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NUMERICAL EXPERIMENTS WITH ALGEBRAIC MULTILEVEL
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GÉRARD MEURANT†

Abstract. This paper numerically compares different algebraic multilevel preconditioners to solve symmetric
positive definite linear systems with the preconditioned conjugate gradient algorithm on a set of examples arising
mainly from discretization of second order partial differential equations. We compare several different smoothers,
influence matrices and interpolation schemes.
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1. Introduction. In this paper we report on numerical experiments using some multi-
level preconditioners for solving symmetric positive definite linear systems Ax = b with the
Preconditioned Conjugate Gradient (PCG) method.

The methods we would like to compare are purely algebraic algorithms that only use the
matrix and the right hand side as inputs.

An important issue for solving very large problems on Tflops scale parallel computers
is scalability. One would like to have the computer time constant when the problem size per
processor is fixed and the number of processors increases, which means that the dimension
of the problem is increasing. When using an iterative method like PCG, this implies that
the number of iterations must be constant when the problem size is increased. But this is
not enough since we also need to have a number of operations per iteration proportional to
the problem size. We will see that most multilevel preconditioners considered in this paper
lead to algorithms which are almost scalable for some problems arising from discretization
of second order partial differential equations.

All these methods use the same design principles as the Algebraic Multigrid algorithm
(AMG). The standard AMG is a multigrid–like method that has been firstly defined for M–
matrices; see [8], [2]. After some smoothing steps, the equation for the error with the residual
as the right hand side is solved recursively on a coarser grid, corresponding to a subset of
the unknowns. In AMG the coarse meshes are defined by looking at the entries of the matrix
A. This is based on the fact that for M–matrices the largest entries in the inverse (which are
positive) are given by the structure of A. Moreover, there is a decrease of the entries of the
inverse away from the structure of A; see [5]. The set of dependencies of an unknown (a node)
is defined by (a part of) the neighbours of the given node. An influence set is defined for each
unknown as the “transpose” of the set of dependencies. The fine and coarse nodes for each
level are found on this basis. Then, knowing the fine and coarse nodes, interpolation weights
are computed using the entries of A and the equations of the linear system. The restriction R
is the transpose of the interpolation (prolongation) matrix P and the coarse matrix is generally
defined as Ac = RAP . As we said before, the method also uses a smoothing operator. An
iteration (V–cycle) of the recursive algorithm is the following:

1. Do ν iterations of smoothing.
2. Restrict the residual r to rc = Rr.
3. Recursively solve Acec = rc.
4. Interpolate ec to e = Pec.
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5. Add the correction e to the current iterate.
6. Do ν iterations of smoothing.

More generally we can introduce a parameter γ and replace step 3 by doing γ iterations
of the same algorithm with one level less. Choosing γ = 1 is the V–cycle just described and
having γ = 2 is denoted as a W–cycle.

For the classical (geometric) multigrid method, typically for the Poisson equation in the
unit square with finite differences, one uses Gauss–Seidel (or relaxed Jacobi) as a smoother,
bilinear interpolation and a coarse mesh defined by taking every other node in each direction
in a red–black fashion; see [2]. For discontinuous or anisotropic coefficients problems more
sophisticated smoothers and/or interpolations (using the matrix entries) have to be used. This
is what we are supposed to get automatically with AMG.

If everything is symmetric (which can be obtained by using symmetric Gauss–Seidel
as a smoother) a preconditioner for PCG is given by running one iteration of the previous
algorithm starting from x0 = 0.

The multilevel preconditioners we are going to compare proceed in the same way as
AMG using different definitions of the smoother, the coarsening algorithm and the interpola-
tion.

In the following sections we describe the algorithms in more detail and some numerical
results which have been obtained on several elliptic problems as well as more general linear
systems.

2. The multilevel preconditioners. We are going to look at the different components of
the multilevel algorithm: the smoother, the influence matrix, the coarsening and interpolation
algorithms.

2.1. The smoother.

2.1.1. Symmetric Gauss–Seidel. When solving symmetric linear systems with PCG
we need a symmetric positive definite preconditioner. One way to extend what is done in
classical multigrid is to use a symmetric Gauss–Seidel iteration. The Gauss–Seidel algorithm
is done with the given ordering of the unknowns and then another step is done using the
reverse ordering. We will denote this smoother by ‘gs’ in the numerical experiments.

2.1.2. Incomplete Cholesky. Another smoother which has been proposed is the Incom-
plete Cholesky (IC) decomposition LD−1LT (where L is lower triangular and D diagonal)
of the matrix. There are many different variants of this algorithm. The most popular one is to
use a decomposition whose non zero structure of L is the same as the structure of the lower
triangular part of A. However, one can also keep a part of the fill–in either by looking at
the size of the entries or by using the levels of fill–in, see [6] for a review and the references
therein. In the numerical experiments reported here we will only consider the variant with no
fill although to be fair in comparison with the other approximate inverse smoothers we should
have retained some fill in for the most difficult problems. This incomplete decomposition is
used in a Richardson iteration

LD−1LT (xk+1 − xk) = b−Axk,

when solving Ax = b. We will denote this smoother by ‘ic’.

2.1.3. AINV approximate inverse. Here the idea is to use an approximate inverse M
from AINV as a smoother in a Richardson iteration defined as

xk+1 = xk + M(b−Axk),
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when solving Ax = b; see [1], [7]. This preconditioner computes an approximate factoriza-
tion M = ZD−1ZT of the inverse of A and involves a parameter τ used to define which
elements are dropped during the factorization.

If we first consider a two–grid algorithm using one step of pre–smoothing and one step
of post–smoothing starting from x0 = 0, we can easily see from [7], that the preconditioner
which we denote by M̃1 is defined as

M̃1 = M + M(I −AM) + (I −MA)(P (RAP )−1R)(I −AM).

The matrix M from AINV is symmetric positive definite. Obviously M̃1 is symmetric.
It has been shown in [7] that M̃1 is positive definite if we suppose that M is such that ρ(I −
AM) < 1. In [7] it was also proven that under the same hypothesis 1 is a multiple eigenvalue
of M̃1A. Moreover, all the eigenvalues of M̃1A are smaller than or equal to 1.

This occurs whatever the choice of M , R and P as long as M and M̃1 are symmetric and
positive definite. Therefore the convergence rate of PCG using the two–grid preconditioner
depends only on the smallest eigenvalue. Moreover, the same results apply if the coarse
matrix is obtained by using the same algorithm recursively, that is in the multilevel case.

2.1.4. The approximate inverse of Tang and Wan. This smoother is an approximate
inverse suggested by Tang and Wan in [9]. The approximate inverse M for a general matrix
A is computed to minimize

‖I −MA‖F ,

the F norm being the Frobenius norm. This problem is equivalent to solving n l2 minimiza-
tion problems, n being the order of A,

‖AT mi − ei‖,(2.1)

where mT
i is the ith row of M and ei is the ith column of the identity matrix. Generally the

difficult point in deriving approximate inverses of this type is to select the sparsity pattern to
be imposed on M . There are sophisticated algorithms to do this adaptively. However, here
we are only looking for a smoother. The proposal of Tang and Wan is to use a sparsity pattern
corresponding to the neighbours of node i in the graph of A. More specifically, if we define
the neighbours of i to be at level 0 and the same plus the neighbours of the neighbours to be
at level 1, in the same way we can define the k–level neighbour set for any k > 0.

The smoother is defined by extracting from AT the (k, l) submatrix AT
k,l corresponding

to the rows in level k and the columns in level l and then solving the least squares problem
(2.1) with the normal equations

Ak,lA
T
k,lmi = Ak,lei.

This gives the ith row of M . Here we shall use l = 1, k = 0 as proposed by Tang and Wan,
although this will not be enough for the most difficult problems. Usually this gives small
linear systems to solve when the matrix A is sparse. However, the matrix M might not be
symmetric, therefore we use 1

2
(M + MT ) as the smoother. As with AINV, this is used in a

Richardson iteration. We denote this smoother by ’tw’.

2.1.5. Conjugate gradient. A few iterations of the conjugate gradient algorithm have
been suggested as a smoother. We will use ν = 3 iterations of CG with a diagonal precondi-
tioner and denote this smoother as ‘gc’. We use 3 iterations because for most problems this
gives the minimum number of operations.
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2.1.6. Conjugate gradient with AINV preconditioner. We use 3 iterations of CG pre-
conditioned with AINV with a parameter τ . This will be denoted as ‘cg’.

2.1.7. A least squares polynomial. This smoother is simply to define M as a least
squares polynomial preconditioner pk. We wish to have the polynomial λpk(λ) as close as
possible to 1 in some sense on [a, b], an interval enclosing the eigenvalues of A. One way of
achieving this is to look for the polynomial pk of degree k ∈ Qk, the set of polynomials of
degree less than or equal to k that minimizes

∫ b

a

(1− λq(λ))2w(λ) dλ, q ∈ Qk,

where w(λ) is a positive weight. Usually, one chooses the Jacobi weights,

w(λ) = (b− λ)α(λ− a)β , α ≥ β ≥ −1

2
,

because we know the orthogonal polynomials associated with these weights. The solution of
the minimization problem is explicitly known; see [6]. We shall use the Chebyshev weights
α = β = −1/2, and a ≥ 0 and b are given by the Gerschgorin bounds for the eigenvalues of
A. A stable algorithm for computing z = Pk(A)r is the following (see [6] for details of the
derivation):

s0(0) =
1√
π

, s1(0) =

√

2

π

a + b

a− b
, s2(0) =

√

2

π

[

2

(

a + b

a− b

)2

− 1

]

,

and

sj(0) = 2µ(0)sj−1(0)− sj−2(0), j = 3, . . . , k + 1,

bj =
sj(0)

∑k+1

i=0
s2

i (0)
, j = 1, . . . , k + 1.

Then,

zk+1 = bk+1r, zk = bkr +
2

b− a
(2A− (a + b)I)zk+1,

zj = bjr +
2

b− a
(2A− (a + b)I)zj+1 − zj+2, j = k − 1, . . . , 1,

and

uk+1 =
4

a− b
sk(0)zk+1,

uj+1 =
4

a− b
sj(0)zj+1 + uj+2, j = k − 1, . . . , 1.

Finally,

z =

√

2

π

2

a− b
z1 + u2.

This preconditioner is also used as a smoother in a Richardson iteration. We denote this
smoother by ’po’ and k will be the degree of the polynomial.



ETNA
Kent State University 
etna@mcs.kent.edu

G. Meurant 5

2.2. The influence matrix. An important part of the algorithm is to decide which un-
knowns correspond to the fine “nodes” or points and which to the coarse points. Hence, the
set N = {1, . . . , n} of the unknown indices is split into two sets N = F ∪ C.

First of all, for each unknown (point or node) i we define the set of dependencies Si and
an influence matrix S whose rows are the Si’s padded with zeros. This can be done in many
ways. The standard AMG algorithm (see [4], [8], [10], [2]) for an M–matrix defines

Si = {j| − ai,j > τ max
k 6=i

(−ai,k), τ < 1},

where τ is a parameter that defines which elements are strongly connected to i. The set of
points that i influences is ST

i = {j| i ∈ Sj}. This definition can be generalized to any matrix
by

SA
i = {j | |ai,j | > τ max

k 6=i
|ai,k|, τ < 1}.

Since the previous definition uses the matrix A itself we will denote it by ‘a’ in the numer-
ical experiments. We remark that this influence matrix is local as it is looking only at the
neighbours of i in the graph of A.

Rather than using an influence matrix given by the entries of A, it seems natural to
measure the influences of the points by the inverse of A since this describes how the unknowns
are linked together. However, since we only have (eventually) at our disposal the approximate
inverse M from AINV or the Tang and Wan approximate inverse, we can define (see [7])

SM
i = {j ∈ N , j 6= i|mi,j 6= 0}.

This choice will be denoted as ‘m’. Generally, we do not want to compute M when using
AINV since it is only given in factored form and the solve at every iteration can be done with
multiplications with Z and ZT . Thus we will also define the influence matrix as

SZ
i = {j ∈ N , j 6= i| ni,j 6= 0}.

Let Q be a diagonal matrix whose diagonal elements are the square roots of those of D−1 and
Z̃ = ZQ. Then, the matrix N is defined as N = Z̃ + Z̃T −Q. This choice will be denoted
as ‘z’.

We will see in the numerical experiments that when solving anisotropic problems with
AINV the choices ‘m’ and ‘z’ can lead us to obtain too many couplings and coarse grids with
very few points. Although this is right from the physics of the problem, it does not always
allow us to compute the solution as fast as we would like and moreover we will not be able to
use every interpolation scheme with these grids. A way to avoid this is to compute the coarse
grid and then to check if every F node has at least one C node in its neighbours in the graph
of A. If this is not the case, we can choose one of the neighbours and change its status to a C
point. One can also filter the matrix SZ by only keeping the largest elements in N .

Another way to obtain coarse grids with more nodes using AINV is to use two approx-
imate inverses, one with a threshold τ1 to compute the coarse grid and another one with a
threshold τ2 ≤ τ1 as a smoother. The first decomposition can be easily obtained from the
second one. This would allow us to be able to smooth more on difficult problems without
leading to grids which are too coarse.

2.3. The coarsening algorithm. Once Si is fixed by any of the previous methods, there
are different ways we can follow to decide which are the F and C points.
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2.3.1. Algorithm C1. What we are going to denote as the “standard” (‘st’) coarsening
algorithm is mainly based on two principles:

1. For each i ∈ F , each node j ∈ Si should either be in C or should depend on at
least one point in Ci, which is the set of coarse points which are going to be used for the
interpolation of i.

2. C should be (as much as possible) a maximal subset with the property that no C
point depends on another C point.

The first criterion tends to increase the number of C points. The second one is used to
limit the number of points in the coarse grid. The standard coarsening algorithm is defined
by two passes. The first one uses weights wi, which are the number of points that depend on
i. One step of the algorithm is the following:

1. Choose the first point i with maximal weight as a C point.
2. Assign the points that i influences as F points.
3. Increment by 1 the weights of the points influencing these new F points.
4. Decrease by 1 the weights of the points that depend on i.

