
Electronic Transactions on Numerical Analysis.
Volume 10, 2000, pp. 74-91.
Copyright  2000, Kent State University.
ISSN 1068-9613.

ETNA
Kent State University 
etna@mcs.kent.edu

A HYBRID MULTIGRID METHOD FOR THE STEADY-STATE
INCOMPRESSIBLE NAVIER-STOKES EQUATIONS ∗

MICHAEL PERNICE†

Abstract. Multigrid methods for solving the steady-state incompressible Navier-Stokes equations require an
appropriate smoother and coarse grid solution strategy to be effective. Classical pressure-correction methods, such
as SIMPLE and SIMPLER, are widely used as solvers in engineering analysis codes, but can also be used as effective
multigrid smoothers. An inexact Newton method preconditioned by a linear multigrid method with a pressure-
correction smoother can serve as a coarse grid solver. A hybrid nonlinear multigrid scheme based on combinations of
these components is described. A standard benchmark problem is used to demonstrate the effectiveness of SIMPLER
smoothing and the impact an inexact Newton coarse grid solver has on the resulting nonlinear multigrid scheme.
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1. Introduction. Efficient solution of the steady-state incompressible Navier-Stokes
equations is of considerable interest in computational science and engineering. Strategies for
solving these equations include fixed point iterative methods such as SIMPLE [26] and SIM-
PLER [25], multigrid methods [3], and inexact Newton methods [12, 6, 13]. The fixed point
methods generally have low storage overhead and are straightforward to implement, but suf-
fer from slow rates of convergence. The full approximation storage (FAS) method combines
somewhat higher storage overhead with inexpensive iterations and high rates of convergence,
but this is difficult to achieve without a suitable smoother and coarse grid solver. Newton’s
method provides superlinear rates of convergence, which are highly attractive, but Newton-
based iterations are considerably more expensive than multigrid iterations, both in terms of
operations and storage. The performance of Newton’s method is sensitive to the choice of
an initial approximation, even when globalization strategies are used. Recent advances in the
development of inexact Newton methods have made this approach more competitive, but a
good preconditioner is still necessary to achieve satisfactory performance.

Instead of considering these to be three competing and mutually exclusive approaches
to solving the steady-state incompressible Navier-Stokes equations, it is beneficial to regard
them as different components with complementary strengths and weaknesses that can be as-
sembled in a number of ways to construct an effective solver. Pressure-correction methods
can be used as smoothers in either linear or nonlinear multigrid methods. The expense of
an inexact Newton method can be mitigated by using it as the coarse grid solver for FAS,
which will often supply a good initial approximation to the Newton method. An improved
coarse grid solver can also improve the robustness of a nonlinear multigrid scheme, offset-
ting the potentially adverse effects of an inappropriately discretized coarse grid problem.
As demonstrated in [27], pressure-correction methods and linear multigrid methods with a
pressure-correction smoother can also be used to precondition the inexact Newton coarse
grid solver.

Hybrid methods that consist of suitable combinations of these approaches have the po-
tential to leverage existing engineering analysis packages, improving their performance and
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expanding the scope of problems that can be solved. In doing so, patterns of use of the older
methods may need to be re-examined in order to realize the benefits of a hybrid approach. Al-
gorithmic components that can be combined in a variety of ways to construct hybrid solvers
are described in§2. The effectiveness of these combinations is examined in§3. These results
are summarized and some conclusions are drawn in§4.

2. Algorithms. Before describing the separate algorithmic components that can be com-
posed into a hybrid scheme, some notation and terminology is first established. The incom-
pressible Navier-Stokes equations in conservative form may be written

(uu)x + (uv)y − 1
Re ∆u + px = f1

(uv)x + (vv)y − 1
Re ∆v + py = f2

ux + vy = 0.

(2.1)

A second-order centered discretization of these equations on a staggered grid produces a set
of nonlinear equations that can be written in block matrix form as
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whereQi = Qi(u, v). In this,Gh
x , Gh

y are discrete gradient operators defined on a staggered
grid with mesh sizeh in the respective directions, andDh

x ,Dh
y are discrete divergence opera-

tors defined on a staggered grid with mesh sizeh in the respective directions. Because of the
staggered relationship among variables, it follows that

Gh
x = Dh

x

T
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T
.

The discrete momentum transport operator is denoted

Q =
(

Q1 0
0 Q2

)
,(2.2)

the discrete gradient operator is given by

∇h =
( Gh

x

Gh
y

)

and the discrete divergence operator is

∇h· = (Dh
x Dh

y

)
.

