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COMPARING MULTILEVEL COARSENING STRATEGIES∗
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Abstract. We compare several multilevel coarsening strategies by using stable subspace splitting techniques.
The obtained condition numbers give an answer on how well the coarsening strategies are suited for solving an
anisotropic elliptic boundary value problem.
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1. Introduction. In discretizing an elliptic boundary value problem adaptively, the so-
called “grid of grids” [5] turns out to be a good tool to characterize the adaptive refinement
process. Given an adaptively refined grid the question arises how to solve the discretized
equation effectively.

We give an answer to the question how to wander through a “grid of grids” within a
multilevel setting. For this purpose, we consider an anisotropic model problem and a compu-
tational energy space Vn of multilinear finite elements with possibly very different refinement
steps h1 = 2−n1 , . . . , hd = 2−nd per direction. By experience, it is known that the anisotropy
of the problem as well as the anisotropy of the refinement should be taken care of in a solver
or a preconditioner.

The method of stable subspace splittings (see e.g. [2, 3, 8, 9]) is a powerful tool for
comparing multilevel coarsening strategies. To each of these strategies there corresponds a
subspace splitting of the computational space with a certain condition number. This condition
number is an indicator on how many steps are needed for an multigrid solver (see Theorem
2.2) or for a conjugate gradient solver with a multilevel preconditioner.

For the model problem, one can find robust and stable infinite splittings of the infinite
energy space H1(Ω) (cf. [4]) with a condition number independent of the anisotropy of the
problem.

From this, one can easily find an induced splitting of the computational energy space
Vn, where the condition number is independent of the anisotropy of the problem and the
refinement, respectively.

The question, how other multilevel coarsenings will behave, will be answered for stan-
dard refinement, standard coarsening (see Section 5 for the difference) and semi-coarsening.
None of these others splittings has a condition number independent of the anisotropy of the
problem. We will distinguish between the influences of the anisotropy of the grid and of the
anisotropy of the problem. This will allow us to get an idea of a “good” splitting also for
elliptic problems with variable coefficients, where the anisotropy of the problem cannot be
built into the splitting in an easy way.

2. Stable subspace splittings. For an introduction in stable subspace splittings, we refer
to Oswald [8, 9] or Griebel and Oswald [2, 3, 4]. Let H be a fixed (possibly finite dimensional)
Hilbert space with an inner product (·, ·) and b(u, v) = (Bu, v) a symmetric, positive definite
bilinear form on H. Consider an additive representation of H by a (possibly finite) number
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of subspaces Hj ⊂ H equipped with bilinear s.p.d. forms bj(u, v) = (Bju, v):

(2.1) {H, b} =
∑

j

{Hj , bj}.

For this splitting, the norm ||| · ||| on H is defined by

|||u|||2 := inf
u=

∑

uj

∑

j

bj(uj , uj).

If there exist positive and finite values

λmin := inf
u∈H\{0}

b(u, u)

|||u|||2
, λmax := sup

u∈H\{0}

b(u, u)

|||u|||2
,

the subspace splitting is called stable. The quotient

κ :=
λmax

λmin

represents the condition number of the splitting.
We want to solve the following problem: For a given function f ∈ H find u ∈ H such

that

b(u, v) = (f, v), ∀v ∈ H.

When considering iterative methods, we assume H to be finite-dimensional and the splitting
(2.1) to be finite, i.e., to have J ∈ N subspaces Hj . Further let Rj : H → Hj be some
restriction and Pj : Hj → H denote the natural imbedding. Then, the following iterative
solution methods are associated with the above introduced splitting. Let ω > 0 be given. The
additive subspace correction method reads as

u(k+1) = u(k) − ω

J
∑

j=0

PjB
−1
j Rj(Bu(k) − f), k = 0, 1, . . .

The multiplicative subspace correction method is given by

u(k+(j+1)/J) = u(k+j/J) − ωPjB
−1
j Rj(Bu(k+j/J) − f), j = 0, . . . , J, k = 0, 1, . . .

We follow Griebel and Oswald [3] who showed how the condition number of the sub-
space splitting influences the convergence of the corresponding additive and multiplicative
methods.

THEOREM 2.1 (Additive Schwarz, [3]). Let H be finite-dimensional and the splitting
(2.1) be finite. The additive method converges for 0 < ω < 2/λmax with the convergence
rate %a = max{|1−ω λmin|, |1−ω λmax|}. This bound takes its minimum %∗

a = 1−2/(1+κ)
for ω∗ = 2/(λmin + λmax).

