connections with spe-
cial functions have been established in [9], and the paper contains results about the location
of the zeros of the polynomials pn, qn, and rn. Results achieved in [6], [8], and [9] have been
extended to the general case (1.18) in [24].

In Figure 1.1 the zeros of the Hermite-Padé polynomials pn, qn, rn, together with some
of the zeros of the error term en in (1.20) are plotted for n = 30. In Figure 2.1 the zeros of
the Hermite-Padé polynomials p2n, q2n, r2n of type II are plotted again for n = 30. The reg-
ularity displayed in these plots certainly suggests that there should exist analytic expressions
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that allow to describe the asymptotic behavior of the zeros, and also the asymptotic behavior
of the polynomials pn, qn, rn, p2n, q2n, r2n and the error term en themselves. Results in this
direction are the main topic of the next two sections.

2. Asymptotics of Quadratic Hermite-Padé Polynomials. The zeros of the polynomi-
als pn, rn, p2n, q2n, r2n, and nearly all zeros of the polynomial qn tend to infinity as n→ ∞.
Because of this convergence to infinity, many specific aspects of the asymptotic behavior can
not be detected in the complex plane. The asymptotic zero distributions and the asymptotics
for the polynomials themselves become more informative if the independent variable z is
rescaled in such a way that the zeros of the transformed polynomials have finite cluster points
as n → ∞. This concept has been used successfully by Szegö in [22] for the study of the
asymptotic behavior of Taylor polynomials associated with the exponential function, and by
Saff and Varga in [21] for the study of zeros and poles of Padé polynomials associated with
the exponential function. In the same spirit as in these investigations we introduce as a new
independent variable

(2.1) w :=
z

3n
, n = 1, 2, . . . ,

for the study of the quadratic Hermite-Padé polynomials that will be presented in this talk.
The (transformed) polynomials Pn, Qn, Rn, Pn, Qn, and Rn are then defined by

Pn(w) := pn(3nw), Qn(w) := qn(3nw), Rn(w) := rn(3nw),(2.2)

Pn(w) := pn(3nw), Qn(w) := qn(3nw), Rn(w) := rn(3nw).(2.3)

These new polynomials satisfy the relations

En(w) :=Pn(w)
(
e−3w

)n
+Qn(w) +Rn(w)

(
e3w

)n
= O(z3n+2),(2.4)

Q2n(w)(e−3w)n − P2n(w) = O(w3n+1),(2.5)

Q2n(w)(e3w)n − R2n(w) = O(w3n+1) as w → 0.(2.6)

These relations are equivalent to the relations (1.20) - (1.22) in the last section. The error
term En in (1.20) is related to en by En(w) = en(3nw)e−3nw. Note that in (1.20) not only
the variable z has been substituted by 3nw, but the relation has also been multiplied by e−w

in order to make the symmetry more evident, which is intrinsic to the problem. In a similar
way the relations (1.21) and (1.22) have been transformed in order to get (2.5) and (2.6).

The polynomials Pn, Qn, Rn, and P2n, Q2n, R2n are normalized by assuming that

(2.7) Pn(w) = wn + . . . ∈ Pn and P2n(w) = w2n + . . . ∈ P2n.

Since the system (e−w, 1, ew) is perfect (cf. [16]) the polynomials Pn, Qn, Rn, and P2n,
Q2n, R2n are uniquely determined by (2.4) - (2.7). It then follows from (2.4) that Pn(w) =
Rn(−w) andQn(w) = Qn(−w), and from (2.5) and (2.6) it follows that Pn(w) = Rn(−w)
and Qn(w) = Qn(−w).

2.1. Asymptotic Distributions of Zeros. By Z(p) we denote the (multi) set of zeros
of a polynomial p ∈ Pn (multiplicities of zeros are represented by repetition), by νp the
counting measure

(2.8) νp :=
∑

x∈Z(p)

δx, p ∈ Pn,
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Hermite-Padé Polynomials 203

and by
∗−→ the weak convergence of measures in C, i.e., µn

∗−→ µ means that
∫
fdµn −→∫

fdµ holds for every real function f continuous on C, as n→ ∞.
The aim in the present investigation is to give an analytic interpretation of the regular

configurations of zeros that can be observed in the Figures 1.1 and 1.2. Only parts of the result
will be proved in the talk. These are mainly the statements connected with the definition of
the asymptotic expressions. On the other hand the asymptotic relations themselves will not
be proved. Thus, for instance, the existence of asymptotic distributions for the zeros in the
Figures 1.1 and 1.2 is only conjectured.

CONJECTURE 2.1. There exist six probability measures ωP , ωQ, ωR, ωP, ωQ, ωR on C

such that the limits

1

n
νPn

∗−→ ωP ,
1

n
νQn

∗−→ ωQ,
1

n
νRn

∗−→ ωR,(2.9)

1

2n
νPn

∗−→ ωP,
1

2n
νQn

∗−→ ωQ,
1

2n
νRn

∗−→ ωR(2.10)

hold true as n→ ∞.

The supports of the measures ωi, i ∈ {P,Q,R,P,Q,R}, are analytic arcs or the union
of analytic arcs. The definition of theses arcs is one of the topics in the next subsection.

2.2. The Riemann Surface R. We start by defining a Riemann surface R with three
sheets and genus zero together with an algebraic function ψ : R −→ C, which maps R
bijectively on C. It will turn out that this Riemann surface is fundamental for all definitions
relevant for the description of the asymptotics of the polynomials Pn, Qn, Rn,P2n, Q2n,
R2n.

The Riemann surface R is introduced in order to make the function

(2.11) v 7→ w = w(v) :=
v2 − 1/3

v(v2 − 1)
, v ∈ C,

bijective. Hence, R is the Riemann surface with canonical projection π : R −→ C and the
property that there exists a bijection ψ : R −→C such that π ◦ψ−1(v) = w(v) for all v ∈ C.
The last requirement fully determines the surface R and the mapping ψ. The function ψ is
algebraic of third degree. The surface R has three sheets and four simple branch points ζj ,
j = 1, . . . , 4, over the four base points

(2.12) wj := 4

√
1/3eiϕj with ϕj =

5

12
π,

7

12
π,

17

12
π,

19

12
π, j = 1, . . . , 4.

Indeed, the derivative

(2.13) w(v)′ = − v4 + 1/3

v2(v2 − 1)2

has simple zeros at the four roots vj = 4

√
−1/3, j = 1, . . . , 4, and it is easy to check that

the four points in (2.12) are defined by wj = π ◦ ψ−1(vj) for j = 1, . . . , 4 if the vj’s are
ordered appropriately. We note that for a given ζ ∈ R the value v = ψ(ζ) can be calculated
very efficiently by solving the cubic equation

(2.14) π(ζ) v (v2 − 1) − v2 +
1

3
= 0.

The value v = ψ(ζ) then is one of the three solutions of (2.14). The selection is determined
by the sheet on which the point ζ lies.
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The three sheets of R will be denoted by B−1, B0, B1. For a point ζ ∈ R we write ζ(j)

if ζ lies on the sheet Bj . The canonical projection π : R −→ C is bijective on each sheet.
By π−1

j : C −→ Bj , j = −1, 0, 1, we denote the three branches of the inverse function π−1.

Points on R will generally be denoted by ζ, and by ζ (j) if it is clear on which sheet Bj the
point is lying. Base points will generally be denoted by w. For brevity we call the four points
ζj ∈ R, j = 1, . . . , 4, and also their four base points (2.12) branch points.