2.1. Multigrid Methods. The nonlinear multigrid scheme considered here is the stan-
dard Full Approximation Storage (FAS) method [3]. Following is a recursive version of a
V-cycle that is appropriate for nonlinear problems. In this,I2h

h is a restriction operator,Ih
2h

is a prolongation operator, andB is a smoothing operator. Alternative grid cycling strategies,
such as W-cycles or full multigrid, are not considered.

Algorithm FAS: Full Approximation Storage

PROCEDUREFAS-V(h, Lh, xh, fh)

IF h = hc THEN:
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FIG. 2.1. Relationships on a staggered grid between coarse (filled symbols) and fine values. Coarse cells are
outlined with solid lines while fine cells use dashed lines. Relationships for restricting data to the coarse grid are
depicted on the left, while relationships for prolonging data to the fine grid are depicted on the right. Only relevant
fine grid data is shown; similar relationships hold for data centered on horizontal faces.

SOLVE Lh(xh) = fh.
ELSE

PRESMOOTHxh ←− xh + B(fh − Lh(xh)) ν1 TIMES.
SET x2h = I2h

h xh.
RESTRICTf2h = I2h

h (fh − Lh(xh)) + L2h(x2h).
FAS-V(2h, L2h, x2h, f2h).
CORRECTxh = xh + Ih

2h(x2h − I2h
h xh).

POSTSMOOTHxh ←− xh + B(fh − Lh(xh)) ν2 TIMES.

Most components of the FAS scheme considered here are more or less standard. Grid
coarsening is readily achieved by defining each coarse cell to be a union of underlying fine
cells. This geometry and the geometry of the staggered grid variable arrangement provide
guidelines for constructing appropriate restriction and prolongation operators. These rela-
tionships are illustrated in Figure 2.1. Coarse cell-centered variables are the averages of the
corresponding fine cell variables. Coarse face-centered variables are obtained by averaging
fine values that reside on same cell face. Fine cell-centered variables are interpolated linearly
from their four surrounding coarse cell neighbors. Prolongation of face-centered variables is
done in two steps. First, adjacent coarse values are averaged to obtain fine values centered
on the same face. These fine values are then averaged to obtain fine values on faces that lie
between coarse faces.

The choices of restriction for the velocity and pressure have the desirable consequence
that mass is conserved under coarsening:

D2h
x (I2h

h u) +D2h
y (I2h

h v) = I2h
h (Dh

xu +Dh
yv).

In this, the restriction operatorsI2h
h each must be interpreted in terms of the centering used

for the variable that is operated on. Referring to Figure 2.1, this is simply a statement that
the mass flux in the coarse cell is the same as the net mass flux of the four fine cells. As a
consequence of these choices of restriction in the FAS algorithm, all solutions computed on
the coarser grid levels are required to conserve mass.

Several choices for smoothing operations are possible. Brandt [4] advocates the use of
distributed Gauss-Seidelsmoothing. Vanka [37] employs a symmetric coupled Gauss-Seidel
scheme in which mass conservation is enforced locally on a cell-by-cell basis. Wittum [39]
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introduces the notion oftransforming smoothersand combines this idea with incomplete fac-
torization to develop robust smoothing strategies. Shaw and Sivaloganathan [33, 34] demon-
strated that classic single-grid solvers such as SIMPLE can be effective multigrid smoothers.
Since much of this work was motivated by the desire to leverage existing SIMPLE-based sin-
gle grid applications, the use of pressure-correction algorithms, in particular SIMPLER, as
Navier-Stokes multigrid smoothers was investigated. These methods are described in§2.2.

The final component of a multigrid method is the selection of a coarse grid solver. There
are very few circumstances in which a grid can be coarsened to the extent that it is practical to
solve the coarse grid problem exactly, through direct or iterative means. This is due to several
factors. First, grid geometries encountered in practice can be highly irregular and can only
be coarsened to a modest degree. Too much coarsening can fail to resolve geometric features
that affect the solution, rendering coarse grid corrections almost useless. New strategies
based on agglomeration [21, 29, 22, 9] and Cartesian cell discretization methods [17] are
promising, but these approaches can still produce coarse grid problems that are themselves
of considerable size. Grid coarsening can also reveal weaknesses of certain discretization
strategies, which can introduce too much numerical diffusion into the coarse grid problem
and render the coarse grid correction almost useless [5]. Newton’s method can be used as a
coarse grid solver in a nonlinear multigrid scheme; an inexact variant of Newton’s method
that is used for this purpose is described in§2.3.