For many multilevel splittings, we can use the so-called strengthened Cauchy-Schwarz
inequalities, i.e., we may assume that there exist a positive constant C and positive constants
εi,j such that εi,j = εj,i, εi,i = 1 and

(2.2) b(vi, vj) ≤ C εi,j

√

bi(vi, vi)
√

bj(vj , vj), ∀vi ∈ Hi, vj ∈ Hj .
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We denote E := (εi,j)
J
i,j=1 and its spectral radius by %(E).

THEOREM 2.2 (Multiplicative Schwarz, [3]). Let H be finite-dimensional and the split-
ting (2.1) be finite. Assume the strengthened Cauchy-Schwarz inequalities (2.2) to be satisfied.
Then the multiplicative method converges for 0 < ω < 2/C. The optimal convergence rate
is given by

(%∗m)2 ≤ 1 −
λmin

C %(E)
.

This remains valid for any reordering of the spaces in the splitting.
On the other hand, the additive Schwarz operator

(2.3)
(

∑

j

PjB
−1
j Rj

)

B

may be seen as a preconditioned version of the operator B. Its condition number equals the
condition number κ of the splitting (2.1).

3. Notation. We first summarize some notation necessary for multilinear finite elements
on (0, 1)d.

• Multi-integer: m := (m1, m2, . . . , md) ∈ N
d
0,

– o := (0, 0, . . . , 0), – e := (1, 1, . . . , 1),
– ej := (. . . , 0, 1, 0, . . .), the j-th unit vector,
– |m| :=

∑d
j=1 mj , – m < n ⇔ mj < nj ∀j = 1, 2, . . . , d,

– bmc := min
j=1,...,d

mj , – dme := max
j=1,...,d

mj .

• Univariate hat function: ϕ(x) := max(0, 1 − |x|).
• Translates and dilates: ϕj,k(x) := ϕ(2jx − k).
• Univariate spaces of piecewise linear functions in [0, 1] (sample spaces):

Vj := span{ϕj,k | k ∈ N0, supp(ϕj,k) ⊂ [0, 1]}.

• Univariate wavelet spaces:

W0 := V0, Wj := Vj 	
⊥ Vj−1, j ∈ N.

• Multivariate sample and wavelet spaces:

Vj := Vj1 ⊗ Vj2 ⊗ · · · ⊗ Vjd
,

Wj := Wj1 ⊗ Wj2 ⊗ · · · ⊗ Wjd
.

4. The model problem. We consider a simple model problem of an anisotropic elliptic
equation with homogeneous Dirichlet boundary conditions

−∇T (C∇u) + c0u = f in Ω,(4.1)

u|∂Ω = 0,

with constant coefficients C := diag(c1, c2, . . . , cd), ci > 0, i = 1, . . . , d and c0 ≥ 0 on the
cube Ω := (0, 1)d.

The problem (4.1) reads in weak formulation as

(4.2) a(u, v) = (f, v)2, ∀v ∈ H1
0 (Ω),
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where (·, ·)2 denotes the inner product in L2(Ω) and a(u, v) is the bilinear form

(4.3) a(u, v) :=

∫

Ω

(∇u)T (C∇v) + c0uv dx.

The corresponding energy space {H ; a} is H := H1
0 (Ω) equipped with the norm ‖ · ‖H :=

√

a(u, u).
For this space, there exist robust stable subspace splittings; see [4] for the bivariate ver-

sion.
THEOREM 4.1 (cf. [4]). The following splittings are stable with a bound of the condition

numbers uniform with respect to the coefficients c0, c1, . . . , cd:

{H, a} =
∑

j≥o

{Wj; (c12
2j1 + c22

2j2 + · · · + cd2
2jd + c0)(·, ·)2},(4.4)

{H, a} =
∑

`≥0

{Vj0+`e; 22`(·, ·)2},(4.5)

{H, a} =
∑

`≥0

{Ŵ`; 22`(·, ·)2},(4.6)

where Ŵ` := Vj0+`e 	
⊥ Vj0+(`−1)e for ` > 0 and Ŵ0 := Vj0 . The multi-index j0 is defined

as follows: Let i indicate the index for which ci = max
k=1,...,d

ck, then

• if c0 > 0 and ci ≥ c0 or if c0 = 0 and ci ≥ 1

j0k := [log4(ci/ck)] for k = 1, . . . , d,

• if c0 > 0 and ci < c0

j0k := [log4(c0/ck)] for k = 1, . . . , d,

• if c0 = 0 and ci < 1

j0k := [log4(1/ck)] for k = 1, . . . , d.