This first pass guarantees that each F point has at least one connection to a C point. This
is needed for the standard interpolation. It tends sometimes to produce too many F points.
A second pass (see [10]) could be added in which some F points are made into C points
to enforce the first criterion and to minimize C–C connections. The idea is to test each F
point to see if the first criterion is satisfied. The neighbours of i are split into the coarse
(interpolatory) points Ci, the strongly connected non interpolatory points DS

i (those which
belong to Si) and the weakly connected non interpolatory points DW

i . If there is a point in
DS

i which is not connected to Ci, it is tentatively flagged as a C point. If the first criterion is
verified with this new C point, it is definitely considered as a C point and testing on other F
points continues.

For the problems we are going to consider this second pass has not much effect and since
it is costly we are going to skip it.

2.3.2. Algorithm C2. There are many other ways to generate the F and C points. Let us
look at an algorithm proposed by Cleary, Falgout, V.A. Henson, and Jones [3]. This algorithm
was devised to be used on parallel computers. When used in parallel the algorithm first selects
a set of independent points and then operates independently on the points of this set, which
are the starting points. The weights to be used are the same as in ‘st’ (although [3] added
random numbers to break ties). For our purpose, since we are not looking at the parallelism
issue, we just select one point. One step of the algorithm is:

1. Choose a point i of maximal weight as a C point (but check if this does not introduce
a C–C connection).

2. For all points j that influence i decrease the weight of j by 1 and remove edge i, j
from the graph of S.

3. For all points j that depend on i, remove edge j, i from the graph and for each k
that j influences if k depends on i decrease the weight of j by 1, remove the edge k, j from
the graph.

4. When the weight of a point is 0 (or 1) flag it as an F point.
The original proposal [3] does not refuse C–C connections and flags nodes when their

weight is 0. We will denote this algorithm by ‘p’ and the one with a check and a flag when
the weight is 1 by ‘p1’.

2.3.3. Algorithm C3. Another possibility is to use the following algorithm. As weights
we use the max norms of the columns of M or N scaled to have a unit diagonal. We choose
the point with maximal weight as a C point and flag the influences as F points. We find the
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points that influence the new F points and raise their weights by a percentage of the initial
maximum weight. This is followed by the second pass of the standard algorithm. Finally, for
interpolation purposes, we check that every F point has at least one C neighbour. This will
be denoted as ‘m2’.

Finally, we remark that the selection of the coarse grids depends on the matrices on
the coarse levels and therefore also on the interpolation scheme which gives P and R and
consequently the next coarse matrix. This implies that if we change the interpolation scheme,
the number and location of coarse nodes also change.

2.4. The interpolation algorithm. The classical multigrid algorithm uses bilinear in-
terpolation. However, it is well known that this is not satisfactory for general problems.

2.4.1. Algorithm I1. The standard AMG algorithm uses instead an interpolation based
on the equations in the linear system. However, some approximations have to be done. Fi-
nally, for a point i in F , the interpolation weight with a coarse point j is

ωi,j = −
ai,j +

∑

k∈DS
i

ai,kak,j
∑

m∈Ci
ak,m

ai,i +
∑

k∈DW
i

ai,k

.

This will be denoted as ‘st’ (standard interpolation). It is obtained by writing the equation
for Ae = 0 and by doing some approximations; namely writing that ej ≈ ei for weak
connections and using a weighted average for F connections. Note that the given F point
needs to have at least one coarse point in its neighbourhood in the graph of A in order to be
able to apply this interpolation scheme.

2.4.2. Algorithm I2. We can also use the approximate inverse to generate the inter-
polation weights; see [7]. Let Ci be the set of coarse nodes in Si. For an F point i, the
interpolation weights wi,j are defined as

wi,j =
ni,j

∑

l∈Ci
ni,l

, j ∈ Ci,

where N = M or Z̃ + Z̃T −Q. In fact, in the most general case we use the absolute values
of the coefficients. The rationale behind this choice being that the points which are more
important for interpolation are the ones with the strongest connections. These choices will be
denoted respectively as ‘im’ and ‘iz’.

2.4.3. Algorithm I3. Another possibility is to use the approximate inverse in a different
way. Suppose the matrix is permuted to

(

Af,f Af,c

AT
f,c Ac,c

)

,

and we have an approximate inverse M partitioned in the same way. This can be an approx-
imate inverse of the permuted A or the permutation of an approximate inverse (note that this
is not the same). Then, we can set the interpolation matrix as

P =

(

−Mf,fAf,c

I

)

,

and the restriction is as usual R = P T . The RAP matrix is

RAP = Ac,c −AT
f,cMf,fAf,c −AT

f,cMf,f (I −Af,f Mf,f )Af,c,
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that is an approximate Schur complement plus a correction term which must be small if Mf,f

is a good approximation of the inverse of Af,f . Strictly speaking, using the equations, we
would have to apply a correction on the F unknowns after interpolation, but we neglect this
as there was not a clear gain in the numerical experiments for large problems. We will refer
to this as ‘sc’ interpolation.

2.4.4. Algorithm I4. We will also consider briefly other interpolation schemes. One is
the energy minimization interpolation described by Wan, Chan, and Smith in the finite ele-
ment framework; see [12]. Although this is formulated for finite elements, this interpolation
can be used in a more general setting. The prolongation operator relates the coarse grid basis
functions φH

i to the fine grid basis functions φh
i by

[φH
1 · · ·φH

m] = [φh
1 · · ·φh

n]P.

The coarse grid functions can be expressed in the fine grid basis

φH
i =

n
∑

j=1

ϕi
jφ

h
j ,

and we are looking for coefficients ϕi
j that minimize the A–norm of the coarse grid basis

functions satisfying the fact that the interpolation of a constant value is exact. Let

ϕi = (ϕi
1 . . . ϕi

n)T , φ = (ϕ1 . . . ϕm)T .

Then, the minimization problem is min 1

2
φT Qφ, BT φ = 1, where 1 is a vector of all ones, Q

is a block diagonal matrix whose diagonal blocks Qi are given by (Qi)k,l = ak,l if k and l are
neighbours of i (in the graph of A) and δk,l otherwise. The constraints matrix B is given as
BT = (IT

1 · · · IT
m), with (Ii)k,l = 1 if k = l, i being a neighbour of k and 0 otherwise. The

minimization problem is solved using a Lagrange multiplier Λ. This gives a linear system

(

Q B
BT 0

) (

φ
Λ

)

=

(

0
1

)

.

This is solved by eliminating φ to get (BT Q−1B)Λ = −1. Fortunately, Q−1 is not difficult
to obtain, since Q is block diagonal with small blocks. Once we have φ and therefore the ϕjs,
we set P = (ϕ1 · · ·ϕm). This interpolation will be denoted as ’em’.

2.4.5. Algorithm I5. Following the ideas of Wagner [11] we can try to compute an
interpolation that minimizes ‖(I − PRinj)S‖F , where Rinj is the injection and S is the
smoothing operator. So, this interpolation does not only involve A but the smoothing operator.
Wagner [11] also uses this to determine the fine and coarse points. Here, we assume they are
given by the coarsening algorithm. Then, we just have to solve simple constrained quadratic
minimization problems. Let qi be vectors such that (qi)k is 1 if k = i, −pi,k if k ∈ Pi, the
set of nodes used for the interpolation in i ∈ F , and 0 otherwise. The pi,ks are the entries of
P . Then, for all i we have to solve

min ‖ST qi‖2, qT
i 1 = 0.

This interpolation is denoted by ’wi’.
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2.4.6. Algorithm I6. A last possibility is to use a “local” solve to compute the inter-
polation weights. Suppose we are considering node i ∈ F . Then i has coarse and fine
neighbours. We look only at the coarse neighbours of the fine neighbours (assuming that
we will fix a value of zero for the fine neighbours of the fine neighbours). Then from A we
extract the matrix corresponding to this set of nodes (i, the neighbours of i and the coarse
neighbours of the fine neighbours of i) and we express the fine unknowns as a function of the
coarse unknowns in this “small” system. The coefficients expressing i as a function of the
coarse nodes give the interpolation weights when normalized for having a sum of 1. If the
extracted matrix is

(

Bf,f Bf,c

BT
f,c Bc,c

)

,

then, we have xf = −B−1

f,fBf,cxc, and this gives the desired solution. This interpolation is
denoted by ’wm’. It is a little bit similar to the Schur complement interpolation but operates
only locally. Of course, it can be extended to a larger stencil by considering the neighbours
of the neighbours of the neighbours and so on.

Numerically, we will only look at these different interpolations for one (discontinuous)
problem we are going to describe, since it is almost impossible to test the possible combina-
tions of influence, coarsening, interpolation, and smoother.

2.5. Other possibilities. Variations of the previous algorithms which use the approxi-
mate inverse AINV include using a parameter τ which varies with the level or using only the
q largest elements on each column of Z. Another possibility is to use the regular AINV on
the finest level and to truncate on the coarsest levels. This can sometimes save some floating
point operations and still give the same number of iterations as the full algorithm. Many other
smoothers have been suggested in the literature like block Jacobi or symmetric Gauss–Seidel
with multicolor orderings.

3. Numerical experiments. Here we describe the test problems we use and we com-
ment on the results which are given in tables in the next section. In all the experiments in this
paper, we stop with a criterion

‖rk‖ ≤ ε‖r0‖,

where rk is the residual at iteration k and ε = 10−10. The right hand side b is the same
random vector in all experiments of the same dimension and the initial vector is x0 = 0.

3.1. The Poisson equation. We solve the Poisson equation with Dirichlet boundary
conditions in the unit square with m discretization points in each direction (excluding bound-
aries) with a natural (left to right and bottom to top) ordering. This gives a matrix of order
n = m2. It is well known (see for instance [6]) that the condition number of the matrix is
proportional to 1/h2 where h = 1/(m + 1). This can be computed analytically. Experi-
mentally, we found that κ(A) = 0.4 h2. For the dimensions we used (m = 10 : 10 : 60)
this gives 48.4, 178.1, 388.8, 680.6, 1053.4, 1506.2; therefore this matrix can be considered
as well conditioned.

Let us first look at the AMG algorithm (that is, as a stand alone algorithm not using
PCG). We use a Gauss–Seidel smoother, the coarse grids are chosen using ‘a’, with τ = 0.06
(but any value less than 0.25 will give the same results at least for the first coarse level), the
standard interpolation ‘st’ and one step of pre and post smoothing (ν = 1). We would like
to note that these results are obtained with our own Matlab implementation of this algorithm
and it might not be completely comparable to what was defined in [8]. So, we do not claim
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that our results are representative of what could be obtained with the implementation of Ruge
and Stuben. We note also that we could have used all the smoothers, coarsening algorithms
and interpolation schemes we are considering in an AMG–like algorithm and not as a pre-
conditioner for CG. AMG has the advantage over PCG of not requiring scalar products.

We give the number of iterations, the reduction factor ρ (which is computed on the last
iterations), the number of floating point operations (excluding the initialization phase).

In Table 1 we look at the multigrid results for (our implementation of the) AMG with
a maximum of 7 levels (which is enough for the problem sizes we are going to consider).
We use a direct solver when the dimension of the matrix is smaller than 10. The coarsening
algorithm is used without a second pass. We give the number of operations divided by n and
on the last line the number of points in the different grids.

We can see from Table 1 that the number of iterations is constant (at least for these prob-
lem sizes) as well as the asymptotic reduction factor. Moreover, the number of operations is
almost 1470 n. This means that this method is scalable for this particular problem. However,
an iteration of this method cannot be used as a preconditioner for PCG since the correspond-
ing matrix M̃1 is not symmetric positive definite. As we said before we will have to use a
symmetric Gauss–Seidel smoother.

We now start looking at the results for the multilevel preconditioners using PCG. The
algorithms are denoted by a tuple: (smoother, influence, coarsening, interpolation). Moreover
we can also use different values of ν the number of smoothing steps and/or of the cycle
parameter γ. In addition to the number of iterations, we give the number of nodes on each grid
as well as the total storage for the preconditioner under ‘str’. The number of operations is also
given (under ‘op’) as well as the number of operations divided by the problem size. This is
used to assess the real (sequential) scalability of the algorithm. Finally, we give the condition
number as given by the eigenvalues that can be computed from the PCG coefficients. This
might not be very accurate when the number of iterations is too small.

We remark that we cannot test all the combinations of the smoother, the influence matrix,
the coarsening and the interpolation. For instance, we cannot use the standard ‘st’ interpola-
tion if we do not have at least one coarse point in the neighbours of a fine node in the graph
of A.

Table 2 gives the results of an algorithm using (‘gs’, ‘a’, ‘st’, ‘st’). This algorithm is
scalable with an operation count about the same as AMG (with ν = 1). The cost of the
smoother is larger (since we use symmetric Gauss–Seidel) but the number of iterations is ap-
proximately half those of AMG. Of course, the storage is rather low as we do not have to store
the smoother for the symmetric Gauss–Seidel method. However, we note that this algorithm
is not parallel. To obtain a parallel algorithm the symmetric Gauss–Seidel smoother would
have to be used with a multicolor ordering of the unknowns. Finally, we can see that it does
not pay to smooth more by using ν > 1 since the decrease in the number of iterations is not
large enough to compensate the increase for the cost of one iteration. It is interesting to note
that the coarse matrices are better and better conditioned when their dimension decreases.
For instance, for m = 40 we have κ(AC) = 680.6, 170.6, 42.5, 10.6, 2.8. The ratio between
successive condition numbers is almost 4. This is also true for other problem sizes.

Table 3 shows the results with an Incomplete Cholesky smoother everything else being
the same as in Table 2. The results of Table 3 are a little better than those in Table 2 using a
symmetric Gauss–Seidel smoother regarding the number of operations. The storage is larger
with the IC smoother since we have to store the preconditioner. The method is scalable but
also not parallel although there are some ways to partially parallelize the Incomplete Cholesky
factorization.