The information given so far leaves the three sheets rather arbitrary, but their definition
will become more concrete as the analysis advances. In a first step we assume that the two
sheets B1 and B0 are pasted together cross-wise in the usual way along a closed curve C1

on R, which is lying over an arc Γ1 ⊆ C that connects the two branch points w1 and w4.
It is assumed that Γ1 intersects R between 0 and ∞. Analogously, the two sheets B−1 and
B0 are pasted together cross-wise along a curve C−1 lying over an arc Γ−1 ⊆ C. The arc
Γ−1 connects the two branch points w2 with w3 and intersects R between −∞ and 0. Except
for the assumptions about the intersections with R and the specific connections of the branch
points, the arcs Γ1 and Γ−1 are still fully arbitrary. (They will be determined in Lemma 2.4,
below.)

It is not difficult to deduce from (2.11) that the numbering of the sheets can be done in
such a way that

(2.15) ψ(0(0)) = ∞.

It then follows from (2.11) that ψ(0(j)) = j
√

1/3 for j = −1, 1, and ψ(∞(j)) = j for
j = −1, 0, 1.

2.3. Definition of the Functions hj . In the next step we shall show that there exists a
function u such that the three branches of the function h = Re(u ◦ ψ) have developments
near infinity that model the asymptotic behavior of the three terms 1

n log |Pn(w) e−3nw|,
1
n log |Qn(w)|, 1

n log |Rn(w) e3nw | as n → ∞ with Pn, Qn, Rn defined by relation (2.2).
In the next lemma it is shown that the function h and thereby also the function u is uniquely
determined by properties that follow immediately from (2.4) and (2.7).

LEMMA 2.2. Let h be a function harmonic in R\{∞(−1),∞(0),∞(1), 0(0)} and assume
that

h(ζ) = −3 Reπ(ζ) + log |π(ζ)| + O(
1

π(ζ)
) as ζ → ∞(−1),(2.16)

h(ζ) = log |π(ζ)| + O(1) as ζ → ∞(0),(2.17)

h(ζ) = 3 Re(π(ζ)) + log |π(ζ)| + O(1) as ζ → ∞(1),(2.18)

h(ζ) = 3 log |π(ζ)| + O(1) as ζ → 0(0).(2.19)

Then the function h is uniquely determined, and it is given by h = Re(u ◦ ψ) with

(2.20) u(v) :=
2 v2

v2 − 1
+ log

2

3 v (v2 − 1)
.

DEFINITION 2.3. By

h̃j(w) = h ◦ π−1
j (w) for j = −1, 0, 1, and w near ∞,(2.21)

h̃∞(w) = h ◦ π−1
0 (w) for w near 0(2.22)
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we define four harmonic function elements in neighborhoods of ∞ and 0. In (2.21) and (2.22)
the π−1

j , j = −1, 0, 1, are the three branches of the inverse π−1 of the canonical projection

π : R −→ C associated with the sheets B−1, B0, and B1.

Remarks. (1) Up to now the sheets B−1, B0, and B1 are still rather arbitrary; how-
ever, the assumptions made about the arcs Γ−1 and Γ1 guarantee that the functions π−1

j ,
j = −1, 0, 1, are well defined in neighborhoods of ∞ and 0, and therefore the function el-
ements (2.21) and (2.22) are well defined. Their global definition, however, depends on the
specification of the sheets B0, j = −1, 0, 1, which will be done in Lemma 2.4 below.

(2) The normalization (2.7) implies that 1
n log |Pn(w)| = log |w|+O(1/w) as

w → ∞, and consequently we have 1
n log |Pn(w)e−3nw |=−3 Re(w)+log |w|+O(1/w) as

w → ∞, which corresponds to (2.16). In the same way we see that the two other terms in the
middle part of relation (2.4) correspond to the expressions given in (2.17) and (2.18). In these
last two relations we have an error term O(1) instead of O(1/w) since the normalization (2.7)
is assumed only for the polynomial Pn. Since the term En in (2.4) has a zero of order at least
3n+ 2 at 0, it follows that 1

n log |En(w)| = 3 log |w| + O(1) as w → ∞, and consequently
also (2.19) follows directly from (2.5).

(3) Formula (2.20) allows one to derive as many terms in the developments
of the function elements h̃−1, h̃0, h̃1, and h̃∞ as one wants.

(4) The function h is defined via the function u, which has been defined in
(2.20) as a function in the v−plane. It is interesting and also important for the investigations
below that the derivatives u′ and w′ = (π ◦ ψ−1)′ have zeros at the same places in the
v−plane. Indeed, we have

(2.23) u′(v) = −3 (v4 + 1/3)

v (v2 − 1)2
,

and a comparison with (2.13) shows that both functions have the same set of zeros.

No proofs will be given in the present section; all results that are not stated as conjectures
will be proved in Section 3. This is also the case for Lemma 2.2.

In the next lemma arcs will be fixed with the help of assumptions about the global struc-
ture of the harmonic continuations of the four function elements h̃j , j = −1, 0, 1,∞. Among
these arcs are the two arcs Γ−1 and Γ1, which determine the sheets Bj , j = −1, 0, 1, of R.

LEMMA 2.4. (i) There exist uniquely two analytic Jordan arcs Γ−1 and Γ1 such that the
two function elements h̃−1 and h̃1 defined in (2.21) have harmonic continuations throughout
the domains C \ Γ−1 and C \ Γ1, respectively, and the extended functions are continuous
throughout C. The arc Γ−1 connects the two branch points w2 and w3 in {Re(w) < 0}, and
the arc Γ1 connects the two branch points w1 and w4 in {Re(w) > 0}. The arc Γ1 is the
image of Γ−1 under reflection on the imaginary axis.

(ii) There uniquely exists a continuumK0 ⊆ C such that the function element h̃0 defined
in (2.21) has an harmonic continuation throughout the domain C \K0, the extended function
is continuous throughout C, and the continuum K0 has no subarcs in common with Γ−1 or
Γ1. The continuumK0 is the union of five analytic Jordan arcs Γ00, . . . ,Γ04, and it connects
all four points w1, . . . , w4. The subarc Γ00 is the interval [−i y1, i y1] with y1 a positive
number. The subarcs Γ01 and Γ02 connect the two branch points w1 and w2 with i y1, the
subarcs Γ03 and Γ04 connect the branch points w3 and w4 with −i y1. For y1 we have the
numerical value

(2.24) y1
.
= 0.621391
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FIG. 2.1. The arcs Γ−1, Γ1, the set K0 = Γ00 ∪ . . . ∪ Γ04, and parts of the set K∞ = Γ∞1 ∪ . . . ∪ Γ∞4.

(iii) There uniquely exists a continuum K∞ ⊆ C such that the function element h̃∞
defined in (2.22) has a harmonic continuation throughout the domain C \ ({0} ∪ K∞), the
extended function is continuous throughout C \ {0}, and the continuum K∞ has no subarcs
in common with Γ−1, Γ1, or K0. The continuum K∞ is the union of four analytic Jordan
arcs Γ∞1, . . . ,Γ∞4 ⊆ C, each Γ∞j , j = 1, . . . , 4, connects the branch point wj with ∞.
The Γ∞1, . . . ,Γ∞4 are disjoint in C.

DEFINITION 2.5. By hj , j = −1, 0, 1,∞, we denote the harmonic continuations of the
function elements h̃j into the domains C \ Γ−1, C \K0, C \ Γ1, and C \K∞, respectively.
Because of the continuity assumption, these continuations extend to the whole C.

Remarks. (1) With the determination of the two Jordan arcs Γ1 and Γ−1 in part (i) of the
Lemma 2.4 the shape of the three sheets B−1, B0, B1 of the surface R is finally fixed. The
definition of the sheets is unique up to the attribution of the boundary curves C−1 and C1 to
each of the neighboring sheets. This can always be done in a satisfactory way.

(2) The arcs Γ1, Γ−1, the set K0, and parts of the set K∞ are shown in
Figure 2.1.

(3) Below, in Theorem 2.16, tools will be introduced which allow to calculate
all arcs mentioned in Lemma 2.4 in a very efficient way. The existence of these tools allows
us to say that the arcs Γ1, Γ−1, and the sets K0, K∞ are defined in a constructive fashion.