Here, [x] is the largest integer ≤ x.
In particular, we consider two problems for illustration:
2D–Example. Our first problem to solve is

−
1

10

∂2u

∂x2
1

− 10
∂2u

∂x2
2

= f in Ω = (0, 1)2,(4.7)

u|∂Ω = 0.

The index j0 can be computed as ([log4 100], 0) = (3, 0). So we need the subspaces

V3,0 ⊂ V4,1 ⊂ V5,2 ⊂ V6,3 ⊂ V7,4 ⊂ V8,5 ⊂ V9,6 · · ·

for the stable splitting (4.5).
3D–Example. In 3D, we consider the problem

− 100
∂2u

∂x2
1

−
∂2u

∂x2
2

−
1

100

∂2u

∂x2
3

= f in Ω = (0, 1)3,(4.8)

u|∂Ω = 0.

Then we have the index j0 = (0, [log4 100], [log4 10000]) = (0, 3, 6). For equation (4.8), the
corresponding chain of subspaces for the splitting (4.5) is

V0,3,6 ⊂ V1,4,7 ⊂ V2,5,8 ⊂ V3,6,9 ⊂ V4,7,10 ⊂ V5,8,11 ⊂ V6,9,12 · · · .
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5. Subspace splittings of a finite dimensional subspace. In practice, we need to ap-
proximate the solution in a finite dimensional subspace of the energy space H . Assume that
for some reason (e.g. adaptivity), we want to find a numerical solution from the finite element
space Vn. For this, we introduce several subspace splittings corresponding to different multi-
level strategies. By the finiteness of these splittings, all of them are stable. But the condition
numbers may or may not depend on n or on the number of spaces in the splitting or on the
anisotropy of the operator.

5.1. The induced splitting. The splittings presented first are induced by the splittings
(4.4)–(4.6) of the whole energy space H by the intersection with the computational space Vn.
We will use this later as a reference.

THEOREM 5.1. The following splittings are stable with a bound on the condition num-
bers uniform with respect to the coefficients c0, c1, . . . , cd and independent of n:

{Vn, a} =
∑

o≤j≤n

{Wj; (c12
2j1 + c22

2j2 + · · · + cd2
2jd + c0)(·, ·)2},(5.1)

{Vn, a} =
∑

`≥0

{Ṽj0+`e; 22`(·, ·)2},(5.2)

{Vn, a} =
∑

`≥0

{W̃`; 22`(·, ·)2},(5.3)

where W̃` := Ŵ`∩Vn and Ṽj0+`e := Vj0+`e∩Vn. The multi-index j0 is chosen as in Theorem
4.1.

We will use splitting (5.1) as our reference splitting. Denote

Λmin := λmin,(5.1), Λmax := λmax,(5.1) and K := κ(5.1).

In this splitting, the anisotropy of the problem is “built in”. Starting from a space Ṽj0 ,
we apply standard refinement, as long as we stay within the space Vn and continue with
semi-refinement (possibly in more than one direction) until we reach the full computational
space.

2D–Example. For problem (4.7) with j0 = (3, 0) and n = (4, 2), we illustrate the
coarsening strategy in a picture. The coarsening for the induced splitting is given by the
arrows between the grids in Figure 5.1.

FIG. 5.1. Coarsening for the induced splitting.
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3D–Example. Assume that we are interested in a solution from Vn = V3,9,7 for some
reason. Then, the chain of our induced splitting (5.2) looks as

V0,3,6 ⊂ V1,4,7 ⊂ V2,5,7 ⊂ V3,6,7 ⊂ V3,7,7 ⊂ V3,8,7 ⊂ V3,9,7.

This splitting has a condition number κ(5.2) ≤ 12K.

5.2. Standard refinement. We obtain another splitting if we start our refinement pro-
cedure with Vo instead, carrying out standard refinement steps until the refinement of Vn in at
least one direction is reached and then continue refining only the remaining directions (as in
the previous section). In contrary with the previous splitting, we ignore the anisotropy of the
problem. So, we expect a dependency of the condition number on the parameters c0, . . . , cd

or more precise on the relation of cmax := maxj=0,...,d cj and cmin := minj=0,...,d cj (if
c0 = 0 it is skipped).

THEOREM 5.2. The following splittings are stable, the condition numbers depend on the
coefficients c0, c1, . . . , cd as O(cmax/cmin) but are independent of n:

{Vn, a} =
∑

o≤j≤n

{Wj; (22j1 + 22j2 + · · · + 22jd + 1)(·, ·)2},(5.4)

{Vn, a} =

dne
∑

`=0

{Ṽ`e; 22`(·, ·)2},(5.5)

{Vn, a} =

dne
∑

`=0

{W̃`e; 22`(·, ·)2},(5.6)

with W̃`e := W`e ∩ Vn and Ṽ`e := V`e ∩ Vn and obvious modifications of (5.4) in case of
c0 = 0.