Table 4 gives results for the AINV smoother everything else being the same as in Table 2.
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The results in Table 4 show that AINV is a smoother which is not as good (with this value of
τ ) as the symmetric Gauss–Seidel or the Incomplete Cholesky decomposition. The number
of iterations is almost twice what it is for IC. However, it must be noted that we do not keep
too much fill–in in AINV (using a smaller value of the parameter τ will decrease the number
of iterations although at the expense of a larger storage). Moreover, AINV is a fully parallel
smoother since it only involves matrix–vector multiplies. The number of iterations can be
lowered by using a W–cycle (γ = 2). Then for ν = 1, 2, 5 we obtain 9, 6, 4 iterations but the
number of operations is larger than with γ = 1.

The results for ’tw’ are given in Table 5. From these results and comparing with those
in Table 4, we see than ’tw’ is a better smoother than ’ai’. The number of iterations and
the number of operations are approximately the same as for the symmetric Gauss–Seidel
smoother ’gs’. However, using ’tw’ is fully parallel since the operation to apply the smoother
is a matrix–vector product.

Table 6 gives the results for 3 iterations of the conjugate gradient with a diagonal pre-
conditioner as a smoother. This is a good smoother but more expensive than IC. The number
of iterations is smaller than for the AINV smoother but the cost is higher.

Table 7 shows that it is not interesting to use PCG with an AINV preconditioner as a
smoother for this problem. The number of iterations is the same as with a diagonal precondi-
tioner but, of course, the cost is larger. However, using this smoother is better than smoothing
more when using the AINV smoother.

The results for the least squares polynomial are given in Table 8. We use a polynomial
of order 1 since it is shown in Table 9 that, although increasing the degree of the polynomial
decreases the number of iterations, there is no gain concerning the number of operations. This
is because the decrease in the number of iterations is not fast enough to compensate for the
larger number of matrix–vector products when we increase the degree.

The polynomial is computed using an interval [a, b], which is usually taken as 0 ≤ a ≤
λmin(A), b ≥ λmax(A). We have tried varying a since one can argue that we do not need
to approximate all the eigenvalue spectrum for a smoother. For the Poisson problem, starting
with a = λmin and increasing a towards b increases slightly the number of iterations by 1 or
2.

In Table 10 we look at the other coarsening algorithms when using ‘a’ to define the
influence matrices and AINV as a smoother. The good news is that the number of iterations
is almost insensitive to the coarsening algorithm. The bad news is that there can be very large
differences in the number of operations depending on the choices of the coarse grids. For
instance, ‘p’ (as used in this paper) tends to generate coarse grids with too many nodes and
the cost is much larger. So, it is of interest to be able to generate coarse grids with as many
few nodes as we could while preserving the number of iterations.

We now describe the results with the other interpolation schemes. Table 11 gives the
results with the Schur interpolation ’sc’. The results using the Schur interpolation are clearly
not scalable. There is a large increase in the number of iterations, the number of operations
and the storage. Therefore, we won’t use this algorithm anymore for the other problems.
However, we note that this kind of interpolation has been used successfully in other papers
but with a diagonal approximation to Af,f .

Table 12 gives the results for the interpolation scheme using the entries of the factors of
the approximate inverse. The results of Table 12 are (almost) scalable. Although the number
of iterations is slightly larger than for other smoothers (which shows that AINV is not as
good in this respect as IC) the number of operations is scalable. We note that there is a
slight increase in the condition number which is about twice what it is for IC. The storage is
comparable with IC. We remark that the cost is a little bit higher because, for this problem,
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there are a few more nodes on the coarse grids than using ’a’ but the differences are very
small. This can possibly be corrected by using a smaller value of τ since we will have less
coarse nodes. However, the main reason for the difference in the number of iterations is the
smoother.

One way to lower the number of iterations is to keep more fill–in (by using a smaller
value of τ ) at the expense of more operations per iteration or by using a W–cycle (γ = 2) but
this also gives a larger number of operations.

If we would have used the standard ’st’ interpolation (which is feasible for this problem
because every F node has a C node in its neighbours in the graph of A) we would have
gotten the same results within one or two iterations. Therefore, our choice of algorithm could
depend on our goals: a parallel algorithm, the smallest number of operations or the smallest
storage. Unfortunately some of these goals are conflicting.

The conclusion for the Poisson equation is that all these preconditioners are given good
results except the one using the Schur interpolation. They are all scalable and it appears that
the most important component for this problem is the smoother. However, this equation has
constant coefficients, so we must investigate more difficult problems before being able to
make choices.

3.2. An anisotropic problem. We now would like to solve a diffusion problem with
constant but anisotropic coefficients. The diffusion coefficient is 1 in the x–direction and 100
in the y–direction. This is a tough problem for approximate inverses since the decrease in the
elements of the inverse of A is very slow in one direction and therefore approximations of the
inverse with only a few non zero entries are not going to be accurate. In fact, the fill–in for
the approximate factors in AINV is very sensitive to the threshold parameter.

On the contrary, this is a very nice problem for IC if the unknowns are properly num-
bered since the approximate factorization is close to the exact one since (with possibly some
renumbering) the matrix is almost block diagonal with tridiagonal blocks. In fact a block
diagonal smoother will probably do well on this problem.

We symmetrically scale the matrix A to have a unit diagonal (obtaining Ad). However,
for this problem, the condition number of the scaled matrix is the same as for the original
one. Moreover, the condition number of A is almost the same as for the Poisson problem:
0.4/h2. The scaling is more generally necessary to have a threshold parameter τ which is
not varying too much with the problem. The condition numbers of AC for m = 40 are
672.3, 171.6, 59.3, 27.3, 14.6, 8.6, 6.1.

Table 13 gives the results of our AMG implementation. The number of iterations is
constant and the number of operations is approximately 1670 n. This is almost the same as
for the Poisson problem. Therefore we have a scalable algorithm.

Table 14 gives the results using the multilevel preconditioner with the symmetric Gauss–
Seidel smoother. The coarse grids are generated by looking at the matrix entries. For this
matrix, this automatically gives a semi coarsening with a very regular grid.

Table 15 gives the results for IC as a smoother. They are better than with symmetric
Gauss–Seidel because IC is doing well for this problem. However, these two smoothers are
not parallel.

Table 16 gives the results using AINV as a smoother. As we said before, this leads to
more storage than, for instance using IC, because of the decay properties of the inverse. It
does not exist a value of τ giving the same storage as for IC. The only way to get a smaller
storage will be to truncate the approximate inverse. The number of iterations is constant but
the number of operations is slightly increasing. The storage is much higher than with the two
previous smoothers.
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The results for ‘tw’ are given in Table 17. This shows again that this is a better smoother
than ‘ai’.

Table 18 shows that the number of iterations using PCG with a diagonal preconditioner
is almost the same as with the symmetric Gauss–Seidel or AINV. However, the cost is larger.

The number of iterations in Table 19 using PCG with AINV preconditioner is smaller
but this smoother is more costly. Note that this differs from the Poisson equation.

Table 20 gives the results for the least squares polynomial smoother. Again, this is a
good parallel smoother since the results are as good as for symmetric Gauss–Seidel and there
is no storage for the smoother.

For the anisotropic problem the results in Table 21 using the ‘z’ scheme for the influence
matrix are not fully scalable, even with the W–cycle although the increase in the number
of iterations is quite small. However, we note that the cost is not higher than for the other
methods and the storage is smaller (by a factor of 2) than what we get with ‘a’. We note that
if we use ν = 2 with the W–cycle the results are almost scalable even though it is more costly
for small problems.

It is likely that these troubles arise because the problem is strongly coupled in one direc-
tion and consequently we find a very coarse grid with only one coarse point on every vertical
line of the mesh. All the other points on the vertical line are strongly coupled to that point.
We would like to generate more points in the coarse grids.

This can be done by using a couple of threshold parameters. Table 22 gives the results
with AINV and τ = (1, 0.01). This leads to coarse grids with more nodes and approximate
inverses with more fill–in since the second parameter is smaller. We see from the results
that the number of iterations is almost constant. However, the storage and the number of
operations grow with the problem dimension. Moreover, the number of operations is much
larger than when using τ = 0.1. We note that smoothing more is not enough to obtain a
number of iterations independent of the problem dimension. Only putting more nodes (using
τ = (1, 0.1)) allows to obtain a smaller number of iterations.

There are other ways to obtain grids with more nodes. For instance, we can generate
the grid using ‘z’ and then check if every fine node has a C neighbour in the graph of A. If
not, we can add coarse nodes by choosing one of the neighbours. This allows also to have
a constant number of iterations. But, as we have seen, it is usually not necessary to have so
many coarse nodes.

3.3. A discontinuous problem. Here we are concerned with an isotropic diffusion
problem with constant but discontinuous coefficients. The diffusion coefficient is 1 except
in the strip [0, 1]× [1/4, 3/4] where its value is 100. In the discretization we were not really
cautious about the average of the coefficients; we just took their pointwise values. There-
fore, we will have sometimes to use problem dimensions different from those of the previous
problems in order not to have to compute the coefficients on the discontinuities.

We symmetrically scale the matrix A to have a unit diagonal. The scaled matrix is an
M–matrix but it is not diagonally dominant. The condition number of Ad is almost 0.8/h2.

Table 23 gives the results of AMG. We can see that the number of iterations is increasing
although only slowly. It can be that other values of τ could give better results.

Table 24 gives the results using the multilevel preconditioner with the symmetric Gauss–
Seidel smoother. The coarse grids are generated by looking at the matrix entries. The number
of iterations is constant and the number of operations is proportional to n.

Table 25 gives the results for IC as a smoother. They are comparable to those of the
Gauss–Seidel smoother.

Table 26 gives the results using AINV as a smoother. Contrary to the results for the
anisotropic problem the number of iterations is about the same as for the other smoothers.
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The storage and the number of operations are larger. This can be corrected by using other
values of τ .

The results for ‘tw’ are given in Table 27. We remark that for this problem the number
of iterations is larger than with AINV but this smoother is cheaper and the storage is much
smaller (which probably explains the number of iterations).

Table 28 shows that PCG with the diagonal preconditioner gives also almost the same
results but the number of operations is larger. This is the same with the AINV preconditioner
in Table 29.

The results for the least squares polynomial are given in Table 30. The number of op-
erations is a little larger than for ‘gs’ and ‘ic’ but the storage is quite low and this smoother
is parallel. The number of operations is smaller with ‘tw’ but the storage is smaller with the
polynomial.

For the discontinuous problem, the results in Table 31 using the approximate inverse for
coarsening are not scalable for the V–cycle since the number of iterations is slightly increasing
with the problem dimension. The increase for the number of iterations is really small for the
W–cycle. We note that, nevertheless, for these small problem dimensions the numbers of
operations are comparable to those in Table 26 and the storage is smaller by a factor of 2
because the grids are much coarser. The number of iterations can be reduced if we use coarse
grids with more points with τ = (0.2, 0.06) like in Table 32. It can be further reduce if we
smooth a little more using τ = (0.2, 0.01) at the expense of a larger storage.

We check that the results are independent from the jumps in the coefficients by doing
some computations with larger jumps. Moreover, this is also true for other problems with
discontinuous coefficients. For ‘z’, ‘iz’ the results are almost independent of the jumps.

Table 33 gives the results using (’ai’, ’a’,’st’,-) for different interpolation schemes. The
results for the ’st’ interpolation are found in Table 26. One can see that there are not that
many differences in the numbers of iterations which are almost independent of the size of the
problem. There are more differences on the numbers of operations as well as for the storage.
We ran out of memory with ’wi’ because of the way we coded the algorithm in Matlab. This
is not intrinsic to the method. For this problem the best results are given by the standard
interpolation ‘st’. The other schemes are more costly.

3.4. A problem with rapidly varying coefficients. This problem is isotropic. The dif-
fusion coefficient is 1 + 1000|x− y|. It varies from 1000 on the boundary to 1 on the main
diagonal of the mesh. We symmetrically scale the matrix A to have a unit diagonal (obtaining
Ad). The condition number of Ad is 0.2/h2.

Table 34 gives the results for AMG. The number of iterations is slowly increasing and
slightly larger than for the Poisson problem.

Tables 35 to 40 show that the results are always in the same range for all smoothers. For
the ‘z’ influence matrix in Table 42 the number of iterations is slowly increasing for γ = 1
and almost constant for γ = 2. The number of iterations is better for τ = (1, 0.01) but the
cost is much larger. Amongst the parallel methods ‘tw’ gives the best results. However, the
polynomial smoother is not far behind and the storage is smaller.

3.5. A random Laplacian. To show that multilevel methods are not only working for
M–matrices we consider matrices arising from the Poisson equation as in the first example
but with the signs of the non zero non diagonal coefficients chosen at random. This implies
that the matrix is an H–matrix.

Table 44 shows that the results of AMG for this problem are even a little better than for
the Poisson equation.

This is true also in Tables 45 to 52 for the PCG preconditioners. This shows that all these
methods are working nicely for H–matrices.
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3.6. Other problems. All the preceding examples except the last one arise from
two dimensional diffusion equations on a square domain discretized with a five point
scheme. We would like to see how these methods behave on examples coming from other
areas of scientific computing. We chose some symmetric matrices from the Harwell–
Boeing collection or from the Boeing collection stored in the Tim Davis’ collection
(http://www.cise.ufl.edu). We had to normalize some of these matrices to be able
to use the same values of τ as before. Of course, since the order of the matrices are given we
cannot check if there is a dependence of the number of iterations on the size of the problem.
Moreover, some of the problems are quite small and it can be that for instance AINV is faster
than its multilevel counterparts. A solution with a direct method is also much faster. We use
the following examples:

1. 1138-bus. An admittance matrix of order 1138 with 4054 non–zeros. This matrix
has a small minimum eigenvalue and a condition number of about 8.5 106. Our AMG imple-
mentation does not work on this matrix and the other methods do not give very good results
although they are converging. To obtain a meaningful problem we add 0.01 to the diagonal
elements of the normalized matrix. This gives a matrix with a condition number of 201.