(4) The surface R has three sheets, but in Lemma 2.4 we have considered four
branches hj , j = −1, 0, 1,∞, of the function h. Consequently, everywhere in C \ (Γ−1 ∪
K0 ∪ Γ1 ∪K∞) two of the four branches have to be identical. The harmonicity implies that
the identical pair has to be the same in each component of the set C\ (Γ−1∪K0 ∪Γ1 ∪K∞).
The pairing can only change if w crosses one of the subarcs of Γ−1 ∪K0 ∪ Γ1 ∪K∞.

2.4. Definition of the Measures νj . For the functions hj , j = −1, 0, 1, of Definition
2.5 there exist representations which involve logarithmic potentials, and these potentials de-
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termine three probability measures that are the asymptotic distributions of the zeros of the
polynomials Pn, Qn, Rn.

LEMMA 2.6. There exist three probability measures ν1, ν0, ν−1 such that

h−1(w) = −3 Re(w) −
∫

log
1

|w − x|dν−1(x),(2.25)

h0(w) = log(2) −
∫

log
1

|w − x|dν0(x),(2.26)

h1(w) = 3 Re(w) −
∫

log
1

|w − x|dν1(x).(2.27)

We have supp(νj) = Γj for j = −1, 1, and supp(ν0) = K0. The measure ν−1 is the image
of ν1 under reflection on the imaginary axis.

Remarks. (1) The measures ν−1, ν0, ν1 are absolutely continuous with respect to linear
Lebesgue measure on supp(νj) for j = −1, 0, 1, respectively. Below, in Theorem 2.17, tools
will be presented that allow an efficient calculation of the density functions of these three
measures.

(2) The density functions are real-analytic with respect to arc length inside of
the arcs that form the supports. Near the branch pointsw1, . . . , w4 the density functions are of
the form const∗

√
dist(w,wj) + O(|w−wj |) for w ∈ supp(νj) and w → wj , j = 1, . . . , 4.

2.5. Asymptotics I. The definitions of the last two subsections allow to formulate the
first group of asymptotic results, which are a core piece of the present talk. These statements
are still conjectures since parts of the proofs still have not been worked out.

CONJECTURE 2.7. Let the functions hj , j = −1, 0, 1,∞, the arcs Γ−1, Γ1, and the
continuaK0, K∞, be defined as in the Lemma 2.4 and Definition 2.5. Then we have

lim
n→∞

1

n
log |Pn(w)| = h−1(w) + 3 Re(w) locally uniformly for w ∈ C \ Γ−1,(2.28)

lim
n→∞

1

n
log |Qn(w)| = h0(w) locally uniformly for w ∈ C \K0,(2.29)

lim
n→∞

1

n
log |Rn(w)| = h1(w) − 3 Re(w) locally uniformly for w ∈ C \ Γ1,(2.30)

lim
n→∞

1

n
log |En(w)| = h∞(w) locally uniformly for w ∈ C \ ({0} ∪K∞).(2.31)

CONJECTURE 2.8. The three measures ωP , ωQ, ωR in Conjecture 2.1 are given by

(2.32) ωP = ν−1, ωQ = ν0, ωR = ν1,

where νj , j = −1, 0, 1, are the probability measures introduced in Lemma 2.6.

In Figure 2.2 the zeros from Figure 1.1 are plotted together with the arcs introduced in
Lemma 2.4. The zeros in Figure 1.1 have been calculated in the z−variable. In order to make
them comparable to the scales of Figure 2.1, Figure 1.1 has been transformed by the function
(2.1) with n = 30. The arcs Γ−1,Γ1, and the set K0 are the supports of the measures νj ,
j = −1, 0, 1. As Figure 2.2 shows there exists a good accordance between the zeros and
the supports of their asymptotic distributions already for n = 30. In Conjecture 2.8 only
weak convergence has been considered; in a forthcoming paper also a strong version of the
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FIG. 2.2. An overlay of Figure 1.1 with Figure 2.1 after a shrinking of the scales of Figure 1.1 in accordance
with (2.1).

asymptotic zero distributions will be proved. These strong asymptotic relations are precise
enough to fix approximate positions of individual zeros.

Also for the zeros of the error term En an asymptotic distribution can be found with
a method that is similar to that used to define the three probability measures ν−1, ν0, ν1.
However, this asymptotic distribution has no compact support and its mass is infinite. We
shall not address the problem in the present talk.

2.6. Definition of the Functions gj and the Measures ψj . Our next aim is to present
asymptotic relations for the Hermite-Padé polynomials P2n, Q2n, R2n of type II. The ap-
proach will be analogous to that applied in the last two subsections for the asymptotic relation
of the polynomials Pn, Qn, Rn of type I. In a first step we define functions gj and measures
ψj , j = −1, 0, 1, which will be the building blocks of the asymptotic relations.

LEMMA 2.9. There exist uniquely two analytic Jordan arcs Γ−1,2, Γ12, and a set K1

such that
(i) the three function elements h̃−1, h̃1, and h̃0 defined in (2.21) have harmonic contin-

uations g−1, g1, and g0 throughout the domains C \ (Γ−1,2 ∪ {0}), C \ (Γ12 ∪ {0}), and
C \ (K1 ∪ {0}), respectively,

(ii) at the origin we have

(2.33) gj(w) = 3 log |w| + O(1) as w → 0 for j = −1, 0, 1, and

(iii) the functions g−1, g0, g1 extend continuously throughout C \ {0}.

The function elements h̃−1, h̃1, and h̃0 represent the three branches at infinity of the
function h defined in Definition 2.3. Comparing Lemma 2.4 with Lemma 2.9 we see that
near infinity three functions h−1, h0, h1 and the newly introduced functions g−1, g0, g1 are
identical. However, globally these functions are different. The boundaries Γ−1,2, K1, Γ12 of
the domains of definition of the functions g−1, g0, g1 are defined by a similar principle as that
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applied in Lemma 2.4 for Γ−1, Γ1 and K0. Therefore, it is not surprising that there exists a
connection between the new arcs Γ−1,2, Γ12 and set K1 on one hand and the arcs Γ−1, Γ1

and set K0 defined in Lemma 2.4 on the other hand. The connections are stated in the next
lemma.

LEMMA 2.10. (i) We have K1 = Γ−1 ∪ Γ1.
(ii) The arc Γ−1,2 connects the branch point w2 with w3, and the arc Γ12 the branch

point w1 with w4. The subarcs Γ02 and Γ03 of K0 introduced in Lemma 2.4 are subarcs of
the arc Γ−1,2, and the subarcs Γ01 and Γ04 of K0 are subarcs of the arc Γ12.

(iii) The arc Γ−1,2 intersects R in the interval (0,∞), and the arc Γ12 intersects R in the
interval (−∞, 0).

Remark. The arcs Γ−1,2, Γ12 and the set K1 are plotted in Figure 2.3.

For the functions gj , j = −1, 0, 1, there exist representations involving logarithmic po-
tentials. With the help of these potentials we introduce the probability measures ψj , j =
−1, 0, 1.

LEMMA 2.11. There exist three probability measures ψ−1, ψ0, ψ1 such that

g−1(w) = −3 Re(w) + 3 log |w| + 2

∫
log

1

|w − x|dψ−1(x),(2.34)

g0(w) = log(2) + 3 log |w| + 2

∫
log

1

|w − x|dψ0(x),(2.35)

g1(w) = 3 Re(w) + 3 log |w| + 2

∫
log

1

|w − x|dψ1(x).(2.36)

We have supp(ψj) = Γj,2 for j = −1, 1, and supp(ψ0) = K1. The measure ψ−1 is the image
of ψ1 under reflection on the imaginary axis. The measure ψ0 is symmetric with respect to
the imaginary axis, and we have ψ0 = (ν−1 + ν1)/2.