Proof. We restrict ourselves to the case c0 > 0. Because of the L2-orthogonality between
the wavelet spaces Wj, the ||| · |||-norm (corresponding to (5.4)) of an element u ∈ Vn given in
its wavelet decomposition

u =
∑

o≤j≤n,

wj∈Wj

wj

can be written as

|||u|||
2
(5.4) =

∑

o≤j≤n

(22j1 + 22j2 + · · · + 22jd + 1)‖wj‖
2
2.

Analogously, we can handle the ||| · |||-norm from the splitting (5.1):

|||u|||2(5.1) =
∑

o≤j≤n

(c12
2j1 + c22

2j2 + · · · + cd2
2jd + c0)‖wj‖

2
2.

Because

cmin(2
2j1 + 22j2 + · · · + 22jd + 1) ≤ c12

2j1 + c22
2j2 + · · · + cd2

2jd + c0

≤ cmax(2
2j1 + 22j2 + · · · + 22jd + 1),

we obtain equivalence of the norms

cmin||| · |||
2
(5.4) ≤ ||| · |||

2
(5.1) ≤ cmax||| · |||

2
(5.4)
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and hence the stability of splitting (5.4) with a condition number

κ(5.4) ≤
cmax

cmin
K,

where λmin,(5.4) ≥ cminΛmin and λmax,(5.4) ≤ cmaxΛmax.

We find the wavelet spaces W̃`e by clustering

W̃`e =
⊕

o≤j≤n,

dje=`

⊥ Wj.

The orthogonality of the wavelet spaces and the inequality

(5.7) 22dje ≤ 22j1 + 22j2 + · · · + 22jd + 1 ≤ (d + 1) 22dje

yield the equivalence relation

||| · |||
2
(5.6) ≤ ||| · |||

2
(5.4) ≤ (d + 1) ||| · |||

2
(5.6)

and hence the stability of the splitting (5.6) with a condition number

κ(5.6) ≤ (d + 1)
cmax

cmin
K

and the parameters λmin,(5.6) ≥ cmin Λmin and λmax,(5.6) ≤ cmax(d + 1) Λmax.

By construction, we have W̃`e = Ṽ`e 	⊥ Ṽ(`−1)e for ` > 0 and W̃o = Ṽe. Define the
numbers

β` =
(

dne
∑

i=`

2−2i
)−1

=
3

4
22`

(

1 − 2−2(dne+`+1)
)−1

.

The ||| · |||(5.5)-norm of an element u ∈ Vn with the wavelet decomposition

u =
∑

0≤`≤dne,

w`∈W̃`e

w`

can be computed (cf. [6, 7]) as

(5.8) |||u|||
2
(5.5) =

dne
∑

`=0

β`‖w`‖
2
2.

From the inequality

3

4
22` ≤ β` ≤ 22`,

we find the equivalence

3

4
||| · |||

2
(5.6) ≤ ||| · |||

2
(5.5) ≤ ||| · |||

2
(5.6).

So, the splitting (5.5) is stable with the condition number

κ(5.5) ≤
4

3
(d + 1)

cmax

cmin
K
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FIG. 5.2. Coarsening for standard refinement.

with λmin,(5.5) ≥ cmin Λmin and λmax,(5.5) ≤ (4/3)cmax(d + 1) Λmax.

Remark. If c0 = 0, the factor (d + 1) occurring in the estimates (in this proof and also
in the following sections) can of course be reduced to d.

2D–Example. The coarsening of V4,2 for standard refinement is shown in Figure 5.2.
3D–Example. The chain of subspaces from splitting (5.5) reads as

V0,0,0 ⊂ V1,1,1 ⊂ V2,2,2 ⊂ V3,3,3 ⊂ V3,4,4 ⊂ V3,5,5 ⊂ V3,6,6 ⊂ V3,7,7 ⊂ V3,8,7 ⊂ V3,9,7.

This splitting has a condition number

κ(5.5) ≤
4

3
3

100

0.01
K = 4 · 104 K

which is 3 · 103-times higher than the one of the induced splitting in which the anisotropy of
the problem (4.8) was “built in”.

5.3. Standard coarsening. If we start from the space Vn instead, we obtain another
sequence of sample spaces which correspond to the standard coarsening until the 0-level is
reached for some direction, then standard coarsening in the other directions and so on. By
experience, this procedure is known to be very sensitive to the anisotropies introduced by the
choice of the sample space Vn, i.e., the different refinement levels for the different directions.
On the other hand, this splitting does not take care of the anisotropy of the problem (4.1) to
be solved. The next theorem answers how this influences the condition of the corresponding
splitting.