2. bcsstk01. A stiffness matrix of order 48 with 400 non-zeros. It was normalized.
This matrix is not diagonally dominant, nor an M–matrix, but nevertheless positive definite.
The condition number of the normalized matrix is 1361.

3. gr3030. A matrix arising from a nine point approximation to the Laplacian on the
unit square with a 30×30 mesh. It has order 900 and 7744 non–zeros. The condition number
of the normalized matrix is 195.

4. bcsstk34. A stiffness matrix of order 588 with 21418 non-zeros. This matrix was
normalized. Its condition number is 1.8.

5. bcsstk27. A matrix arising from the buckling analysis of an engine inlet of order
1224 with 56126 non-zeros. The normalized matrix has a condition number of 1024. This
problem is quite difficult to solve.

3.6.1. 1138-bus modified. Table 53 gives the results for some of the methods we have
studied so far. The smallest number of operations is given by the AINV smoother used
with the ‘z’ influence matrix and ‘iz’ interpolation which gives a very low storage. The
preconditioner ‘tw’ gives a large number of iterations since for this example the approximate
inverse that is produced for the fine level is not positive definite. We note that for this problem
the AINV smoother is working quite well since the number of iterations is smaller than for
the other smoothers with a storage which is not much larger. The worst results are given by
the PCG smoother with a diagonal preconditioner (which has no effect for this problem).

3.6.2. bcsstk01. Table 54 show that the AINV smoother is again working well although
‘tw’ is cheaper. We note that a degree 1 polynomial does not give good results. The best
results are given using the ‘a’ influence matrix and the ‘st’ interpolation. However, the results
using ‘z’ and ‘iz’ (using a different value of τ to be able to generate at least two grids) are
quite close and the storage is smaller.

3.6.3. gr3030. Table 55 gives the results for the 9 point finite difference matrix. For this
problem the best results are given by the IC smoother although the other methods are not too
far away.

3.6.4. bcsstk34. Table 56 gives the results for all the methods. A value of τ = 0.01 is
used to be able to generate grids with enough nodes with ‘a’. The best results are given by the
IC smoother. Using the ‘z’ influence matrix gives coarse grids with more nodes and therefore
a larger storage. It is likely that using another value of τ will be better for ‘z’.
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3.6.5. bcsstk27. We are not able to solve this problem using IC with no fill-in as well
as with low order polynomials. It is likely that we should have to keep more fill-in for the
Cholesky decomposition. We can solve the problem with polynomials of order larger than
20. However, the number of operations is much larger than for others methods. Similarly, we
note that using ‘tw’ we got a very large number of iterations. This could have been fixed by
extending the stencil. However, it is much easier just to change the value of τ in AINV. The
problem is efficiently solved using the symmetric Gauss-Seidel smoother but this algorithm
is not parallel. Using AINV requires a small value of τ to obtain a small number of iterations
but then the storage is quite large.

4. Tables of results. In this section we group the results that were analyzed in the previ-
ous section. We show the results in this way since whatever we would have been doing using
LATEX, the comments would not have been on the same page as the corresponding results.

TABLE 1
AMG for Poisson equation, τ = 0.06

m = 10 m = 20 m = 30
11 12 12

ρ = 0.08 ρ = 0.12 ρ = 0.12
op=122941, /n=1221 op=561953, /n=1405 op=1297936, /n=1442

100-50-14 400-200-51-14 900-450-119–32-13

m = 40 m = 50 m = 60
12 12 12

ρ = 0.12 ρ = 0.12 ρ = 0.12
op=2313029, /n=1446 op=3664272, /n=1466 op=5269951, /n=1464

1600-800-206- 2500-1250-324- 3600-1800-461-
-53-15 -84-26-17-13 -119-34-13
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TABLE 2
PCG for Poisson equation, τ = 0.06, multilevel, (‘gs’, ‘a’, ‘st’, ‘st’), γ = 1

m ν = 1 ν = 2 ν = 5
10 6 5 4

op=107129, /n=1071 op=138717, /n=1387 op=233153, /n=2332
100-50-14

str=1297, /n=13
κ = 1.05 κ = 1.02 κ = 1.005

20 6 5 4
op=484856, /n=1212 op=636731, /n=1592 op=1084798, /n=2712

400-200-51-14
str=5561, /n=13.9

κ = 1.07 κ = 1.03 κ = 1.01
30 6 5 4

op=1138521, /n=1265 op=1499701, /n=1666 op=2562353, /n=2847
900-450-119-32-13
str=12995, /n=14.4

κ = 1.06 κ = 1.03 κ = 1.01
40 7 5 5

op=2330221, /n=1456 op=2681901, /n=1676 op=5505957, /n=3441
1600-800-206-53-15
str=23173, /n=14.5

κ = 1.07 κ = 1.03 κ = 1.01
50 6 5 5

op=3222342, /n=1289 op=4248607, /n=1699 op=8727417, /n=3491
2500-1250-324-84-26-17

str=36744, /n=14.7
κ = 1.06 κ = 1.03 κ = 1.01

60 7 5 5
op=5319529, /n=1477 op=6126171, /n=1702 op=12584007, /n=3496

3600-1800-461-119-34-18-13
str=52943, /n=14.7

κ = 1.07 κ = 1.03 κ = 1.01
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TABLE 3
PCG for Poisson equation,τ = 0.06 , multilevel, (‘ic’, ‘a’, ‘st’, ‘st’), γ = 1

m ν = 1 ν = 2 ν = 5
10 5 4 3

op=85197, /n=852 op=114429, /n=1144 op=196072, /n=1961
100-50-14

str=2005, /n=20
κ = 1.02 κ = 1.007 κ = 1.002

20 5 4 4
op=381911, /n=954.8 op=521019, /n=1302 op=1132936, /n=2832

400-200-51-14
str=8584, /n=21.5

κ = 1.03 κ = 1.01 κ = 1.003
30 5 4 4

op=894202, /n=993.6 op=1223778, /n=1360 op=2667643, /n=2964
900-450-119-32-13
str=20009, /n=22.2

κ = 1.02 κ = 1.01 κ = 1.003
40 5 5 4

op=1598145, /n=998.8 op=2631408, /n=1644 op=4771293, /n=2982
1600-800-206-53-15
str=35667, /n=22.3

κ = 1.03 κ = 1.01 κ = 1.004
50 5 5 4

op=2528438, /n=1011 op=4165773, /n=1666 op=7557527, /n=3023
2500-1250-324-84-26-17

str=56497, /n=22.6
κ = 1.02 κ = 1.01 κ = 1.004

60 6 5 4
op=4265230, /n=1185 op=6008813, /n=1669 op=10901958, /n=3028

3600-1800-461-119-34-18-13
str=81388, /n=22.6

κ = 1.03 κ = 1.01 κ = 1.005
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TABLE 4
PCG for Poisson equation, τ = 0.06, multilevel, (‘ai’, ‘a’, ‘st’, ‘st’), γ = 1

m ν = 1 ν = 2 ν = 5
10 11 7 4

op=167073, /n=1670 op=171069, /n=1711 op=219258, /n=2193
100-50-14

str=1892, /n=18.9
κ = 1.74 κ = 1.22 κ = 1.02

20 13 9 5
op=834163, /n=2085 op=946283, /n=2366 op=1199387, /n=2998

400-200-51-14
str=8179, /n=20.4

κ = 1.96 κ = 1.32 κ = 1.03
30 14 9 6

op=2077423, /n=2308 op=2214933, /n=2461 op=3299799, /n=3666
900-450-119-32-13
str=19044, /n=21.2

κ = 2.01 κ = 1.34 κ = 1.04
40 14 10 6

op=3723423, /n=2327 op=4381433, /n=2738 op=5944087, /n=3715
1600-800-206-53-15
str=34278, /n=21.4

κ = 2.03 κ = 1.35 κ = 1.04
50 14 10 6

op=5897948, /n=2359 op=6949048, /n=2780 op=9437844, /n=3775
2500-1250-324-84-26-17

str=54255, /n=21.7
κ = 2.04 κ = 1.35 κ = 1.04

60 14 10 6
op=8515738, /n=2365 op=10041954, /n=2789 op=13648658, /n=3791

3600-1800-461-119-34-18
str=78369, /n=21.8

κ = 2.05 κ = 1.36 κ = 1.04
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TABLE 5
PCG for the Poisson equation, τ = 0.06, multilevel, (‘tw’, ‘a’, ‘st’, ‘st’)

m ν = 1 ν = 2 ν = 5
10 7 5 4

op=102165, /n=1022 op=119733, /n=1197 op=208333, /n=2083
100-50-14

str=2221, /n=22.1
κ = 1.13 κ = 1.03 κ = 1.01

20 8 6 5
op=517790, /n=1294 op=641208, /n=1603 op=1165859, /n=2915

400-200-51-14
str=9612, /n=24

κ = 1.14 κ = 1.05 κ = 1.02
30 7 6 5

op=1077525, /n=1197 op=1509661, /n=1677 op=2754397, /n=3060
900-450-119-32-13
str=22481, /n=25

κ = 1.13 κ = 1.04 κ = 1.02
40 8 6 5

op=2172141, /n=1358 op=2702569, /n=1689 op=4933860, /n=3084
1600-800-206-53-15
str=40139, /n=25.1

κ = 1.14 κ = 1.05 κ = 1.02
50 8 6 5

op=3438494, /n=1375 op=4281980, /n=1713 op=7823195, /n=3129
2500-1250-324-84-26-17

str=63647, /n=25.5
κ = 1.14 κ = 1.05 κ = 1.02

60 8 6 5
op=4961032, /n=1378 op=6179210, /n=1716 op=11291359, /n=3136

3600-1800-461-119-34-18
str=91737, /n=25.5

κ = 1.14 κ = 1.05 κ = 1.02
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TABLE 6
PCG for the Poisson equation, τ = 0.06, ν = 3, multilevel, (‘gc’, ‘a’, ‘st’, ‘st’)

m γ = 1 γ = 2
10 7 3

op=258997, /n=2590 op=346789, /n=3468
100-50-14

str=1297, /n=13
κ = 1.11 κ = 1.0006

20 7 3
op=1161445, /n=2904 op=1825181, /n=4563

400-200-51-14
str=5561, /n=13.9

κ = 1.10 κ = 1.0007
30 7 3

op=2713029, /n=3014 op=4684773, /n=5205
900-450-119-32-13
str=12995, /n=14.4

κ = 1.09 κ = 1.0007
40 7 4

op=4837789, /n=3024 op=10394193, /n=6496
1600-800-206-53-15
str=23173, /n=14.5

κ = 1.09 κ = 1.0008
50 7 3

op=7645725, /n=3058 op=13882757, /n=5553
2500-1250-324-84-26-17

str=36744, /n=14.7
κ = 1.08 κ = 1.0005

60 7 3
op=11017285, /n=3060 op=19903005, /n=5529

3600-1800-461-119-34-18
str=52943, /n=14.7

κ = 1.07 κ = 1.0005
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TABLE 7
PCG for the Poisson equation, τ = 0.06, ν = 3, multilevel, (‘cg’, ‘a’, ‘st’, ‘st’)

m γ = 1 γ = 2
10 5 3

op=273117, /n=2731 op=486565, /n=4866
100-50-14

str=1892, /n=18.9
κ = 1.02 κ = 1

20 7 3
op=1657317, /n=4143 op=2578333, /n=6446

400-200-51-14
str=8179, /n=20.4

κ = 1.12 κ = 1.0002
30 7 3

op=3832301, /n=4258 op=6072229, /n=6747
900-450-119-32-13
str=19044, /n=21.2

κ = 1.11 κ = 1.0003
40 7 3

op=6992029, /n=4370 op=11914653, /n=7447
1600-800-206-53-15
str=34278, /n=21.4

κ = 1.07 κ = 1.0003
50 7 3

op=11029221, /n=4412 op=18004603, /n=7598
2500-1250-324-84-26-17

str=54255, /n=21.7
κ = 1.08 κ = 1.0004

60 7 3
op=15931997, /n=4426 op=27416989, /n=7616

3600-1800-461-119-34-18
str=78369, /n=21.8

κ = 1.07 κ = 1.0003
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TABLE 8
PCG for the Poisson equation, τ = 0.06, multilevel, (‘po’, ‘a’, ‘st’, ‘st’), k = 1

m ν = 1 ν = 2 ν = 5
10 6 5 4

op=132273, /n=1323 op=193605, /n=1936 op=362233, /n=3622
100-50-14

str=1297, /n=13
κ = 1.07 κ = 1.03 κ = 1.01

20 7 6 5
op=681509, /n=1704 op=1029766, /n=2574 op=1998470, /n=4996

400-200-51-14
str=5561, /n=13.9

κ = 1.09 κ = 1.05 κ = 1.02
30 7 6 5

op=1596741, /n=1774 op=2418289, /n=2687 op=4701457, /n=5224
900-450-119-32-13
str=12995, /n=14.4

κ = 1.09 κ = 1.04 κ = 1.02
40 7 6 5

op=2852573, /n=1783 op=4321221, /n=2701 op=8402409, /n=5251
1600-800-206-53-15
str=23173, /n=14.5

κ = 1.11 κ = 1.06 κ = 1.03
50 7 6 5

op=4513885, /n=1806 op=6841180, /n=2737 op=13307185, /n=5323
2500-1250-324-84-26-17

str=36744, /n=14.7
κ = 1.09 κ = 1.05 κ = 1.03

60 7 6 5
op=6509253, /n=1808 op=9865746, /n=2740 op=19191079, /n=5331

3600-1800-461-119-34-18
str=52943, /n=14.7

κ = 1.10 κ = 1.05 κ = 1.02
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TABLE 9
PCG for the Poisson problem, m = 20, τ = 0.06, multilevel, (‘po’, ‘a’, ‘st’, ‘st’)

k nb it nb op
1 7 681509 /n=1704
2 6 890800 /n=2227
3 5 1015703 /n=2539
4 5 1268867 /n=3172
5 4 1267188 /n=3168
6 4 1478150 /n=3695
8 4 1900098 /n=4750
10 3 1856225 /n=4640
20 3 3543985 /n=8860
40 2 5187872 /n=12970