Remark. Like the measures ν−1, ν0, ν1, the measures ψ−1, ψ0, ψ1 are also absolutely
continuous with respect to linear Lebesgue measure on the supports supp(ψj), j = −1, 0, 1.
Below, in Theorem 2.17, tools will be presented that allow an efficient calculation of the
density functions of the three measures.

2.7. Asymptotics II. With the definitions of the last subsection we are prepared to for-
mulate the asymptotic relations for the Hermite-Padé polynomials P2n, Q2n, R2n of type
II.

CONJECTURE 2.12. Let the functions gj , j = −1, 0, 1, the arcs Γ−1,2, Γ12, and the set
K1, be defined as in the Lemma 2.9. Then locally uniformly we have

lim
n→∞

1

n
log |P2n(w)| = −g−1(w) + 3 log|w| + 3 Re(w)

(2.37)

for w ∈ C \ (Γ−1,2 ∪ {0}),

lim
n→∞

1

n
log |Q2n(w)| = −g0(w) + 3 log|w| for w ∈ C \ (K1 ∪ {0}),

(2.38)

lim
n→∞

1

n
log |R2n(w)| = −g1(w) + 3 log|w| − 3 Re(w) for w ∈ C \ (Γ12 ∪ {0}).

(2.39)
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FIG. 2.3. The arcs Γ−1,2, Γ12 and the set K1 = Γ−1 ∪ Γ1. The arcs of Figure 2.1 are included into the
figure and represented by dashed lines (−−−).

CONJECTURE 2.13. The three measures ωP, ωQ, ωR in Conjecture 2.1 are given by

(2.40) ωP = ψ−1, ωQ = ψ0, ωR = ψ1,

where ψj , j = −1, 0, 1, are the probability measures introduced in Lemma 2.11.

In Figure 2.4 the zeros of the Hermite-Padé polynomials P60, Q60, R60 of type II are
plotted together with the arcs introduced in Lemma 2.9 and plotted in Figure 2.3. Note that
Figure 1.1 has been rescaled by function (2.1) with n = 30. As in Figure 2.2, we observe a
good approximation of the support supp(ψj), j = −1, 0, 1, by the zeros of the Hermite-Padé
polynomials P60, Q60, R60, respectively.

2.8. A Numerical Method. In the last subsection we presented a numerical method
which allows to calculate the functions hj , j = −1, 0, 1,∞, and gj , j = −1, 0, 1, in the
asymptotic relations of the Conjectures 2.7 and 2.12, the arcs Γ−1, . . . ,Γ12 introduced in
the Lemmas 2.4 and 2.9, and the density functions of the measures ν−1, ν0, ν1, ψ−1, ψ0, ψ1

introduced in the Lemmas 2.6 and 2.11.
The function h defined on the Riemann surface R and introduced in Lemma 2.2 is basic

for the definition of the functions hj and gj . Let f denote the function

(2.41) f(v) := Re
2 v2

v2 − 1
+ log

2

3
− log

∣∣v(v2 − 1)
∣∣ ,

which is the real part of function (2.20) in Lemma 2.2. From Lemma 2.2 and the definition
of the functions hj and gj in the Lemmas 2.4 and 2.9 it follows that for any given w ∈ C the
values hj(w) and gj(w) are equal to f(vj) with vj = ψ ◦ π−1

lj
(w) if the branch π−1

lj
of the

inverse projection π−1 is chosen appropriately. The calculation of ψ ◦ π−1
l (w) can be done
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FIG. 2.4. An overlay of Figure 1.2 with Figure 2.3 after a shrinking of the scales of Figure 1.2 in accordance
with (2.1).

very efficiently, as we have seen in Subsection 2.2. The value of ψ ◦ π−1
l (w) is one of the

three solutions vl, l = −1, 0, 1, of the equation

(2.42) w v (v2 − 1) − v2 +
1

3
= 0.

However, the selection of the right solution is a problem that is equivalent to choosing the
appropriate branch of π−1 in ψ ◦ π−1

lj
(w). In the next theorem we present a strategy for

making these selections by continuation along chains of points in the domains of definition
of the functions hj and gj . Let Dj , j = −1, 0, 1,∞, denote the domain of definition of the
function hj , i.e., by Lemma 2.4 we have Dj := C \Γj for j = −1, 1, and Dj := C \Kj for
j = 0,∞. Let Gj , j = −1, 0, 1, further denote the domain of definition of the function gj ,
i.e., by Lemma 2.9 we haveGj := C\ (Γj2∪{0}) for j = −1, 1, andG0 := C\ (K1∪{0}).

THEOREM 2.14. (i) Let w ∈ C lie close to ∞. Then we can choose the index l of the
three solutions vl of equation (2.42) in such a way that vl lies close to l for each l = −1, 0, 1,
and it follows that

(2.43) hj(w) = gj(w) = f(vj) for j = −1, 0, 1.

(ii) Let w ∈ C lie close to 0. Then there exists exactly one solution v∞ of equation (2.42)
that lies close to ∞ (the other two solutions lie close to ±

√
1/3). With this choice of v∞ it

follows that

(2.44) h∞(w) = f(v∞).

(iii) For an arbitrary w ∈ Dj , j = −1, 0, 1, or w ∈ Gj , j = −1, 0, 1, the values hj(w)
or gj(w), respectively, can be calculated by continuation of these functions through Dj or
Gj starting from a neighborhood of infinity. If we assume that for a point w = w0 ∈ Dj
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the solution vj = vj(w0) of equation (2.42) has been chosen in such a way that hj(w0) =
f(vj(w0)), and if w1 ∈ Dj lies close to w0, then one has to choose, from the three roots of
equation (2.42) with w = w1, the solution vj = vj(w1) that lies closest to vj = vj(w0). For
this new vj one has

(2.45) hj(w1) = f(vj(w1)).

In an analogous way one can proceed for the functions gj and w ∈ Gj , j = −1, 0, 1.
(iv) The function h∞ is calculated by continuation inD∞ using the same strategy as that

described in (iii), only that now one has to start from a neighborhood of w = 0.

Next we address the problem of calculating the arcs introduced in Lemmas 2.4 and 2.9.

DEFINITION 2.15. In order to simplify notation, we define Γ11 := Γ1, Γ−1,1 :=
Γ−1, Γ13 := Γ∞1 ∪ Γ∞4, Γ−1,3 := Γ∞2 ∪ Γ∞3. (The arcs Γ−1,2 and Γ12 have already
been defined in Lemma 2.9.)

It is immediate that all arcs introduced in the Lemmas 2.4 and 2.9 are subarcs of the
system Γji, j = −1, 1, i = 1, 2, 3, together with Γ00 = [−iy1, iy1]. A numerical value for
y1 has been given in (2.24).

THEOREM 2.16. (i) The three arcs Γ11,Γ12,Γ13 are analytic, they are disjoint in C \
{w1, w4}, and each one of them connects w1 with w4 in C. All three arcs are symmetric with
respect to R, and we have ∞ ∈ Γ13. At w1 the arcs Γ11,Γ12,Γ13 have tangential directions

(2.46) ϕ1 = 65π/36, ϕ2 = 41π/36, ϕ3 = 17π/36,

respectively. The tangential directions atw4 follow from (2.46) and the symmetry with respect
to R.

(ii) For w = w1 and w = w4 equation (2.42) has two identical solutions. For each
w ∈ Γ1j , j = 1, 2, 3, a pair can be selected from the three solutions of equation (2.42) in
such a way that the two elements of this pair are a continuation along Γ1j of the two elements
of the identical pair at w1 or w4. The two solutions selected in that way are denoted by
vj+ = vj+(w) and vj− = vj−(w) for w ∈ Γ1j . Let tw ∈ ∂D denote the tangent on the arc
Γ1j at the point w ∈ Γ1j . Then we have

(2.47) tw = ±i vj+(w) − vj−(w)

|vj+(w) − vj−(w)| for w ∈ Γ1j , j = 1, 2, 3.