THEOREM 5.3. The following splittings are stable, the condition numbers depend on the
coefficients c0, c1, . . . , cd as O(cmax/cmin) and on n as O(22(dne−bnc)):

{Vn, a} =

dne
∑

`=0

{Vm(`); 22(dne−`)(·, ·)2},(5.9)

{Vn, a} =

dne
∑

`=0

{W̌`; 22(dne−`)(·, ·)2},(5.10)

with the multi-indices

m(`) := (max{n1 − `, 0}, max{n2 − `, 0}, . . . , max{nd − `, 0})
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and the wavelet spaces W̌` := Vm(`)	
⊥Vm(`+1) for ` = 0, 1, . . . , dne−1 and W̌dne := Vo.

Proof. The wavelet spaces used for the splitting (5.10) consist of the smaller wavelet
parts

W̌` =
⊕

j∈J (`)

⊥ Wj,

where the indices are from the index set

J (`) :=
{

j | j ≤ m(`), ∃i ∈ {1, . . . , d} : ji = mi(`)
}

.

For such multi-indices, we can estimate the maximum from above and below as

bnc − ` ≤ bm(`)c ≤ dje ≤ dm(`)e = dne − `.

Using this inequality, inequality (5.7) and the orthogonality between the wavelet spaces, we
obtain

22(bnc−dne) ||| · |||
2
(5.10) ≤ ||| · |||

2
(5.4) ≤ (d + 1) ||| · |||

2
(5.10).

This gives stability of the splitting (5.10) into wavelet spaces with a condition number

κ(5.10) ≤ 22(dne−bnc) (d + 1)
cmax

cmin
K

and parameters λmin,(5.10) ≥ cmin 22(bnc−dne) Λmin and λmax,(5.10) ≤ cmax(d + 1) Λmax.
Here, we proceed as in the proof of Theorem 5.2. The square of the ||| · |||(5.9)-norm of

u ∈ Vn with the wavelet parts w` ∈ W̌` can be written as in (5.8) as a weighted sum of the
squares of L2-norms of the wavelet parts. The weighting factors are

β` =
(

∑̀

i=0

2−2(dne−i)
)−1

=
3

4
22(dne−`) (1 − 2−2(`+1))−1

and fulfill (3/4)22(dne−`) ≤ β` ≤ 22(dne−`). Hence,

3

4
||| · |||

2
(5.10) ≤ ||| · |||

2
(5.9) ≤ ||| · |||

2
(5.10).

The splitting (5.9) is stable and has the condition number

κ(5.9) ≤
4

3
22(dne−bnc) (d + 1)

cmax

cmin
K,

where λmin,(5.9) ≥ cmin 22(bnc−dne) Λmin and λmax,(5.9) ≤ (4/3)cmax(d + 1) Λmax.
2D–Example. The coarsening of V4,2 for standard coarsening is illustrated by Figure 5.3.
3D–Example. For our example, we obtain the subspaces

V0,0,0 ⊂ V0,1,0 ⊂ V0,2,0 ⊂ V0,3,1 ⊂ V0,4,2 ⊂ V0,5,3 ⊂ V0,6,4 ⊂ V1,7,5 ⊂ V2,8,6 ⊂ V3,9,7

of the splitting (5.9) with a condition

κ(5.9) ≤
4

3
22(9−3) 3

100

0.01
K = 4 · 104 · 212 K ≤ 1.7 · 108 K.

Compared with the standard refinement from the previous section we loose another factor of
4 · 103 because we did not pay enough attention to the anisotropy coming from the computa-
tional space V3,9,7.
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FIG. 5.3. Coarsening for standard coarsening.

5.4. Semi-coarsening. Another possibility to avoid the dependency on the anisotropic
grid is pure semi-coarsening. Starting with Vn, we reduce in one coarsening step only the
level of a direction with the maximal level. This will help to overcome the dependency on n

again.
THEOREM 5.4. Assume without loss of generality the ordering n1 ≥ n2 ≥ · · · ≥ nd

to simplify notation. The following splitting is stable. The condition number depends on the
coefficients c0, c1, . . . , cd as O(cmax/cmin) but is independent of n:

(5.11) {Vn, a} = {Vo, (·, ·)2} +

n1
∑

j1=1

min{n2,j1}
∑

j2=min{n2,j1−1}

· · ·

min{nd,j1}
∑

jd=min{nd,j1−1}

{Vj, 2
2j1(·, ·)2}.