TABLE 10
PCG for Poisson equation, τ = 0.06, multilevel, (’ai’, ’a’, ’-’, ’st’), γ = 1

m ‘st’ ‘p’ ‘p1’ ‘m2’
10 11 11 11 11

op=167073 op=275085 op=167073 op=165441
100-50-14 100-50-38-26-16-10 100-50-13 100-50-12

20 13 13 13 13
op=834163 op=1558845 op=837691 op=845195

400-200-51-14 400-200-148-93-48-32-22 400-200-54-13 400-200-50-16
30 14 14 14 14

op=2077423 op=4853923 op=2071768 op=2066158
900-450-119-32-13 900-450-335-217-113-81-55 900-450-119-29-10 900-450-112-29-11

40 14 14 14 14
op=3723423 op=10904208 op=3731718 op=3729153

1600-800-206-53-15 1600-800-593-383-193-141-97 1600-800-209-53-20 1600-800-198-51-14
50 14 14 14 14

op=5897948 op=20402348 op=5892653 op=5884538
2500-1250-324-84-26-17 2500-1250-930-607-308-224-154 2500-1250-324-84-26-16 2500-1250-313-79-25-12
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TABLE 11
PCG for Poisson equation, τ = 0.06, multilevel, (‘ai’, ‘z’, ‘st’, ‘sc’), γ = 1

m ν = 1 ν = 2 ν = 5
10 12 8 5

op=256824, /n=2568 op=276114, /n=2761 op=381183, /n=3812
100-50-25-12

str=3196, /n=31.9
κ = 2.98 κ = 1.87 κ = 1.23

20 20 14 9
op=2498084, /n=6245 op=2793278, /n=6983 op=3881723, /n=9704
400-200-100-51-23-12

str=19215, /n=48
κ = 9.41 κ = 5.33 κ = 2.76

30 28 21 13
op=9571569, /n=10635 op=11377105, /n=12641 op=15099181, /n=16777

900-450-225-110-60-30-15
str=54176, /n=60.2

κ = 19.9 κ = 11.03 κ = 5.4
40 38 27 18

op=26164947, /n=16353 op=29422045, /n=18389 op=41625955, /n=26016
1600-800-400-204-94-47-26

str=111615, /n=69.8
κ = 34.5 κ = 18.9 κ = 9.04

50 45 33 22
op=52278299, /n=20911 op=60515329, /n=24206 op=85339095, /n=34136

2500-1250-625-307-143-71-35
str=190351, /n=76.1

κ = 53.1 κ = 29 κ = 13.7
60 54 40 26

op=101004463, /n=28057 op=117903107, /n=32751 op=161832391, /n=44953
3600-1800-900-458-215-109-53

str=310963, /n=86.4
κ = 75.7 κ = 41.3 κ = 19.4
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TABLE 12
PCG for Poisson equation, τ = 0.06, multilevel, (‘ai’, ‘z’, ‘st’, ‘iz’), γ = 1

m ν = 1 ν = 2 ν = 5
10 12 8 5

op=188340, /n=1883 op=207426, /n=2074 op=292389, /n=2928
100-50-19-10

str=2091, /n=20.9
κ = 1.72 κ = 1.22 κ = 1.02

20 14 10 6
op=987293, /n=2468 op=1161745, /n=2904 op=1575981, /n=3940

400-200-74-36-17
str=9433, /n=23.6

κ = 1.96 κ = 1.35 κ = 1.11
30 15 10 7

op=2448357, /n=2720 op=2709534, /n=3011 op=4216269, /n=4685
900-450-154-69-31-16

str=21701, /n=24.1
κ = 2.02 κ = 1.48 κ = 1.19

40 15 11 8
op=4513421, /n=2821 op=5464389, /n=3415 op=8785665, /n=5491

1600-800-267-130-61-29-13
str=39949, /n=24.9

κ = 2.05 κ = 1.57 κ = 1.25
50 16 11 8

op=7700375, /n=3080 op=8776877, /n=3518 op=14118983, /n=5647
2500-1250-431-208-97-50-21

str=64429, /n=25.7
κ = 2.12 κ = 1.63 κ = 1.29

60 16 12 8
op=11078581, /n=3078 op=13684058, /n=3801 op=20310541, /n=5642

3600-1800-607-283-136-65-27
str=92655, /n=25.7

κ = 2.18 κ = 1.69 κ = 1.32
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TABLE 13
AMG for the anisotropic problem τ = 0.1

m = 10 m = 20 m = 30
10 11 12

ρ = 0.08 ρ = 0.11 ρ = 0.12
op=106889, /n=1069 op=546900,/n=1367 op=1388527, /n=1543

100-50-20-10 400-200-100- 900-450-210-
-40-20-10 -90-45-15

m = 40 m = 50 m = 60
12 12 12

ρ = 0.13 ρ = 0.14 ρ = 0.14
op=2678135, /n=1674 op=4177997, /n=1671 op=6013795, /n=1670

1600-800-400- 2500-1250-600- 3600-1800-900-
-200-100-40-30 -300-150-50-37 -420-210-60-20

TABLE 14
PCG for the anisotropic problem, τ = 0.1, multilevel, (‘gs’, ‘a’, ‘st’, ‘st’)

m γ = 1 γ = 2
10 6 4

op=104749, /n=1047 op=197753, /n=1977
100-50-20

str=1184, /n=11.8
κ = 1.05 κ = 1.002

20 6 4
op=530923, /n=1327 op=1570273, /n=3926
400-200-100-40-20
str=5789, /n=14.5

κ = 1.05 κ = 1.002
30 6 4

op=1252516, /n=1392 op=4589393, /n=5099
900-450-210-90-45-15

str=13500, /n=15
κ = 1.05 κ = 1.0002

40 6 4
op=2537929, /n=1586 op=17283553, /n=10802

1600-800-400-200-120-80-60
str=28652, /n=17.9

κ = 1.05 κ = 1.002
50 6 4

op=3755860, /n=1502 op=16926673, /n=6771
2500-1250-600-300-150-75

str=41320, /n=16.5
κ = 1.05 κ = 1.002

60 6 4
op=5479546, /n=1522 op=25057153, /n=6960

3600-1800-900-420-210-90-75
str=60866, /n=16.9

κ = 1.05 κ = 1.002
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TABLE 15
PCG for the anisotropic problem, τ = 0.1, multilevel, (‘ic’, ‘a’, ‘st’, ‘st’)

m γ = 1 γ = 2
10 3 2

op=54933, /n=549 op=108510, /n=1085
100-50-20

str=1907, /n=19.1
κ = 1.0005 κ = 1

20 3 2
op=275557, /n=689 op=851096, /n=2128
400-200-100-40-20
str=9258, /n=23.1

κ = 1.001 κ = 1
30 3 2

op=647009, /n=719 op=2441542, /n=2713
900-450-210-90-45-15

str=21545, /n=23.9
κ = 1.001 κ = 1

40 3 2
op=1638579, /n=1024 op=9142266, /n=5714

1600-800-400-200-120-80-60
str=45037, /n=28.1

κ = 1.001 κ = 1
50 3 2

op=2432286, /n=973 op=9020462, /n=3608
2500-1250-600-300-150-75

str=65395, /n=26.2
κ = 1.001 κ = 1

60 3 2
op=3547688, /n=985 op=13364557, /n=3712

3600-1800-900-420-210-90-75
str=95952, /n=26.6

κ = 1.001 κ = 1
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TABLE 16
PCG for the anisotropic problem, τ = 0.1, multilevel, (‘ai’, ‘a’, ‘st’, ‘st’)

m γ = 1 γ = 2
10 5 3

op=88917, /n=889 op=147557, /n=1475
100-50-20

str=2100, /n=21
κ = 1.03 κ = 1.0006

20 6 4
op=634271, /n=1586 op=1722753, /n=4307
400-200-100-40-20
str=12232, /n=30.6

κ = 1.04 κ = 1.002
30 6 4

op=1673230, /n=1859 op=5304033, /n=5893
900-450-210-90-45-15

str=31839, /n=35.4
κ = 1.05 κ = 1.002

40 6 4
op=3564073, /n=2227 op=18968193, /n=11855

1600-800-400-200-120-80-60
str=68886, /n=43.05

κ = 1.05 κ = 1.002
50 6 4

op=5672348, /n=2268 op=22715713, /n=9086
2500-1250-600-300-150-75

str=107981, /n=43.2
κ = 1.05 κ = 1.002

60 6 4
op=8597374, /n=2388 op=35687666, /n=9913

3600-1800-900-420-210-90-75
str=163727, /n=45.5

κ = 1.05 κ = 1.002
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TABLE 17
PCG for the anisotropic problem, τ = 0.1, multilevel, (‘tw’, ‘a’, ‘st’, ‘st’)

m γ = 1 γ = 2
10 7 4

op=106173, /n=1062 op=206833, /n=2068
100-50-20

str=2175, /n=21.7
κ = 1.1 κ = 1.005

20 7 4
op=498941, /n=1247 op=1271233, /n=3178
400-200-100-40-20
str=10447, /n=26.1

κ = 1.1 κ = 1.005
30 7 4

op=1174365, /n=1305 op=3672033, /n=4080
900-450-210-90-45-15

str=24455, /n=27.2
κ = 1.1 κ = 1.005

40 7 4
op=2382829, /n=1489 op=14170113, /n=8856

1600-800-400-200-120-80-60
str=51642, /n=32.3

κ = 1.1 κ = 1.005
50 7 4

op=3534429, /n=1414 op=13844513, /n=5538
2500-1250-600-300-150-75

str=74845, /n=29.9
κ = 1.1 κ = 1.005

60 7 4
op=5160485, /n=1433 op=20565153, /n=5712

3600-1800-900-420-210-90-75
str=109978, /n=30.5

κ = 1.1 κ = 1.005
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TABLE 18
PCG for the anisotropic problem, τ = 0.1, ν = 3, multilevel, (‘gc,’ ‘a’, ‘st’, ‘st’)

m γ = 1 γ = 2
10 7 3

op=255893, /n=2559 op=343461, /n=3435
100-50-20

str=1184, /n=11.8
κ = 1.14 κ = 1.0009

20 7 3
op=1298749, /n=3247 op=2706781, /n=6767

400-200-100-40-20
str=5789, /n=14.5

κ = 1.13 κ = 1.0007
30 7 3

op=3038509, /n=3376 op=7705061, /n=8561
900-450-210-90-45-15

str=13500, /n=15
κ = 1.12 κ = 1.0006

40 7 3
op=6002285, /n=3751 op=25570461, /n=15982

1600-800-400-200-120-80-60
str=28652, /n=17.9

κ = 1.11 κ = 1.0005
50 7 3

op=89266621, /n=3571 op=26322181, /n=10529
2500-1250-600-300-150-75

str=41320, /n=16.5
κ = 1.12 κ = 1.0004

60 7 3
op=12989765, /n=3608 op=38772253, /n=10770

3600-1800-900-420-210-90-75
str=60866, /n=16.9

κ = 1.12 κ = 1.0004
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TABLE 19
PCG for the anisotropic problem, τ = 0.1, ν = 3, multilevel, (‘cg,’ ‘a’, ‘st’, ‘st’)

m γ = 1 γ = 2
10 2 1

op=160173, /n=1602 op=277117, /n=2771
100-50-20

str=2100, /n=21
κ = 1 κ = 1

20 3 2
op=1365989, /n=3415 op=4002850, /n=10007

400-200-100-40-20
str=12232, /n=30.6

κ = 1.0001 κ = 1
30 3 2

op=3634417, /n=4038 op=12432212, /n=13814
900-450-210-90-45-15

str=31839, /n=35.4
κ = 1.0003 κ = 1

40 3 2
op=7690141, /n=4806 op=40277673, /n=25174

1600-800-400-200-120-80-60
str=68886, /n=43

κ = 1.0006 κ = 1
50 4 2

op=15368018, /n=6147 op=50719673, /n=20288
2500-1250-600-300-150-75

str=107981, /n=43.2
κ = 1.001 κ = 1

60 4 2
op=23328865, /n=6480 op=79925475, /n=22202

3600-1800-900-420-210-90-75
str=163727, /n=45.5

κ = 1.002 κ = 1
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TABLE 20
PCG for the anisotropic problem, τ = 0.1, multilevel, (‘po’, ‘a’, ‘st’, ‘st’) k = 1

m γ = 1 γ = 2
10 6 4

op=129781, /n=1298 op=247433, /n=2474
100-50-20

str=1184, /n=11.8
κ = 1.06 κ = 1.002

20 7 4
op=752509, /n=1881 op=1956033, /n=4890
400-200-100-40-20
str=5789, /n=14.5