(iii) The three arcs Γ−1,j , j = 1, 2, 3, are the images of the arcs Γ1j , j = 1, 2, 3, under
reflection on the imaginary axis.

(iv) For the subarcs of K0 and K∞ introduced in Lemma 2.4 we have

Γ01 = Γ12 ∩ {Re(w) > 0, Im(w) > 0} ,(2.48)

Γ02 = Γ−1,2 ∩ {Re(w) < 0, Im(w) > 0} ,(2.49)

Γ03 = Γ−1,2 ∩ {Re(w) < 0, Im(w) < 0} ,(2.50)

Γ04 = Γ12 ∩ {Re(w) > 0, Im(w) < 0} ,(2.51)

Γ∞1 = Γ13 ∩ {Im(w) > 0} , Γ∞4 = Γ13 ∩ {Im(w) < 0} ,(2.52)

Γ∞2 = Γ−1,3 ∩ {Im(w) > 0} , Γ∞3 = Γ−1,3 ∩ {Im(w) < 0} .(2.53)
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Remark. The initial directions of the arcs Γ1j , j = 1, 2, 3, at one of the branch points
w1 or w4 given in part (i) of the theorem together with the formula (2.47) for tangent, form
the basis for an efficient calculation of the Jordan arcs Γ1j , j = 1, 2, 3. By symmetry this
also allows to calculate the Jordan arcs Γ−1,j , j = 1, 2, 3. The information given in part (iv)
of the theorem allow to break down the arcs Γij into those pieces, which are needed for the
construction of the sets K0, K∞. The arcs shown in the Figures 2.1 - 2.4 are calculated in
this way.

The last theorem in the present section contains a numerical method for calculating the
density functions of the measures ν−1, . . . , ψ1. In a first step we introduce five new measures
µij , i = −1, 1, j = 1, 2, µ00 on the arcs Γij , Γ00 = [−iy1, iy1], respectively.

THEOREM 2.17. (i) Let for w ∈ Γ1j , j = 1, 2, the two solutions vj+ = vj+(w) and
vj− = vj−(w) of equation (2.42) be selected as described in part (ii) of Theorem 2.16. We
define measures µ1j , j = 1, 2, on Γ11 and Γ12 by

(2.54) dµ1j(w) :=
3

2π
|vj+(w) − vj−(w)| dsw, w ∈ Γ1j , j = 1, 2,

where dsw denotes the line element on the arcs Γ1j , j = 1, 2.
(ii) Let the two measures µ−1,j , j = 1, 2, be the images of the measures µ1j , j = 1, 2,

under the reflection on the imaginary axis.
(iii) For w ∈ Γ00 = [−iy1, iy1] let v0+ = v0+(w) and v0− = v0−(w) denote the

two solutions of equation (2.42) that are symmetric with respect to the imaginary axis. The
measure µ00 is defined on Γ00 by

(2.55) dµ00(w) :=
3

2π
|v0+(w) − v0−(w)| dsw, w ∈ Γ00.

With the definitions of part (i), (ii), and (iii) we have

νj = µj1, j = −1, 1,(2.56)

ν0 = µ00 + µ−1,2

∣∣
{Re(w)<0} + µ12

∣∣
{Re(w)>0} ,(2.57)

ψj =
1

2
µj2, j = −1, 1,(2.58)

ψ0 =
1

2
(µ−1,1 + µ11) .(2.59)

3. Proofs. The lemmas 2.2, 2.4, 2.6, 2.9, 2.10, 2.11, and the Theorems 2.14, 2.16, and
2.17 are proved in the present section.

3.1. Proof of Lemma 2.2. Let the function h be defined as Re(u ◦ ψ) on R with u
given by (2.20), then this function has the developments (2.16-2.19) at the points ∞(−1),
∞(0), ∞(1), and 0(0). This can be verified by straightforward calculations using (2.11) for
the definition of π ◦ ψ−1.

In order to prove uniqueness, we assume that g is another function that is harmonic
in R \ {∞(−1),∞(0),∞(1), 0(0)} and satisfies the assumptions made in (2.16-2.19) for the
function h. Then h−g is harmonic throughout the compact surface R, and consequentlyh−g
is constant. From (2.16) we know that (h− g)(∞(−1)) = 0, which proves uniqueness. �
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3.2. Auxiliary Lemmas. Next we state and prove two auxiliary lemmas.

LEMMA 3.1. We have

(3.1) (u ◦ ψ ◦ π−1
j )′(w) = 3 (ψ ◦ π−1

j )(w) = 3ψ(ζ(j)) for w ∈ C, j = −1, 0, 1,

with u defined in (2.20), w = π(ζ(j)), ζ(j) ∈ R.

Proof. From the chain rule it follows that

(3.2) (u ◦ ψ ◦ π−1
j )′(w) = u′((ψ ◦ π−1

j )(w))(ψ ◦ π−1
j )′(w) =

u′(v)

(π ◦ ψ−1)′(v)

with v = ψ(ζ(j)). Using the expressions (2.13) and (2.23), this yields (u◦ψ◦π−1
j )′(w) = 3 v,

which proves (3.1).

LEMMA 3.2. Define the set N1 as

(3.3) N1 :=
{
w ∈ C

∣∣h ◦ π−1
1 (w) = h ◦ π−1

0 (w)
}
,

where the branches π−1
j , j = −1, 0, 1, of π−1 are determined by the choice of the sheets

B−1, B0, B1 of R.
(i) The set N1 is independent of the choice of the sheets B−1, B0, B1 if the assumptions

made in Subsection 2.2 are satisfied and if in addition we have N1 ∩ Γ−1 = ∅.
(ii) If the assumptions formulated in part (i) are satisfied, then the set N1 is the union of

three analytic Jordan arcs Γ11, Γ12, Γ13. Each of the three arcs Γ1j , j = 1, 2, 3, connects
the two branch points w1 and w4 in C, and at w1 the arcs Γ11, Γ12, Γ13 have the tangential
directions

(3.4) ϕ1 =
65

36
π, ϕ2 =

41

36
π, ϕ3 =

17

36
π,

respectively.
(iii) We have ∞ ∈ Γ13, and

(3.5) w =
1

3
log 2 + i Im(w) + O

(
1

|w|

)
as |w| → ∞, w ∈ Γ13.

(iv) For the intersection points of N1 with R and iR we have the following numerical
values
(3.6)
Γ11 ∩ R = {0.59999} , Γ12 ∩ R = {−0.3793} , Γ12 ∩ iR = {−i 0.621391, i 0.621391} .

Remark. The arcs Γ11, Γ12, and parts of the arc Γ13 are plotted in Figure 3.1.

3.3. Proof of Lemma 3.2. The proof of the lemma will be rather involved. However,
a great part of the investigations will also be used in the subsequent proofs of lemmas and
theorems from Section 2.

Let Γ̃1, Γ̃−1 be Jordan arcs that satisfy the assumptions made in Subsection 2.2. In
addition to that we assume that Γ̃−1 is the reflection of Γ̃1 on the imaginary axis. The two arcs
Γ̃1, Γ̃−1 determine the three sheetsB−1, B0,B1 of the Riemann surface R, and consequently
also the functions h ◦ π−1

1 and h ◦ π−1
0 used in definition (3.3) of N1 are determined by the
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FIG. 3.1. The arcs Γ11 ,Γ12, and parts of the arc Γ13. The three arcs form the set N1 defined in (3.3). The

three domains D
(1)
0 , D

(1)
1 , D

(1)
2 are the components of the set C\N1.

specific choice of the arcs Γ̃1, Γ̃−1. Since we have on Γ̃1 a change over between the two
functionsh ◦ π−1

1 and h ◦ π−1
0 , the function

(3.7) d(w) := h ◦ π−1
1 (w) − h ◦ π−1

0 (w)

changes sign when w crosses Γ̃1. From this we see that the definition of the set N1 itself is
independent of variations of the arc Γ̃1 if we have Γ̃−1 ∩N1 = ∅.