Proof. We obtain the semi-refined splitting (5.11) from the standard refined splitting
(5.5) by refinement (cf. [3]), i.e., we split the subspaces Ṽ`e further. Fix ` with 1 ≤ ` ≤ dne.
Choose j such that

Vj = Ṽ`e,

especially we have ` = j1 = dje. Then there exists an m ∈ {0, . . . , d} that

(5.12) {Vj, 2
2`(·, ·)2} =

m
∑

k=0

{Vj−e1−···−ek
, 22`(·, ·)2}.

If we analyze the ||| · |||-norm of this splitting via the corresponding wavelet spaces we have to
look again on coefficients

βk =
(

m
∑

i=k

2−2`
)−1

= 22`(m − k + 1)−1.

From 1 ≤ m − k + 1 ≤ d − k + 1 ≤ d + 1 and the orthogonality of the wavelet spaces,
we obtain the stability of the subsplitting (5.12) with a condition number κ(5.12) ≤ (d + 1).
Hence we obtain the stability of the refined splitting and a condition number

κ(5.11) ≤ κ(5.5)κ(5.12) ≤
4

3
(d + 1)2

cmax

cmin
K
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FIG. 5.4. Coarsening for semi-coarsening.

with λmin,(5.11) ≥ (cmin/(d + 1)) Λmin and λmax,(5.11) ≤ (4/3)cmax(d + 1) Λmax.
2D–Example. The semi-coarsening of V4,2 is shown in Figure 5.4.
3D–Example. Here, we have the splitting (5.11) into the subspaces

V0,0,0 ⊂ V0,1,0 ⊂ V0,1,1 ⊂ V1,1,1 ⊂ V1,2,1 ⊂ V1,2,2 ⊂ V2,2,2 ⊂ V2,3,2 ⊂ V2,3,3 ⊂ V3,3,3

⊂ V3,4,3 ⊂ V3,4,4 ⊂ V3,5,4 ⊂ V3,5,5 ⊂ V3,6,5 ⊂ V3,6,6 ⊂ V3,7,6 ⊂ V3,8,6 ⊂ V3,9,6

and a condition number

κ(5.11) ≤
4

3
32 100

0.01
K = 1.2 · 105 K,

which is comparable to the standard refinement. But here we need more subspaces to get the
same effect of independence of the computational space.

5.5. Further refinements. Among the splittings presented above, we are interested
most in the splittings (5.2), (5.5),(5.9), and (5.11) into the classical sample spaces Vi of mul-
tilinear finite elements. For completeness, we want to remind the fact that with further refine-
ment of these splittings, we would arrive at splittings corresponding to multigrid algorithms
or multilevel preconditioners.

We can split a subspace Vi further: Because of the L2-stability of the nodal basis the
splitting

(5.13) {Vi, 2
2`(·, ·)2} =

∑

k

{span{ϕi,k}, 2
2`(·, ·)2}

into one-dimensional subspaces spanned by ϕi,k :=
∏d

m=1 ϕim,km
is stable. Here ` denotes

the ` for the induced splitting (5.2) or die for the other splittings. By construction, the con-
stants involved of course do not depend on c0, . . . , cd or n. Another possibility to split Vi is

(5.14) {Vi, 2
2`(·, ·)2} =

∑

k

{span{ϕi,k}, a}.

Here the constants for refining (5.2) do not depend on the c0, . . . , cd or n. For refining the
other splittings they do depend on c0, . . . , cd since we have to use the estimate

cmin2
2die‖ϕi,k‖

2
2 ≤ a(ϕi,k, ϕi,k) ≤ 3(d + 1)cmax2

2die‖ϕi,k‖
2
2
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there.
Applying the additive subspace correction method on one of the splittings (5.2), (5.5),(5.9),

or (5.11) with the refinement (5.13), we would obtain a BPX-like preconditioner (see Bram-
ble, Pasciak and Xu [1]). Doing the same with refinement (5.14), we arrive at an MDS
preconditioner (multilevel diagonal scaling, see Zhang [11]). The multiplicative subspace
correction for the subspace splittings (5.2), (5.5),(5.9), or (5.11) would yield multigrid rou-
tines. Refinement (5.14) with an additive subspace correction would give damped Jacobi as a
smoother. Using (5.14) with a multiplicative algorithm, we would end up with a Gauß-Seidel
smoother.

6. Strengthened Cauchy-Schwarz inequalities. Now we verify the strengthened Cauchy-
Schwarz inequalities in the case of our special multilevel spaces and c0 = 0.