κ = 1.08 κ = 1.002
30 7 4

op=1769517, /n=1966 op=5649793, /n=6277
900-450-210-90-45-15

str=13500, /n=15
κ = 1.07 κ = 1.002

40 8 4
op=4002993, /n=2502 op=20382913, /n=12739

1600-800-400-200-120-80-60
str=28652, /n=17.9

κ = 1.15 κ = 1.002
50 7 4

op=5272605, /n=2109 op=20345313, /n=8138
2500-1250-600-300-150-75

str=41320, /n=16.5
κ = 1.08 κ = 1.002

60 7 4
op=7691205, /n=2136 op=30159393, /n=8378

3600-1800-900-420-210-90-75
str=60866, /n=16.9

κ = 1.08 κ = 1.002
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TABLE 21
PCG for the anisotropic problem, τ = 0.1, multilevel, (‘ai’, ‘z’, ‘st’, ‘iz’)

m γ = 1 γ = 2
10 6 4

op=75272, /n=752 op=97633, /n=976
100-15

str=1400, /n=14
κ = 1.05 κ = 1.002

20 8 5
op=481448, /n=1204 op=592397, /n=1481

400-20
str=6543, /n=16.4

κ = 1.19 κ = 1.03
30 10 6

op=1582331, /n=1758 op=1949849, /n=2166
900-60-11

str=17618, /n=19.5
κ = 1.38 κ = 1.08

40 11 7
op=3365229, /n=2103 op=4415917, /n=2759

1600-120-14
str=34749, /n=21.8

κ = 1.50 κ = 1.12
50 13 8

op=6393915, /n=2558 op=8188289, /n=3275
2500-175-26-13

str=56497, /n=22.6
κ = 1.81 κ = 1.25

60 14 9
op=10046068, /n=2791 op=13272893, /n=3687

3600-210-32-16
str=82475, /n=22.9

κ = 2.06 κ = 1.35
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TABLE 22
PCG for the anisotropic problem, τ = (1, 0.01), multilevel, (‘ai’, ‘z’, ‘st’, ‘iz’)

m γ = 1 γ = 2
10 4 3

op=90038, /n=900 op=235557, /n=2356
100-50-24-12

str=2497, /n=24.9
κ = 1.008 κ = 1.0001

20 5 3
op=630197, /n=1575 op=1452157, /n=3630

400-200-66-33-14
str=13850, /n=34.6

κ = 1.03 κ = 1.0008
30 6 4

op=2305820, /n=2562 op=6502553, /n=7225
900-450-159-79-38-17

str=42850, /n=47.6
κ = 1.05 κ = 1.002

40 6 4
op=5028431, /n=3143 op=14665673, /n=9166

1600-800-251-126-58-29-15
str=92607, /n=57.9

κ = 1.07 κ = 1.002
50 7 4

op=10738437, /n=4295 op=27527546, /n=11011
2500-1250-414-207-81-34-15

str=172056, /n=68.8
κ = 1.09 κ = 1.003

60 7 4
op=18011516, /n=5003 op=49557238, /n=13766

3600-1800-616-308-126-63-31
str=288139, /n=80

κ = 1.11 κ = 1.003
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TABLE 23
AMG for the discontinuous problem τ = 0.06

m = 10 m = 20 m = 30
11 18 17

ρ = 0.09 ρ = 0.25 ρ = 0.23
op=135430, /n=1354 op=828773,/n=2072 op=1892192, /n=2102

100-50-16-11 400-200-46- 900-450-122-
-17-10 -30-21-17

m = 39 m = 50 m = 59
15 19 20

ρ = 0.17 ρ = 0.27 ρ = 0.28
op=2867393, /n=1835 op=5838352, /n=2335 op=8616620, /n=2475

1521-762-204- 2500-1250-324- 3481-1741-446-
-57-31-21-16 -88-29-21-19 -122-41-22-17

TABLE 24
PCG for the discontinuous problem, τ = 0.06, multilevel, (‘gs’, ‘a’, ‘st’, ‘st’)

m γ = 1 γ = 2
10 6 4

op=127378, /n=1274 op=302737, /n=3027
100-50-16-11

str=1485, /n=14.8
κ = 1.1 κ = 1.002

20 7 4
op=556267, /n=1391 op=1185685, /n=2964

400-200-46-17-10
str=5448, /n=13.6

κ = 1.3 κ = 1.004
30 8 4

op=1507599, /n=1675 op=2938191, /n=3265
900-450-122-30-21
str=13311, /n=14.8

κ = 1.26 κ = 1.002
39 7 4

op=2344515, /n=1541 op=6702483, /n=4407
1521-762-204-57-31-21-16

str=23115, /n=15.2
κ = 1.21 κ = 1.002

50 8 4
op=4197072, /n=1679 op=8669991, /n=3468

2500-1250-324-88-29-21
str=36892, /n=14.8

κ = 1.35 κ = 1.005
59 8 4

op=5931550, /n=1704 op=13191036, /n=3789
3481-1741-446-122-41-22-17

str=52033, /n=14.9
κ = 1.35 κ = 1.004
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TABLE 25
PCG for the discontinuous problem, τ = 0.06, multilevel, (‘ic’, ‘a’, ‘st’, ‘st’)

m γ = 1 γ = 2
10 6 3

op=114269, /n=1143 op=211467, /n=2115
100-50-16-11

str=2306, /n=23.1
κ = 1.03 κ = 1.001

20 7 4
op=510529, /n=1276 op=1061224, /n=2653

400-200-46-17-10
str=8491, /n=21.2

κ = 1.2 κ = 1.003
30 6 4

op=1062618, /n=1181 op=2599886, /n=2889
900-450-122-30-21
str=20515, /n=22.8

κ = 1.15 κ = 1.001
39 7 4

op=2126318, /n=1398 op=5851962, /n=3847
1521-762-204-57-31-21-16

str=35638, /n=23.4
κ = 1.15 κ = 1.002

50 7 4
op=3401485, /n=1361 op=7689215, /n=3076

2500-1250-324-88-29-21
str=56811, /n=22.7

κ = 1.27 κ = 1.004
59 7 4

op=4799520, /n=1379 op=11619184, /n=3338
3481-1741-446-122-41-22-17

str=80096, /n=23
κ = 1.25 κ = 1.004
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TABLE 26
PCG for the discontinuous problem, τ = 0.06, multilevel, (‘ai’, ‘a’, ‘st’, ‘st’)

m γ = 1 γ = 2
10 6 4

op=151474, /n=1515 op=319553, /n=3196
100-50-16-11

str=3022, /n=30.2
κ = 1.05 κ = 1.002

20 8 5
op=940565, /n=2351 op=1930373, /n=4826

400-200-46-17-10
str=13872, /n=34.7

κ = 1.18 κ = 1.02
30 7 4

op=2025525, /n=2251 op=4069393, /n=4521
900-450-122-30-21
str=33851, /n=37.6

κ = 1.12 κ = 1.004
39 7 4

op=3619203, /n=2379 op=8407017, /n=5527
1521-762-204-57-31-21-16

str=60219, /n=39.6
κ = 1.13 κ = 1.004

50 7 4
op=6042413, /n=2417 op=12772833, /n=5109

2500-1250-324-88-29-21
str=100118, /n=40

κ = 1.26 κ = 1.006
59 7 5

op=8611390, /n=2474 op=22832594, /n=6559
3481-1741-446-122-41-22-17

str=142531, /n=41
κ = 1.23 κ = 1.005
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TABLE 27
PCG for the discontinuous problem, τ = 0.06, multilevel, (‘tw’, ‘a’, ‘st’, ‘st’)

m γ = 1 γ = 2
10 7 4

op=117645, /n=1176 op=238513, /n=2385
100-50-16-11

str=2593, /n=26
κ = 1.12 κ = 1.008

20 8 5
op=515603, /n=1289 op=1140677, /n=2852

400-200-46-17-10
str=9515, /n=23.8

κ = 1.33 κ = 1.01
30 8 5

op=1235665, /n=1373 op=2820349, /n=3134
900-450-122-30-21
str=23150, /n=25.7

κ = 1.29 κ = 1.01
39 8 5

op=2161873, /n=1421 op=6371455, /n=4189
1521-762-204-57-31-21-16

str=40325, /n=26.5
κ = 1.24 κ = 1.01

50 9 5
op=3843983, /n=1537 op=8341373, /n=3336

2500-1250-324-88-29-21
str=64094, /n=25.6

κ = 1.38 κ = 1.01
59 9 5

op=5427707, /n=1559 op=12632543, /n=3629
3481-1741-446-122-41-22-17

str=90549, /n=26
κ = 1.39 κ = 1.01
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TABLE 28
PCG for the discontinuous problem, τ = 0.06, ν = 3, multilevel, (‘gc’, ‘a’, ‘st’, ‘st’)

m γ = 1 γ = 2
10 7 4

op=298349, /n=2983 op=492485, /n=4925
100-50-16-11

str=2773, /n=27.7
κ = 1.09 κ = 1.0004

20 8 3
op=1317701, /n=3294 op=2012061, /n=5030

400-200-46-17-10
str=10188, /n=25.5

κ = 1.19 κ = 1.001
30 8 4

op=3095461, /n=3439 op=6017793, /n=6686
900-450-122-30-21
str=24673, /n=27.4

κ = 1.17 κ = 1.001
39 7 4

op=4799875, /n=3156 op=13479577, /n=8862
1521-762-204-57-31-21-16

str=42937, /n=28.2
κ = 1.15 κ = 1.001

50 9 4
op=9613203, /n=3845 op=17813393, /n=7125

2500-1250-324-88-29-21
str=68306, /n=27.3

κ = 1.3 κ = 1.003
59 8 4

op=12174245, /n=3497 op=26869257, /n=7719
3481-1741-446-122-41-22-17

str=96419, /n=27.7
κ = 1.24 κ = 1.003
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TABLE 29
PCG for the discontinuous problem, τ = 0.06, ν = 3, multilevel, (‘cg’, ‘a’, ‘st’, ‘st’)

m γ = 1 γ = 2
10 3 2

op=320353, /n=3203 op=729321, /n=7293
100-50-16-11

str=3022, /n=30.2
κ = 1.001 κ = 1

20 5 2
op=2361629, /n=5904 op=3753689, /n=9384

400-200-46-17-10
str=13872, /n=34.7

κ = 1.02 κ = 1
30 6 3

op=6654437, /n=7394 op=12546853, /n=13941
900-450-122-30-21
str=34851, /n=37.6

κ = 1.05 κ = 1.0001
39 5 3

op=10211191, /n=6713 op=25861259, /n=17003
1521-762-204-57-31-21-16

str=60219, /n=39.6
κ = 1.03 κ = 1.0005

50 6 3
op=19926938, /n=7971 op=39526405, /n=15811

2500-1250-324-88-29-21
str=100118, /n=40

κ = 1.07 κ = 1.001
59 7 4

op=32473523, /n=9329 op=73592777, /n=21141
3481-1741-446-122-41-22-17

str=142531, /n=40.9
κ = 1.08 κ = 1.002
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TABLE 30
PCG for the discontinuous problem, τ = 0.06, multilevel, (‘po’, ‘a’, ‘st’, ‘st’) k = 1

m γ = 1 γ = 2
10 7 4

op=176045, /n=1760 op=364913, /n=3649
100-50-16-11

str=1485, /n=14.8
κ = 1.13 κ = 1.002

20 8 4
op=769349, /n=1923 op=1460913, /n=3652

400-200-46-17-10
str=5448, /n=13.6

κ = 1.39 κ = 1.007
30 8 4

op=1829485, /n=2033 op=3558513, /n=3954
900-450-122-30-21
str=13311, /n=14.8

κ = 1.34 κ = 1.004
39 8 4

op=3201265, /n=2105 op=8053817, /n=5295
1521-762-204-57-31-21-16

str=23115, /n=15.2
κ = 1.26 κ = 1.004

50 9 4
op=5683443, /n=2273 op=10528673, /n=4211

2500-1250-324-88-29-21
str=36892, /n=14.8

κ = 1.41 κ = 1.008
59 9 4

op=8020647, /n=2304 op=15955017, /n=4583
3481-1741-446-122-41-22-17

str=52033, /n=14.9
κ = 1.45 κ = 1.007
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TABLE 31
PCG for the discontinuous problem, τ = 0.06, multilevel, (‘ai’, ‘z’, ‘st’, ‘iz’)

m γ = 1 γ = 2
10 7 5

op=111261, /n=1126 op=154989, /n=1550
100-15

str=1882, /n=18.8
κ = 1.18 κ = 1.03

20 11 8
op=824933, /n=2062 op=1244657, /n=3111

400-44-13
str=8782, /n=21.9

κ = 3.52 κ = 2.04
30 12 9

op=2137984, /n=2375 op=3505293, /n=3895
900-100-28-13

str=21099, /n=23.4
κ = 3.9 κ = 2.19

39 14 10
op=4368457, /n=2872 op=7164021, /n=4710

1521-166-47-21-10
str=37356, /n=24.5

κ = 4.99 κ = 2.68
50 16 11

op=8321810, /n=3329 op=12523013, /n=5009
2500-271-51-22

str=62850, /n=25.1
κ = 6.5 κ = 3.32

59 17 12
op=12617568, /n=3625 op=20087094, /n=5770

3481-387-69-21-16
str=89907, /n=25.8

κ = 7.9 κ = 3.8
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TABLE 32
PCG for the discontinuous problem, τ = (0.2, 0.06), multilevel, (‘ai’, ‘z’, ‘st’, ‘iz’)

m γ = 1 γ = 2
10 6 4

op=127051, /n=1270 op=218273, /n=2183
100-40-15

str=2552, /n=25.5
κ = 1.15 κ = 1.01

20 10 6
op=988121, /n=2470 op=1889889, /n=4725

400-147-53-23-10
str=11898, /n=29.7

κ = 2.72 κ = 1.59
30 10 6

op=2410906, /n=2679 op=6298817, /n=5887
900-304-117-53-24-12

str=28896, /n=32.2
κ = 2.45 κ = 1.22

39 11 6
op=4742431, /n=3118 op=10171765, /n=6687

1521-511-214-102-43-17
str=52274, /n=34.4

κ = 2.9 κ = 1.31
50 13 7

op=9484653, /n=3794 op=21897205, /n=8759
2500-837-356-174-67-31-17

str=89472, /n=35.8
κ = 4.01 κ = 1.57

59 13 8
op=13619971, /n=3913 op=36180434, /n=10390

3481-1163-510-248-88-40-17
str=128477, /n=36.9

κ = 4.31 κ = 1.63
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TABLE 33
PCG for the discontinuous problem, τ = 0.06, multilevel, (’ai’, ’a’, ’st’, ’-’), γ = 1

m ’iz’ ’em’ ’wi’ ’wm’
10 7 7 7 6

op=212405, /n=2124 op=165429, /n=1654 op=161885, /n=1619 op=148681, /n=1487
100-50-16 100-50-14 100-50-16-10 100-50-16

str=4098, /n=41 str=2956, /n=29.6 str=2795, /n=27.9 str=3219, /n=32.2
20 10 9 13 9

op=1538429, /n=3846 op=987023, /n=2468 op=1276703, /n=3192 op=1058653, /n=2647
400-200-45-20-12 400-200-65-16 400-200-56-15 400-200-46-24-17
str=20790, /n=52 str=13329, /n=33.3 str=12198, /n=30.5 str=15034, /n=37.6