From Lemma 3.1 and the definitions of h = Re(u ◦ ψ) and hj = h ◦ π−1
j , j = −1, 0, 1,

in Lemma 2.2 and Definition 2.3 we deduce that

∂

∂x
hj(w) = Re

[
(u ◦ ψ ◦ π−1

j )′(w)
]

= 3 Re(vj),(3.8)

∂

∂y
hj(w) = − Im

[
(u ◦ ψ ◦ π−1

j )′(w)
]

= −3 Im(vj)(3.9)

with vj := ψ ◦π−1
j (w), w = x+ iy ∈ C, j = −1, 0, 1. From the harmonicity of the function

d it follows that the set N1 consists of analytic arcs. From (3.3), (3.8-3.9), and (3.7) it further
follows that

(3.10)

(
∂

∂x
d(w)

)2

+

(
∂

∂y
d(w)

)2

= 9 |v1 − v0|2 .

It is a consequence of (3.10) that the arcs ofN1 can have no bifurcations in C\{w1, . . . , w4}
since otherwise we would have

(3.11)
∂

∂x
d(w) =

∂

∂y
d(w) = 0, w = x+ iy,
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at such a point, which, however, is only possible at the branch points w1 and w4 because of
(3.10).

It is immediate that w1, w4 ∈ N1. In order to understand the structure of the set N1 in
a neighborhood of the branch point w1, we consider the development of the function h in the
local coordinate ζ = w1 + η2. From Lemma 3.1 and the definitions in Subsection 2.2 we
derive the development

(3.12) u ◦ ψ(ζ) = u(v1) + 3 v1η
2 +

2
√

2√
(π ◦ ψ−1)′′(v1)

η3 + . . .

with vj := ψ(ζ1) = 4

√
−1/3. Evaluating (π ◦ ψ−1)′′(v1) = w′′(v1) then yields

(3.13) h(ζ) = h(ζ1) + 3 Re
(
v1η

2
)

+ Re


 4

√
(−1)1/4

32 − i 33/2
η3


 + . . .

Taking into account the form of the two branches π−1
1 and π−1

0 in a neighborhood of the
branch point w1, we deduce from (3.7) and (3.13) that

(3.14) d(w1 + η2) = 2 |η|3 Re


 4

√
(−1)1/4

32 − i 33/2
ei 3 arg(η)/2


 + O(|η|4) as |η| → 0.

The condition d(w1 + η2) = 0 then implies that for |η| → 0 we have

(3.15) −15

72
π +

3

2
arg(η2) ≡ 1

2
π + mod(π),

and this implies that the set N1 consists of three arcs in a neighborhood of w1, which have
the tangential directions given in (3.4) at w1.

Using the mapping function (2.11), one can compare the behavior of the values v1 :=
ψ ◦π−1

1 (w) and v0 := ψ ◦π−1
0 (w) while w runs through R+. It then is possible to verify that

(3.16) Re(v1(w) − v0(w))

{
> 0 for w > (Γ̃1 ∩ R)

< 0 for w < (Γ̃1 ∩ R)
.

In a similar, but somewhat more involved way, one can show that

(3.17) Im(v1(w) − v0(w)) > 0 for all w ∈ iR+.

From (3.7), (3.8-3.9), (3.16), and (3.17) we deduce that

(3.18)
∂

∂x
d(w)

{
< 0 for w > (Γ̃1 ∩ R)

> 0 for w < (Γ̃1 ∩ R)

and

(3.19)
∂

∂y
d(w) > 0 for all w ∈ iR+,

i.e., the function d is strictly monotonic on R+, iR+, and iR−. On R+ at the intersection
point of Γ̃1 and R we have a change over between the two branches h1 and h0, and therefore
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a sign change of d. In (3.16) and (3.18), the intersection point of Γ̃1 and R are denoted by
(Γ̃1 ∩ R).

Let Sϕ denote the ray
{
w = reiϕ | 0 ≤ r ≤ ∞

}
, ϕ ∈ R. If we ignore for the moment

the definition of the sheets B−1, B0, B1 based on Γ̃1 and Γ̃−1, and thereby also the specific
definition of the functions hj = h◦π−1

j , j = 0, 1, we can consider the function d by harmonic

continuation along Sϕ starting from ∞. We will denote this continuation by d̃. From the
discussion of the Riemann surface R in Subsection 2.2, we deduce that if − 5

12π < ϕ < 5
12π,

then we have

(3.20) d̃(∞) = d(∞) = ∞ and d̃(0) = −d(0) = −∞.

From (3.20) we conclude that each ray Sϕ with − 5
12π < ϕ < 5

12π has to cut the set N1 in an
odd number of points.

On the other hand we deduce from the monotonicity (3.19) on iR+, and iR− that the
set N1 has at most one intersection with each half axis iR+, or iR−.

From the last two assertions it follows that the set N1 contains a subarc Γ1 that connects
the two branch points w1 and w4, and this arc is contained in {Re(w) > 0}. In the remainder
of the proof we use the arc Γ1 in place of Γ̃1, and as before we assume that Γ−1 is the
reflection of Γ1 on the imaginary axis. The sheets B−1, B0, B1 and the functions hj =
h◦π−1

j , j = −1, 0, 1, are now assumed to be defined by the two arcs Γ1 and Γ−1. We collect
some properties and consequences of the specific selection of Γ1:

(a) Γ1 is an analytic Jordan arc connecting the two points w1 and w4 in {Re(w) > 0 },
and it satisfies the assumptions made in Subsection 2.2.

(b) The function h1 = h◦π−1
1 is continuous in C. Indeed, since d(w) = 0 for allw ∈ Γ1,

it follows that h1(w+) = h1(w−) if w+ andw− denote the two sides of Γ1 at a pointw ∈ Γ1.
(c) The function h1 is harmonic in C\Γ1 and has the representation

(3.21) h1(w) − 3 Re(w) = −
∫

log
1

|w − x|dν1(x)

with a measure ν1 on Γ1 satisfying

(3.22) ‖ν1‖ = 1

and

(3.23) dν1(w) :=
3

2π
|v+(w) − v−(w)| dsw, w ∈ Γ1,

where v+(w) and v−(w) denote the two points ψ ◦ π−1
1 (w+) = ψ ◦ π−1

1 (w) and ψ ◦
π−1

1 (w−) = ψ ◦ π−1
0 (w), respectively.

Indeed, it follows from the definition of h in Lemma 2.2 that the function h1 is harmonic
in C\Γ1. From the development (2.16) in Lemma 2.2 we deduce that

(3.24) h1(w) − 3 Re(w) = log |w| + O(1/ |w|) as |w| → ∞,

and with the help of the Green formula (cf. [20]) it then follows that

(3.25) h1(w) − 3 Re(w) = − 1

2π

∫

Γ1

log
1

|w − x|

(
∂

∂n+
h1(x) +

∂

∂n−
h1(x)

)
dsx

for w ∈ C\Γ1, where dsx denotes the line element on Γ1, and ∂/∂n± the normal derivatives
to both sides of Γ1 at the point x ∈ Γ1. Let t = tw, n+ = nw+, n− = nw− ∈ ∂D denote the
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tangent and the two normal vectors on Γ1 at an inner point w ∈ Γ1. From the definition of
Γ1 we know that

(3.26)
∂

∂tw
d(w) =

∂

∂tw
(h1(w+) − h1(w−)) = 0 for w ∈ Γ1,

with w+ and w− denoting the two sides of Γ1 at the point w ∈ Γ1, as in assertion (b). From
(3.26) and Lemma 3.1 we derive that

∂

∂n+
h1(w) +

∂

∂n−
h1(w) =

∂

∂n+
(h1(w+) − h1(w−))

= 3 |v1+(w) − v1−(w)| ,(3.27)

where v1+(w) = ψ◦π−1
1 (w+) = ψ◦π−1

1 (w) and v1+(w) = ψ◦π−1
1 (w+) = ψ◦π−1

0 (w). In
order to justify the last equality in (3.27), we remark that from (3.26) and from the fact that the
tangent tw and the normal vectors nw± are orthogonal, it follows that v1+(w)− v1−(w) ∈ R

for all w ∈ Γ1. Since for all inner points w ∈ Int(Γ1) we have v1+(w) − v1−(w) 6= 0, it
follows that the function on the left-hand side of (3.27) can have no sign change on Γ1. From
(3.24) we conclude that the functions in (3.27) are non-negative for all w ∈ Γ1. With (3.27)
we have proved (3.23). Assertion (3.22) follows again from (3.24).