We are interested most in multilevel routines based on the sample spaces. That is why
we are proving inequalities for these cases. Because of the symmetry of a(·, ·) and the con-
struction of our multilevel spaces we may restrict to the case i ≤ j.

We start with the univariate case. Let Ω = (0, 1), ui ∈ Vi, vj ∈ Vj , i ≤ j and I =
[2−ik, 2−i(k + 1)] ∈ Ω a part of Ω corresponding to the partition underlying Vi. Simple
calculations show that there exists a constant C1 independent of ui, vj and i, j such that

(ui, vj)L2(I) ≤ C1 2i+j 2(i−j)/2‖ui‖L2(I)‖vj‖L2(I).

This can be used to prove the strengthened Cauchy-Schwarz inequalities in the d-variate case.
Assume now Ω = (0, 1)d, ui ∈ Vi, vj ∈ Vj, i ≤ j and let Q = [2−i1k1, 2

−i1(k1 + 1)] ×
· · ·× [2−idkd, 2

−id(kd +1)] ∈ Ω be a part corresponding to the partition of Vi. With a tensor
product argument we have for every Q

a(ui, vj)Q =

d
∑

m=1

cm(Dxm
ui, Dxm

vj)L2(Q)

≤ C1

(

d
∑

m=1

cm2im+jm 2(im−jm)/2
)

‖ui‖L2(Q)‖vj‖L2(Q)

≤ C1 εi,j

(

d
∑

m=1

cm2im+jm

)

‖ui‖L2(Q)‖vj‖L2(Q)(6.1)

with

(6.2) εi,j := max
m=1,...,d

2(im−jm)/2.

We sum up the inequalities (6.1) over all small cubes Q ∈ Ω and obtain the strengthened
Cauchy-Schwarz inequalities on the cube Ω as

a(ui, vj) ≤ C1 εi,j

(

d
∑

m=1

cm2im+jm

)

∑

Q

‖ui‖L2(Q)‖vj‖L2(Q)

≤ C1 εi,j

(

d
∑

m=1

cm2im+jm

)(

∑

Q

‖ui‖
2
L2(Q)

)1/2 (

∑

Q

‖vj‖
2
L2(Q)

)1/2

= C1 εi,j

(

d
∑

m=1

cm2im+jm

)

‖ui‖2‖vj‖2.(6.3)
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With εi,j := εj,i for i ≥ j, inequality (6.3) remains valid in this case, too. As for other
finite elements (see e.g. Xu [10]), the exponential decay of the εi,j away from the diagonal
yields that %(E) remains bounded independent of the number J of subspaces in the splitting.
Now we further use (6.3) to establish the strengthened Cauchy-Schwarz inequalities for our
concrete splittings into sample spaces. We start with the induced splitting (5.2).

THEOREM 6.1. For the induced splitting (5.2), there hold the strengthened Cauchy-
Schwarz inequalities (2.2) with εi,j as in (6.2) and a constant C(5.2) ≤ Ĉ C1 independent of
c1, . . . , cd and n.

Proof. The index j0 is chosen in a way that there exists a constant Ĉ independent of
c1 . . . , cd and n such that for all ` holds that

c12
2(j01+`) + c22

2(j02+`) + · · · + cd2
2(j0d+`) ≤ Ĉ22`.

Fix s, t ∈ N0. Let i and j be chosen such that

Vi = Ṽj0+se and Vj = Ṽj0+te.

Then we can estimate

d
∑

m=1

cm2im+jm ≤
(

d
∑

m=1

cm22im

)1/2( d
∑

m=1

cm22jm

)1/2

≤
(

d
∑

m=1

cm22(j0m+s)
)1/2( d

∑

m=1

cm22(j0m+t)
)1/2

≤ Ĉ2s2t

which yields with (6.3)

a(ui, vj) ≤ Ĉ C1 εi,j
(

2s ‖ui‖2

) (

2t‖vj‖2

)

.

This completes the proof.
Now we investigate the other splittings.
THEOREM 6.2. For the splitting (5.5) for standard refinement, the splitting (5.9) for

standard coarsening, and the splitting (5.11) for semi-coarsening, there hold the strengthened
Cauchy-Schwarz inequalities (2.2) with constants εi,j as in (6.2) and a constant
C(5.5),(5.9),(5.11) ≤ cmax d C1 independent of n.

Proof. We start with (6.3) and compute

a(ui, vj) ≤ cmax d C1 εi,j 2di+je ‖ui‖2 ‖vj‖2

≤ cmax d C1 εi,j
(

2die ‖ui‖2

) (

2dje‖vj‖2

)

.