30 9 10 10 7
op=3663843, /n=4071 op=2665677, /n=2962 op=2552487, /n=2836 op=2539973, /n=2822
900-450-111-49-26-14 900-450-113-34-12 900-450-127-39-14 900-450-122-60-42-33-22

str=54708, /n=60.8 str=32528, /n=36.1 str=30958, /n=34.4 str=46329, /n=51.5
39 10 12 12 8

op=7407583, /n=4870 op=5552781, /n=3651 op=5294575, /n=3481 op=4795489, /n=3153
1521-762-189-70-36-21-14 1521-762-185-52-15 1521-762-210-52-17 1521-762-204-89-63

str=100955, /n=66.4 str=57033, /n=37.5 str=54142, /n=35.6 str=82054, /n=53.9
50 10 10 out 8

op=12459839, /n=4984 op=8210341, /n=3284 of op=8488763, /n=3395
2500-1250-306-124-86 2500-1250-324-86-25 memory 2500-1250-324-120-80-58-37

str=174490, /n=69.8 str=99116, /n=39.6 str=136437, /n=54.6
59 11 13 out 9

op=19749155, /n=5673 op=14901069, /n=4281 of op=12671127, /n=3640
3481-1741-421-166-105 3481-1741-433-116-30-10 memory 3481-1741-446-159-94-76

str=254066, /n=72.9 str=140651, /n=40.4 str=192518, /n=55.3

TABLE 34
AMG for the rapidly varying coefficient problem τ = 0.06

m = 10 m = 20 m = 30
11 13 14

ρ = 0.05 ρ = 0.13 ρ = 0.16
op=124376, /n=1243 op=628323, /n=1571 op=1538752, /n=1710

100-50-14 400-200-52-16 900-450-119-
-34-16-10

m = 40 m = 50 m = 60
14 16 17

ρ = 0.17 ρ = 0.22 ρ = 0.23
op=2745809, /n=1716 op=4835525, /n=1934 op=7471427, /n=2075

1600-800-207- 2500-1250-313- 3600-1800-450-
-58-22-11 -78-23 -116-35-16-13
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TABLE 35
PCG for the rapidly varying coefficient problem, τ = 0.06, multilevel, (‘gs,’ ‘a’, ‘st’, ‘st’)

m γ = 1 γ = 2
10 6 4

op=111049, /n=1105 op=209633, /n=2096
100-50-14

str=1285, /n=12.8
κ = 1.05 κ = 1.001

20 6 4
op=509552, /n=1274 op=1158673, /n=2897

400-200-52-16
str=5653, /n=14.1

κ = 1.08 κ = 1.002
30 7 4

op=1393197, /n=1548 op=3388196, /n=3765
900-450-119-34-16-10

str=13243, /n=14.7
κ = 1.11 κ = 1.001

40 7 4
op=2453616, /n=1533 op=5916142, /n=3698

1600-800-207-58-22-11
str=23650, /n=14.8

κ = 1.14 κ = 1.001
50 7 4

op=3780647, /n=1512 op=8094016, /n=3238
2500-1250-313-78-23-15

str=36322, /n=14.5
κ = 1.19 κ = 1.002

60 8 4
op=6217905, /n=1727 op=12594385, /n=3498

3600-1800-450-116-35-16
str=52887, /n=14.7

κ = 1.21 κ = 1.001
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TABLE 36
PCG for the rapidly varying coefficient problem, τ = 0.06, multilevel, (‘ic,’ ‘a’, ‘st’, ‘st’)

m γ = 1 γ = 2
10 5 3

op=85053, /n=850 op=147153, /n=1471
100-50-14

str=1993, /n=19.9
κ = 1.02 κ = 1.0004

20 5 3
op=385042, /n=963 op=795042, /n=1988

400-200-52-16
str=8772, /n=21.8

κ = 1.04 κ = 1.0004
30 6 3

op=1067074, /n=1191 op=2288596, /n=2543
900-450-119-34-16-10

str=20410, /n=22.7
κ = 1.05 κ = 1.0005

40 6 3
op=1905715, /n=1191 op=4037610, /n=2524

1600-800-207-58-22-11
str=36408, /n=22.7

κ = 1.07 κ = 1.0005
50 7 3

op=2251529, /n=1341 op=5551952, /n=2221
2500-1250-313-78-23-15

str=55886, /n=22.4
κ = 1.11 κ = 1.0005

60 7 3
op=4880849, /n=1356 op=8587888, /n=2385

3600-1800-450-116-35-16
str=81335, /n=22.6

κ = 1.12 κ = 1.0004
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TABLE 37
PCG for the rapidly varying coefficient problem, τ = 0.06, multilevel, (‘ai,’ ‘a’, ‘st’, ‘st’)

m γ = 1 γ = 2
10 6 4

op=131937, /n=1319 op=237753, /n=2377
100-50-14

str=2631, /n=26.3
κ = 1.05 κ = 1.002

20 6 4
op=674612, /n=1686 op=1406753, /n=3517

400-200-52-16
str=13020, /n=32.5

κ = 1.07 κ = 1.004
30 7 4

op=1918237, /n=2131 op=3991393, /n=4435
900-450-119-34-16-10

str=32030, /n=35.6
κ = 1.08 κ = 1.004

40 7 4
op=3560860, /n=2225 op=7464513, /n=4665

1600-800-207-58-22-11
str=59273, /n=37

κ = 1.09 κ = 1.004
50 7 4

op=5669381, /n=2268 op=11390673, /n=4556
2500-1250-313-78-23-15

str=94133, /n=37.6
κ = 1.15 κ = 1.005

60 7 4
op=8365621, /n=2324 op=17532113, /n=4870

3600-1800-450-116-35-16
str=138741, /n=38.5

κ = 1.17 κ = 1.004



ETNA
Kent State University 
etna@mcs.kent.edu

G. Meurant 49

TABLE 38
PCG for the rapidly varying coefficient problem, τ = 0.06, multilevel, (‘tw,’ ‘a’, ‘st’, ‘st’)

m γ = 1 γ = 2
10 7 4

op=101973, /n=1020 op=164393, /n=1644
100-50-14

str=2209, /n=22.1
κ = 1.14 κ = 1.01

20 8 5
op=522398, /n=1306 op=1075205, /n=2688

400-200-52-16
str=9787, /n=24.5

κ = 1.15 κ = 1.01
30 8 5

op=1239904, /n=1378 op=3106333, /n=3451
900-450-119-34-16-10

str=22990, /n=25.5
κ = 1.17 κ = 1.01

40 8 5
op=2216574, /n=1385 op=5491845, /n=3432

1600-800-207-58-22-11
str=41072, /n=25.7

κ = 1.19 κ = 1.01
50 9 5

op=3786533, /n=1515 op=7525853, /n=3010
2500-1250-313-78-23-15

str=62958, /n=25.2
κ = 1.25 κ = 1.01

60 9 5
op=5517123, /n=1532 op=11657317, /n=3238

3600-1800-450-116-35-16
str=91732, /n=25.5

κ = 1.28 κ = 1.01
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TABLE 39
PCG for the rapidly varying coefficient problem, τ = 0.06, ν = 3, multilevel, (‘gc,’ ‘a’, ‘st’, ‘st’)

m γ = 1 γ = 2
10 7 3

op=258805, /n=1580 op=346405, /n=3461
100-50-14

str=2373, /n=23.7
κ = 1.1 κ = 1.0005

20 7 3
op=1169109, /n=2923 op=1856029, /n=4640

400-200-52-16
str=10455, /n=26.1

κ = 1.10 κ = 1.0008
30 7 3

op=2766621, /n=3074 op=5330853, /n=5923
900-450-119-34-16-10

str=24519, /n=27.2
κ = 1.13 κ = 1.0007

40 8 3
op=5547096, /n=3467 op=9357341, /n=5848

1600-800-207-58-22-11
str=43770, /n=27.3

κ = 1.17 κ = 1.0007
50 9 3

op=9467073, /n=3787 op=12924165, /n=5170
2500-1250-313-78-23-15

str=67172, /n=26.8
κ = 1.32 κ = 1.0006

60 9 3
op=13777663, /n=3827 op=19955869, /n=5543

3600-1800-450-116-35-16
str=97749, /n=27.1

κ = 1.33 κ = 1.0006
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TABLE 40
PCG for the rapidly varying coefficient problem, τ = 0.06, ν = 3, multilevel, (‘cg,’ ‘a’, ‘st’, ‘st’)

m γ = 1 γ = 2
10 3 2

op=275109, /n=2751 op=541525, /n=5414
100-50-14

str=2631, /n=26.3
κ = 1.0001 κ = 1

20 4 2
op=1793498, /n=4484 op=3240569, /n=8101

400-200-52-16
str=13020, /n=32.6

κ = 1.004 κ = 1
30 5 2

op=5382018, /n=5980 op=9227881, /n=10253
900-450-119-34-16-10

str=32030, /n=35.6
κ = 1.01 κ = 1

40 5 2
op=10007103, /n=6254 op=17271369, /n=10795
1600-800-207-58-22-11

str=59272, /n=37
κ = 1.01 κ = 1

50 5 2
op=15952841, /n=6381 op=26438009, /n=10575

2500-1250-313-78-23-15
str=94133, /n=37.6

κ = 1.01 κ = 1
60 5 2

op=23565355, /n=6546 op=40711657, /n=11309
3600-1800-450-116-35-16

str=138741, /n=38.5
κ = 1.02 κ = 1
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TABLE 41
PCG for the rapidly varying coefficient problem, τ = 0.06, multilevel, (‘po’, ‘a’, ‘st’, ‘st’) k = 1

m γ = 1 γ = 2
10 6 3

op=132105, /n=1321 op=200037, /n=2004
100-50-14

str=1285, /n=12.8
κ = 1.08 κ = 1.002

20 7 4
op=687189, /n=1718 op=1359953, /n=3400

400-200-52-16
str=5653, /n=14.1

κ = 1.13 κ = 1.002
30 8 4

op=1837738, /n=2042 op=3941873, /n=4380
900-450-119-34-16-10

str=13243, /n=14.7
κ = 1.17 κ = 1.002

40 8 4
op=3279600, /n=2050 op=6942913, /n=4339

1600-800-207-58-22-11
str=23650, /n=14.8

κ = 1.20 κ = 1.002
50 8 4

op=5029811, /n=2012 op=9504033, /n=3802
2500-1250-313-78-23-15

str=36322, /n=14.5
κ = 1.26 κ = 1.002

60 9 4
op=8149743, /n=2264 op=14726433, /n=4091

3600-1800-450-116-35-16
str=52887, /n=14.7

κ = 1.29 κ = 1.002
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TABLE 42
PCG for the rapidly varying coefficient problem, τ = 0.06, multilevel, (‘ai’, ‘z’, ‘st’, ‘iz’)

m γ = 1 γ = 2
10 7 4

op=104509, /n=1045 op=120433, /n=1204
100-13

str=1737, /n=17.4
κ = 1.21 κ = 1.03

20 9 6
op=655513, /n=1649 op=929041, /n=2322

400-46-15
str=8464, /n=21.2

κ = 1.6 κ = 1.16
30 11 7

op=1928857, /n=2143 op=2764629, /n=3072
900-103-29-13

str=20670, /n=22.9
κ = 1.8 κ = 1.23

40 12 8
op=3849758, /n=2406 op=5709825, /n=3568

1600-180-37-15
str=38032, /n=23.8

κ = 2.00 κ = 1.29
50 13 8

op=6677681, /n=2671 op=9535625, /n=3813
2500-279-52-23-10
str=61230, /n=24.5

κ = 2.15 κ = 1.34
60 14 9

op=10475023, /n=2910 op=15479973, /n=4300
3600-402-66-28-12
str=89631, /n=24.9

κ = 2.31 κ = 1.39
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TABLE 43
PCG for the rapidly varying coefficient problem, τ = (1, 0.01), multilevel, (‘ai’, ‘z’, ‘st’, ‘iz’)

m γ = 1 γ = 2
10 4 3

op=175818, /n=1758 op=403493, /n=4035
100-50-24-14

str=4726, /n=47.2
κ = 1.008 κ = 1.0001

20 5 3
op=1631519, /n=4079 op=3848317, /n=9621
400-200-99-53-26-12

str=35029, /n=87
κ = 1.05 κ = 1.002

30 6 4
op=5849563, /n=6499 op=14671353, /n=16302

900-450-215-111-54-23-10
str=106604, /n=118

κ = 1.11 κ = 1.009
40 7 4

op=14237629, /n=8898 op=31440793, /n=19650
1600-800-385-199-104-45-22

str=226485, /n=141
κ = 1.18 κ = 1.02

50 8 5
op=27883151, /n=11153 op=65753549, /n=26301

2500-1250-605-314-157-72-37
str=393652, /n=157

κ = 1.30 κ = 1.03
60 8 5

op=43150516, /n=11986 op=102536912, /n=28482
3600-1800-875-454-233-108-53

str=608523, /n=169
κ = 1.47 κ = 1.05
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TABLE 44
AMG for the random Laplacian problem τ = 0.06

m = 10 m = 20 m = 30
9 10 10

ρ = 0.06 ρ = 0.08 ρ = 0.08
op=101687, /n=1017 op=719629, /n=1799 op=2717419, /n=3019