Next, we look at the global behavior of the function d. It follows from the behavior of the
two functions h1 and h0 at infinity, which are stated in Lemma 2.2, that for c > 0 sufficiently
large we have d(w) > 0 for Re(w) > c and d(w) < 0 for Re(w) < −c. At the origin
we have d(0) = ∞. After (3.10) it has been concluded that the set N1 has no bifurcations
in C \ {w1, w4}. From (3.16) and symmetry of the arc Γ1 and the functions h1, h0 with
respect to R, we know that the set N1 has exactly three arcs ending in each of the two branch
points w1 and w4. Consequently, the set C \N1 can have at most three components, and our
earlier considerations show that it has exactly three components. In Figure 3.1 these three
components are denoted by D(1)

j , j = 0, 1, 2. The two domains D(1)
0 and D(1)

1 are separated

by the Jordan arc Γ11 = Γ1, the two domains D(1)
0 and D(1)

2 by the Jordan arc Γ12, and the

two domains D(1)
1 and D(1)

2 by the Jordan arc Γ13. In the interest of a unified notation we
have renamed Γ1 into Γ11. Numerical values for the intersection points of the set N1 with R

and iR are given in (3.6).
For later use, we consider the representation of the function

(3.28) d̃(w) :=

{
d(w) for w ∈ D

(1)
0

0 elsewhere
.

as a logarithmic potential. We have

(3.29) d̃(w) = −
∫

Γ11∪Γ12

log
|w − x|
|w| d(ν1 + ψ̃1)(x)

with ν1 the measure on Γ11 given by (3.23), and the measure ψ̃1 is defined by

(3.30) dψ̃1(w) :=
3

2π
|v1(w) − v0(w)| dsw, w ∈ Γ12.

We have

(3.31)
∥∥∥ψ̃1

∥∥∥ = 2.
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Indeed, in the same way as done in (3.21) it follows from Green’s formula and from the
considerations that have led to the identities in (3.27) that

(3.32) d̃(w) + 3 log |w| = − 1

2π

∮

Γ11∪Γ12

log
1

|w − x|
∂

∂n+
d(w)dsx,

where ∂/∂n+ denotes the inwardly pointing normal derivative on Γ11 ∪ Γ12. As in the
derivation (3.26) and (3.27) it follows that

(3.33)
∂

∂n+
d(w) = 3 |v1(w) − v0(w)| dsw, for w ∈ Γ11 ∩ Γ12

with v1(w) = ψ◦π−1
1 (w) and v0(w) = ψ◦π−1

0 (w). The definition of ν1 in (3.23) shows that
the measure defined by (3.32) on Γ11 is identical with the measure defined in (3.23). Identity
(3.30) follows from (3.32) and (3.33), and (3.31) is a consequence of the fact that d has a
logarithmic singularity at the origin with residue 3.

It remains to show that the asymptotic relation (3.5) holds true. From (2.16) and (2.18)
in Lemma 2.2 together with the symmetry of the functions h1 and h−1 with respect to R, we
deduce that

(3.34) h1(w) = 3 Re(w) + log |w| + O(
1

|w| ) as |w| → ∞.

If we put together the development of function (3.15) at v = 0 and the development of the
function ψ, which has been introduced in Subsection 2.2 and has to be developed at ∞(0),
then we arrive at the development

(3.35) h0(w) = log 2 + log |w| + O(
1

|w| ) as |w| → ∞.

Hence, we have

(3.36) d(w) = 3 Re(w) − log 2 + O(
1

|w| ) as |w| → ∞.

From (3.36) and d(w) = 0 for w ∈ Γ13, the asymptotic relation (3.5) then follows. �

3.4. Proof of Lemma 2.4. It is an immediate consequence of the maximum principle
for harmonic functions that the characterization of the arcs Γ1, Γ−1 and of the sets K0, K∞,
given in the lemma, determines these objects uniquely. Thus, only the existence of the objects
has to be proved.

The existence of the two arcs Γ1, Γ−1 follows for the arc Γ1 = Γ11 from the properties
(a) and (b) that have been established in the proof of Lemma 3.2 after (3.20); for the arc Γ−1

it follows from the symmetry between the two arcs Γ1 and Γ−1.
The proof of existence of the set K0 ⊆ C is based on results established in Lemma 3.2

and its proof. Let the set K0 be defined by the following three properties: (a) The set K0

is symmetric with respect to iR, (b) we have K0 ∩ {Re(w) > 0} = Γ12 ∩ {Re(w) > 0}
with the arc Γ11 introduced in Lemma 3.2, and (c) K0 ∩ iR is the interval connecting the
two intersection points of Γ12 with iR. The continuation h0 of the function element h̃0

at infinity is given by h ◦ π−1
0 in D

(1)
1 and by h ◦ π−1

1 in D
(1)
0 ∪D(1)

2 ∩ {Re(w) > 0} ,
where D(1)

j , j = 0, 1, 2, denote the three components of C\N1 as indicated in Figure 3.1.
This establishes the definition of h0 in the half-plane {Re(w) ≥ 0} . In the other half-plane
{Re(w) < 0} the continuation h0 of the function element h̃0 is determined by the symmetry
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with respect to the imaginary axis. It follows from the properties of h ◦ π−1
1 and h ◦ π−1

0

studied in the proof of Lemma 3.2, that the continuation h0 is continuous in C. The other
requirements made in part (ii) of the lemma are also satisfied. The assertions of part (ii)
including (2.24) then follow from Lemma 3.2.

The existence of the set K∞ ⊆ C in part (iii) of the lemma, can be shown in a way very
similar to that used for K0. But now we start from the function element h̃∞ defined at the
origin. Instead of the arc Γ12 we use the arc Γ13 introduced in Lemma 3.2. �

3.5. Proof of Lemma 2.6. The existence of representation (2.27) for h1 has already
been worked out in detail in the proof of Lemma 3.2; the results are contained in (3.21) and
(3.23). Representation (2.25) for h−1 then follows from the symmetry of the two functions
h1 and h−1 with respect to the imaginary axis.

The existence of representation (2.26) for h0 can be deduced in a way which is quite
analogous to the derivation of the representations (3.21) and (3.23). In the new situation one
has to use the explicit definition of the set K0 given in the proof of Lemma 2.4. We remark
that for instance we have ν0

∣∣
{Re(w)>0} = ψ̃1

∣∣
{Re(w)>0} with ψ̃1 defined by (3.30). The

constant term in (2.26) follows from development (3.35). �

3.6. Proof of Lemma 2.9. As in Lemma 2.4, and also here, the uniqueness of the arcs
Γ−1,2, Γ12, the set K1, and the harmonic continuations g−1, g0, g1 follow from the require-
ments formulated in the lemma and the maximum principle for harmonic functions. Thus,
we have only to prove the existence of these objects.