7. Numerical Examples. We present two numerical examples in 3D. We show the con-
vergence of a preconditioned conjugate gradient iteration with a BPX preconditioner based
on the splittings discussed before.

In the Figures 7.1–7.6, the convergence history of the preconditioned conjugate gradient
iteration is displayed for the relative residuals using the following symbols to characterize the
preconditioners corresponding to the different splittings:

• for the induced splitting (5.2):
• for standard refinement (5.5):
• for standard coarsening (5.9):
• for semi-coarsening (5.11):
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For the first example, we fix the solution of (4.1) as

u(x) = sin πx1 sin πx2 sin πx3 + sin 8πx1 sin 8πx2 sin 8πx3

in Ω = (0, 1)3 and construct the corresponding right-hand side f(x) for different matrices C.
We are looking for a solution of our homogeneous Dirichlet problem in the full computational
energy space V2,7,4.

We compare the convergence for three different values of the coefficient matrix C re-
sponsible for the anisotropy of the problem:

a) isotropic: C = diag(1, 1, 1), c0 = 0,
b) anisotropic: C = diag(10, 1, 1/10), c0 = 0,
c) anisotropic: C = diag(100, 1, 1/100), c0 = 0.

From the Figures 7.1–7.3, we can see big differences in the performance of the algo-
rithms. As discussed before, the multilevel preconditioner using standard coarsening (5.9)
behaves worst due to the anisotropy of the computational space. In the anisotropic cases, the
algorithm with the induced splitting (5.2) is the best. Semi-coarsening (5.11) and the stan-
dard refinement (5.5) are somewhere in between, both preconditioners giving results that get
worse with the anisotropy of the problem.

For our second example, we fix a solution

u(x) = ex2

1 + x2 +
1

50
sin πx3

in Ω = (0, 1)3 for the inhomogeneous pendant of (4.1). This means, that we construct from
u the Dirichlet boundary conditions and the right–hand sides f for different values of the
coefficient matrix C (as in a) – c)). Given the respective right–hand side we look for a
solution on an adaptive grid corresponding to a subspace of V7,1,4.

The results are shown in Figures 7.4–7.6. Again, standard coarsening (5.9) is the worst
choice. The differences arising from the anisotropy of the computational space can be seen
best in the isotropic case. In the anisotropic cases, the algorithm using the preconditioner for
the induced splitting (5.2) delivers good results in all cases as expected. The other splittings,
semi-coarsening (5.11) and standard refinement (5.5), are again somewhere in between and
the corresponding algorithms perform worse depending on the anisotropy of the problem.

8. Conclusions. We have compared different subspace splittings corresponding to dif-
ferent coarsening strategies. The result is as follows:

If ever possible, one should build in the anisotropy of the problem into the coarsening
as in (5.2). The condition number of all the others splittings depend on the anisotropy of the
problem.

The second “best” to do is standard refinement (5.9) or semi–coarsening (5.11). Both
can be used also in case of variable coefficients where the anisotropy of the problem can not
be built into the splitting easily. Standard refinement is the same as standard coarsening for
an isotropic computational energy space Vn with n1 = n2 = · · · = nd. It tends to semi-
coarsening for strongly anisotropic Vn. The algorithm using semi-coarsening seems to be
most flexible, it needs some more operations per iteration but performs quite well in all our
examples. In both cases, the splittings take the anisotropy of the grid into account.

In case of anisotropic computational energy spaces Vn, one should definitely avoid stan-
dard coarsening. The dependency of the condition of this splitting (and so of the condition of
the preconditioned operator) on the anisotropy of the grid is large.



ETNA
Kent State University 
etna@mcs.kent.edu

192 F. SPRENGEL

1e–09

1e–08

1e–07

1e–06

1e–05

.1e–3

.1e–2

.1e–1

.1

1.

.1e2

rel. res.

20 40 60 80 100
iterations

FIG. 7.1. a) First Example: Results for the isotropic equation with C = diag(1, 1, 1)
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FIG. 7.2. b) First Example: Results for the anisotropic equation with C = diag(10, 1, 1/10)
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FIG. 7.3. c) First Example: Results for the anisotropic equation with C = diag(100, 1, 1/100)
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FIG. 7.4. a) Second Example: Results for the isotropic equation with C = diag(1, 1, 1)
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FIG. 7.5. b) Second Example: Results for the anisotropic equation with C = diag(10, 1, 1/10)
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FIG. 7.6. b) Second Example: Results for the anisotropic equation with C = diag(100, 1, 1/100)
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The results in this paper have been proved for full grids or computational spaces Vn.
Numerical experiments on locally refined grids nevertheless show that they seem to remain
true in this case, too.
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