100-50 400-200 900-450

m = 40 m = 50 m = 60
10 11

ρ = 0.08 ρ = 0.14
op=6817639, /n=4261 op=8259634, /n=3304

1600-800 2500-1250-382

TABLE 45
PCG for the random Laplacian problem, τ = 0.06, multilevel, (‘gs,’ ‘a’, ‘st’, ‘st’)

m γ = 1 γ = 2
10 6 4

op=101851, /n=1018 op=185873, /n=1859
100-50-19

str=1402, /n=14
κ = 1.05 κ = 1.002

20 6 4
op=436591, /n=1091 op=813933, /n=2035

400-200-67
str=5913, /n=14.8

κ = 1.06 κ = 1.002
30 6 4

op=1021775, /n=1135 op=1934273, /n=2149
900-450-141

str=13514, /n=15
κ = 1.06 κ = 1.002

40 6 4
op=1875813, /n=1172 op=3599433, /n=2250

1600-800-254
str=24226, /n=15.1

κ = 1.10 κ = 1.002
50 6 4

op=3009093, /n=1204 op=5839113, /n=2336
2500-1250-383

str=37734, /n=15.1
κ = 1.07 κ = 1.002
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TABLE 46
PCG for the random Laplacian problem, τ = 0.06, multilevel, (‘ic,’ ‘a’, ‘st’, ‘st’)

m γ = 1 γ = 2
10 5 3

op=81665, /n=816 op=138140, /n=1381
100-50-19

str=2109, /n=21.1
κ = 1.03 κ = 1.001

20 6 3
op=408899, /n=1022 op=604333, /n=1511

400-200-67
str=8865, /n=22.2

κ = 1.04 κ = 1.001
30 6 3

op=956647, /n=1063 op=1436677, /n=1596
900-450-141

str=20204, /n=22.4
κ = 1.04 κ = 1.001

40 6 3
op=1759473, /n=1100 op=2682133, /n=1672

1600-800-254
str=36234, /n=22.6

κ = 1.04 κ = 1.001
50 6 3

op=2823269, /n=1129 op=4354349, /n=1742
2500-1250-383

str=56510, /n=22.6
κ = 1.04 κ = 1.001

TABLE 47
PCG for the random Laplacian problem, τ = 0.06, multilevel, (‘ai,’ ‘a’, ‘st’, ‘st’)

m γ = 1 γ = 2
10 9 6

op=106723, /n=1067 op=135213, /n=1352
100-50-19

str=1730, /n=17.3
κ = 1.3 κ = 1.06

20 9 6
op=517643, /n=1294 op=666989, /n=1667

400-200-67
str=7322, /n=18.3

κ = 1.4 κ = 1.08
30 10 6

op=1489546, /n=1655 op=1763173, /n=1959
900-450-141

str=16694, /n=18.5
κ = 1.39 κ = 1.08

40 10 7
op=3003385, /n=1877 op=4102413, /n=2564

1600-800-254
str=29952, /n=18.7

κ = 1.44 κ = 1.10
50 10 7

op=4049613, /n=1620 op=7713653, /n=3085
2500-1250-383

str=51968, /n=20.7
κ = 1.45 κ = 1.10
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TABLE 48
PCG for the random Laplacian problem, τ = 0.06, multilevel, (‘tw,’ ‘a’, ‘st’, ‘st’)

m γ = 1 γ = 2
10 7 4

op=97477, /n=975 op=153153, /n=1531
100-50-19

str=2309, /n=23.1
κ = 1.10 κ = 1.007

20 7 4
op=420317, /n=1051 op=677233, /n=1693

400-200-67
str=9816, /n=24.5

κ = 1.11 κ = 1.008
30 7 4

op=987589, /n=1097 op=1619793, /n=1800
900-450-141

str=22420, /n=24.9
κ = 1.12 κ = 1.007

40 7 4
op=1822893, /n=1139 op=3039833, /n=1900

1600-800-254
str=40282, /n=25.2

κ = 1.18 κ = 1.008
50 7 4

op=2932981, /n=1173 op=4954233, /n=1982
2500-1250-382

str=62888, /n=25.1
κ = 1.13 κ = 1.008

TABLE 49
PCG for the random Laplacian problem, τ = 0.06, multilevel, (‘gc,’ ‘a’, ‘st’, ‘st’)

m γ = 1 γ = 2
10 6 3

op=217603, /n=2176 op=326661, /n=3267
100-50-19

str=1402, /n=14
κ = 1.07 κ = 1.0004

20 6 3
op=906403, /n=2266 op=1375261, /n=3438

400-200-67
str=5913, /n=14.8

κ = 1.08 κ = 1.0006
30 6 3

op=2086895, /n=2319 op=3192357, /n=3547
900-450-141

str=13514, /n=15
κ = 1.09 κ = 1.0007

40 7 3
op=4313517, /n=2696 op=5804669, /n=3628

1600-800-254
str=24226, /n=15.1

κ = 1.14 κ = 1.0007
50 7 3

op=6842773, /n=2737 op=9266661, /n=3707
2500-1250-383

str=37734, /n=15.1
κ = 1.14 κ = 1.0008



ETNA
Kent State University 
etna@mcs.kent.edu

58 Numerical experiments with algebraic multilevel preconditioners

TABLE 50
PCG for the random Laplacian problem, τ = 0.06, ν = 3, multilevel, (‘cg,’ ‘a’, ‘st’, ‘st’)

m γ = 1 γ = 2
10 4 2

op=155828, /n=1558 op=180957, /n=1810
100-50-19

str=1730, /n=17.3
κ = 1.001 κ = 1

20 4 2
op=677228, /n=1695 op=788861, /n=1972

400-200-67
str=7322, /n=18.3

κ = 1.003 κ = 1
30 4 2

op=1626088, /n=1807 op=4895797, /n=2106
900-450-141

str=16694, /n=18.5
κ = 1.002 κ = 1

40 4 2
op=3058568, /n=1912 op=3571317, /n=2232

1600-800-254
str=29952, /n=18.7

κ = 1.003 κ = 1
50 4 2

op=5771853, /n=2309 op=9146465, /n=3659
2500-1250-383

str=51698, /n=20.7
κ = 1.004 κ = 1

TABLE 51
PCG for the random Laplacian problem, τ = 0.06, multilevel, (‘po’, ‘a’, ‘st’, ‘st’) k = 1

m γ = 1 γ = 2
10 6 3

op=125819, /n=1258 op=185669, /n=1857
100-50-19

str=1402, /n=14
κ = 1.07 κ = 1.002

20 6 3
op=532379, /n=1331 op=799069, /n=1998

400-200-67
str=5913, /n=14.8

κ = 1.10 κ = 1.002
30 7 3

op=1418277, /n=1576 op=1883749, /n=2093
900-450-141

str=13514, /n=15
κ = 1.13 κ = 1.002

40 7 4
op=2589037, /n=1618 op=4352953, /n=2721

1600-800-254
str=24226, /n=15.1

κ = 1.24 κ = 1.006
50 7 3

op=4138709, /n=1655 op=5611813, /n=2244
2500-1250-382

str=37734, /n=15.1
κ = 1.16 κ = 1.003
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TABLE 52
PCG for the random Laplacian problem, τ = 0.06, multilevel, (‘ai,’ ‘z’, ‘st’, ‘iz’)

m γ = 1 γ = 2
10 9 6

op=146023, /n=1460 op=335049, /n=3350
100-50-24-12

str=2134, /n=21.3
κ = 1.4 κ = 1.09

20 10 7
op=731590, /n=1829 op=2729133, /n=6823
400-200-91-46-23-12

str=9489, /n=23.7
κ = 1.4 κ = 1.1

30 11 7
op=1850653, /n=2056 op=7510421, /n=8345

900-450-204-96-49-25-13
str=21533, /n=24.4

κ = 1.6 κ = 1.15
40 12 8

op=3624403, /n=2265 op=15291297, /n=9557
1600-800-381-176-90-40-20

str=39655, /n=24.8
κ = 1.9 κ = 1.27

50 12 8
op=5724579, /n=2290 op=24772913, /n=9909

2500-1250-595-288-129-65-36
str=62822, /n=25.1

κ = 1.8 κ = 1.24
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TABLE 53
1138-bus modified, τ = 0.06

method
AMG 104 it

op=12227373
1138-472-178-80-61

ρ = 0.81
st=24922

(‘gs’, ‘a’, ‘st’, ‘st’) 22 it
op=3880407

1138-472-178-80
st=12533

(‘ic’, ‘a’, ‘st’, ‘st’) 21 it
op=3351650

1138-472-178-80
st=19993

(‘ai’, ‘a’, ‘st’, ‘st’) 14 it
op=2808576

1138-472-178-80
st=24922

(‘tw’, ‘a’, ‘st’, ‘st’) 109 it
op=14886591

1138-472-178-80
st=21849

(‘gc’, ‘a’, ‘st’, ‘st’) 63 it
op=12546321

1138-472-178-80
st=23717

(‘cg’, ‘a’, ‘st’, ‘st’) 13 it
op=5058207

1138-472-178-80
st=24922

(‘po’, ‘a’, ‘st’, ‘st’) 37 it
op=7645767

1138-472-178-80
st=12533

(‘ai’, ‘z’, ‘st’, ‘iz’) 15 it
op=2402769

1138-472-178-80
st=19597
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TABLE 54
bcsstk01, τ = 0.06

method
AMG 48 it

op=431347
48-18

ρ = 0.98
st=1179

(‘gs’, ‘a’, ‘st’, ‘st’) 13 it
op=110367

48-18
st=736

(‘ic’, ‘a’, ‘st’, ‘st’) 11 it
op=84989

48-18
st=1144

(‘ai’, ‘a’, ‘st’, ‘st’) 13 it
op=106783

48-18
st=1179

(‘tw’, ‘a’, ‘st’, ‘st’) 14 it
op=98654

48-18
st=1354

(‘gc’, ‘a’, ‘st’, ‘st’) 48 it
op=405284

48-18
st=1420

(‘cg’, ‘a’, ‘st’, ‘st’) 17 it
op=237955

48-18
st=1179

(‘po’, ‘a’, ‘st’, ‘st’) 32 it
op=301868

48-18
st=736

(‘ai’, ‘z’, ‘st’, ‘iz’) 14 it
τ = 0.2 op=92294

48-10
st=867
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TABLE 55
gr3030, τ = 0.06

method
AMG 10 it

op=1182199
900-225-49
ρ = 0.08
st=26313

(‘gs’, ‘a’, ‘st’, ‘st’) 6 it
op=1140515
900-225-49
st=12461

(‘ic’, ‘a’, ‘st’, ‘st’) 6 it
op=1036929
900-225-49
st=19199

(‘ai’, ‘a’, ‘st’, ‘st’) 7 it
op=1600109
900-225-49
st=26313

(‘tw’, ‘a’, ‘st’, ‘st’) 7 it
op=1098301
900-225-49
st=22415

(‘gc’, ‘a’, ‘st’, ‘st’) 17 it
op=3188309
900-225-49
st=23589

(‘cg’, ‘a’, ‘st’, ‘st’) 8 it
op=3362081
900-225-49
st=26313

(‘po’, ‘a’, ‘st’, ‘st’) 8 it
op=1767173
900-225-49
st=12461

(‘ai’, ‘z’, ‘st’, ‘iz’) 9 it
op=1916455

900-117-33-14
st=24975
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TABLE 56
bcsstk34, τ = 0.01

method
AMG 6 it

op=1343689
588-66-12
ρ = 0.008
st=32921

(‘gs’, ‘a’, ‘st’, ‘st’) 3 it
op=1326425
588-66-12
st=25393

(‘ic’, ‘a’, ‘st’, ‘st’) 3 it
op=1146281
588-66-12
st=37855

(‘ai’, ‘a’, ‘st’, ‘st’) 5 it
op=1491137
588-66-12
st=32921

(‘tw’, ‘a’, ‘st’, ‘st’) 4 it
op=1412033
588-66-12
st=48319

(‘gc’, ‘a’, ‘st’, ‘st’) 6 it
op=2151621
588-66-12
st=23847

(‘cg’, ‘a’, ‘st’, ‘st’) 5 it
op=2490353
588-66-12
st=32921

(‘po’, ‘a’, ‘st’, ‘st’) 6 it
op=2717445
588-66-12
st=25393

(‘ai’, ‘z’, ‘st’, ‘iz’) 4 it
op=1982563
588-233-24
st=58317



ETNA
Kent State University 
etna@mcs.kent.edu

64 Numerical experiments with algebraic multilevel preconditioners

TABLE 57
bcsstk27, τ = 0.06

method
(‘gs’, ‘a’, ‘st’, ‘st’) 58 it

op=61447065
1224-289-34

st=73840
(‘ai’, ‘a’, ‘st’, ‘st’) 368 it

τ = 0.06 op=312558975
1224-289-1234

st=110083
(‘ai’, ‘a’, ‘st’, ‘st’) 22 it
τ(= 0.06, 0.01) op=45313063

1224-289-1234
st=251107

(‘ai’, ‘a’, ‘st’, ‘st’) 12 it
τ = (0.06, 0.005) op=34343127

1224-289-1234
st=335578

(‘tw’, ‘a’, ‘st’, ‘st’) 274 it
op=231271769
1224-289-34
st=142813

5. Conclusion. In this paper we have compared several fully algebraic multilevel pre-
conditioners for PCG. We used several different smoothers and ways to define the coarse grids
as well as several interpolation schemes. It seems the most important point to obtain good
results is the smoother. There is not much difference when changing the way to compute the
coarse grids as well as the interpolation scheme as long as the interpolation of a constant is a
constant. The symmetric Gauss-Seidel and the incomplete Cholesky decomposition are good
smoothers but they are not parallel. The approximate inverses are fully parallel. The Wang
and Tan proposal is a better smoother than AINV for most problems (at least when using the
same amount of storage) but there is no guarantee to obtain a positive definite preconditioner.

There is no overall best algorithm for our set of examples. Everything depends on what
we are looking for: smallest number of iterations, smallest computer time, smallest storage,
best performance on a parallel computer, etc. . . For instance, AINV is not the best smoother
but it is fully parallel; the ‘z’ influence matrix does not give the smallest number of operations
but the storage is generally smaller than for the other methods. A very nice thing with AINV
is that we just have to adjust one parameter to obtain a better smoother by reducing the value
of τ although this increases the storage.

Almost all these methods give a constant number of iterations when the problem size is
increasing for the partial differential equations we solved and some of them give a number
of operations proportional to the problem size. It remains to test some of these methods on
parallel computers with much larger problems to see if we still get the scalability we are
looking for.
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