Let Γ12 be the arc Γ12 introduced in Lemma 3.2. Let further the harmonic continuation

g1 of a function element h̃1 at infinity be defined by h ◦ π−1
1 on D(1)

0 ∪D(1)
2 and by h ◦ π−1

0

in D(1)
1 with D(1)

j , j = 0, 1, 2, being the three components of the set C\N1 as indicated in
Figure 3.1. We assume that the sheets B−1, B0, B1 of R are those fixed in the second part of
the proof of Lemma 3.2 after (3.20). These sheets determine the branches π−1

1 and π−1
0 . The

function g1 defined in this way satisfies all conditions formulated in (i), (ii), and (iii) of the
lemma.

Let the harmonic continuation g−1 of a function element h̃−1 at infinity be defined as
the symmetric counterpart of the function g1 under reflection on the imaginary axis. The arc
Γ−1,2 also is the image of Γ12 under reflection on the imaginary axis. It is immediate that
these definitions satisfy the requirements of the lemma.

Let the harmonic continuation g0 of a function element h̃0 at infinity be defined as h◦π−1
0

in the domain C \ K1 with K1 defined as K1 := Γ−1 ∩ Γ1. From Lemma 3.2 and the
definition of N1 in (3.3) we learn that g0 is continuous in a neighborhood of Γ1 = Γ11.
From the symmetry of the function h0 with respect to the imaginary axis, it then follows that
continuity also holds in a neighborhood of Γ−1. Thus, also g0 andK1 satisfy the requirements
of the lemma. �

3.7. Proof of Lemma 2.10. Part (i) of the lemma has already been verified in the proof
of Lemma 2.9. It has also been shown in the proof of Lemma 2.9 that the arc Γ−1,2 is the
image of Γ12 under reflection on the imaginary axis. The first assertion in part (ii) of the
lemma follows from Lemma 3.2 for Γ12. For the arc Γ−1,2 it then follows as a consequence
of the symmetry between the two arcs Γ12 and Γ−1,2. The intersections of the arcs Γ12 and
Γ−1,2 with the set K0, stated in the lemma, follow from the detailed description of the set K0

in the proof of Lemma 2.4.
Part (iii) of the lemma follows from Lemma 3.2 for the arc Γ12, and for the arc Γ−1,2 it

then follows as a consequence of the symmetry between the two arcs. �
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3.8. Proof of Lemma 2.11. We start with the proof of representation (2.36). Since g1 is
the harmonic continuation of the function element h̃1 at infinity, we know from (2.18) and
(2.16) in Lemma 2.2 that g1 has the development

(3.37) g1(w) = 3 Re(w) + log |w| + O(1/|w|) as |w| → ∞,

and from (2.19) that

(3.38) g1(w) = 3 log |w| + O(1) as |w| → 0.

By Green’s formula we deduce, from the properties of g1 and from (3.37) and (3.38) in a way
very analogous to the derivation of the representations (3.21) and (3.23), that
(3.39)

g1(w) − 3 Re(w) = 3 log |w| − 1

2π

∫

Γ12

log
1

|w − x|

(
∂

∂n+
h0(x) +

∂

∂n−
h0(x)

)
dsx

for w ∈ C \ (Γ12 ∪ {0}). Representation (2.36) then follows from (3.39) with the definition

dψ1(w) :=
1

4π

(
∂

∂n+
h0(w) +

∂

∂n−
h0(w)

)
dsw,

=
3

4π
|v1(w) − v0(w)| dsw, w ∈ Γ12,(3.40)

where v1(w) = ψ ◦ π−1
1 (w) and v0(w) = ψ ◦ π−1

0 (w). The last equality in (3.40) is a
consequence of Lemma 3.1. The argument is the same as that given after (3.27) in the proof
of Lemma 3.2. A comparison with (3.29), (3.30), and (3.31) shows that ψ̃1 = 2ψ1, which
implies that ψ1 in (2.36) is a probability measure.

Representation (2.34) for the function g−1 follows from (2.36), because of the symmetry
between the two functions g1 and g−1.

Representation (2.35) follows from (3.35), the representations (2.25) and (2.27) given in
Lemma 2.6, and the fact that the difference h1 + g0 is harmonic in a neighborhood of Γ1, and
h−1 + g0 is harmonic in a neighborhood of Γ−1. �

3.9. Proof of Theorem 2.14. The parts (i) and (ii) of the theorem are rather immediate
consequences of the definition of the mapping (2.11) and its inverse function ψ together with
the definition of the function h in Lemma 2.2. The two parts (iii) and (iv) of the theorem are
direct translations of the method of analytic continuation in a given domain. �

3.10. Proof of Theorem 2.16. Part (i) of the theorem has been proved in Lemma 3.2.
For the proof of part (ii) we first consider an expression for the directional derivative ∂/∂tw
at a point w with tw ∈ ∂D the given direction of the derivative. Let d = h ◦ π−1

1 − h ◦ π−1
0

be defined as in (3.7). From (3.8), (3.9), and Lemma 3.1 we deduce that

∂

∂tw
d(w) =

∂

∂tw

(
Re

[
(u ◦ ψ ◦ π−1

1 )(w)
]
− Re

[
(u ◦ ψ ◦ π−1

0 )(w)
])

= Re
[
tw(u ◦ ψ ◦ π−1

1 )′(w) − tw(u ◦ ψ ◦ π−1
2 )′(w)

]
(3.41)

= 3 Re [tw(v1(w) − v0(w))] , w ∈ N1 \ {w1, w4} .

If tw ∈ ∂D is the tangential direction at a point w of one of the three open arcs of N1 \
{w1, w4}, then from (3.3) it is immediate that (∂/∂tw)d(w) = 0 for all w ∈ N1 \ {w1, w4}.
We therefore deduce from (3.41) that

(3.42) tw = ±i v1(w) − v0(w)

|v1(w) − v0(w)| for w ∈ N1 \ {w1, w4} ,
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where the points v1 and v0 are given by v1(w) := ψ◦π−1
1 (w) and v0(w) := ψ◦π−1

0 (w), w ∈
N1 \ {w1, w4}. These definitions translate into the notation v1+(w) and v1−(w), w ∈
Γ1j , j = 1, 2, 3, which has been used in formula (2.47) of the theorem.

The parts (iii) and (iv) of the theorem are covered by the proof of Lemma 2.4. �

3.11. Proof of Theorem 2.17. Representations, for all measures that appear in the con-
clusions (2.56-2.59) of the theorem, can be derived in the same way as the formulae (3.23)
and (3.30) in the proof of the Lemma 3.2. As in the proof of Theorem 2.16, so also here,
the notations vj+ and vj−, j = 1, 2, 3, translate directly to the notations used in the proof of
Lemma 3.2. �
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[8] K. DRIVER, Non-diagonal quadratic Hermite-Padé approximants to the exponential function, J. Comp. Appl.

Math. 65(1995), pp. 125–34.
[9] K. DRIVER AND N. M. TEMME, On polynomials related with Hermite-Padé approximants to the exponential
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[13] F. KLEIN, Elementarmathematik vom höheren Standpunkt aus, Volume 1, Springer-Verlag, Berlin (1924).
[14] K. MAHLER, Zur Approximation der Exponentialfunktion und des Logarithmus I, II, J. Reine Angew. Math.,

166 (1931), pp. 118–37, 138–50.
[15] K. MAHLER, Application of some formulas by Hermite to the approximation of exponentials and logarithms,

Math. Ann., 168(1967), pp. 200–27.
[16] K. MAHLER, Perfect systems, Comp. Math., 19(1968), pp. 95–166.
[17] E. M. NIKISHIN AND V. N. SOROKIN, Rational Approximation and Orthogonality, Amer. Math. Soc., Prov-

idence (1991).
[18] O. PERRON, Die Lehre von den Kettenbrüchen, Chelsea Publ. Comp., New York (1962).
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