2.2. Pressure-Correction Methods.The SIMPLE family of algorithms is a widely-
used set of techniques for incompressible fluid calculations. The descriptions that follow
are restricted to two dimensional flows; their generalization to three dimensional problems is
straightforward.

2.2.1. SIMPLE. The SIMPLE algorithm, introduced in [26], begins by approximately
solving the discrete momentum equations, and then uses the discretized form of the mass
conservation equation to derive an equation whose solution is used to update the pressure
field and to correct the velocity field so that mass is conserved. It is possible to represent this
process as a stationary iterative method [38]. To begin with, the discrete momentum transport
operatorQ is updated to reflect the current approximate solutionu(k) to the momentum
equations. The resulting linearized momentum equations can then be solved to determine an
intermediate velocity fieldu(k+ 1

2 ) using the current approximate pressure fieldp(k):

Qu(k+ 1
2 ) = f −∇hp(k).(2.3)

Here

u(k) =
(

u(k)

v(k)

)
, f =

(
f1

f2

)
.

The solution of (2.3) does not have to be accurate and is usually accomplished with a few
sweeps of a stationary iterative method, such as point or line Gauss-Seidel. The resulting
velocity fieldu(k+ 1

2 ) does not conserve mass, and∇h ·u(k+ 1
2 ) is used to compute a correction

δp to the pressure field whose gradient is also used to correctu(k+ 1
2 ).

To derive an equation forδp, let

D =
(

D1 0
0 D2

)
,(2.4)

whereDi = diag(Qi), and introduce the approximations

u(k+ 1
2 ) ≈ D−1Qu(k+ 1

2 ) = D−1(f −∇hp(k))
u(k+1) ≈ D−1Qu(k+1) = D−1(f −∇hp(k+1)).

(2.5)
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Subtracting these equations and changing the approximation to equality leads to

δu ≡ u(k+1) − u(k+ 1
2 ) = −D−1∇hδp,(2.6)

whereδp = p(k+1) − p(k). This shows thatu(k+ 1
2 ) can be corrected using a scaled gradient

of the correction to the pressure field. Applying the discrete divergence operator to these
equations gives

∇h · (u(k+1) − u(k+ 1
2 )) = ∇h ·D−1∇hδp.

Finally, requiring that∇h · u(k+1) = 0 leads to

Sδp = ∇h · u(k+ 1
2 ),(2.7)

where

S = −∇h ·D−1∇h = −(Dh
xD−1

1 Gh
x +Dh

yD−1
2 Gh

y )(2.8)

is symmetric. Equation (2.7) is a generalized Poisson equation which must be solved for the
pressure correctionδp. Since the intended correction (2.6) should be 0 at locations where
the velocity field is specified, (2.7) is supplemented with homogeneous boundary conditions
at these locations. In particular, for problems where the velocity field is specified at the
boundaries,δp is determined only up to an additive constant, andS is positive semi-definite.
Summarizing:

Algorithm SIMPLE:

DETERMINE u(k+ 1
2 ) BY SOLVING (2.3).

FIND THE PRESSURE CORRECTIONδp FROM (2.7).
CALCULATE THE VELOCITY CORRECTIONSδu USING (2.6).
UPDATE THE PRESSURE

p(k+1) = p(k) + δp

AND THE VELOCITIES

u(k+1) = u(k+ 1
2 ) + δu.

Practical implementations usually employ underrelaxation, both in solving (2.3) and in
applying the correctionsδp andδu. In this work, an underrelaxtion factor of0.6 is used,
together with 5 sweeps of point Gauss-Seidel for the momentum equations and 20 sweeps
of point Gauss-Seidel for the pressure equation. SIMPLEC is a variation that replaces the
entries in the diagonal matricesDi with absolute rowsums fromQi [36]; it is this variation
that is actually used in the evaluations presented in§3.1.

2.2.2. SIMPLER. SIMPLER is a variation of SIMPLE due to Patankar [25]. It is sim-
ilar to SIMPLE, but it determinesp(k+1) from u(k) and uses a separate potential fieldφ to
enforce mass conservation in a manner similar to projection methods [10, 1].

As with SIMPLE, each cycle begins with an update of the momentum transport operator
(2.2) to reflect the latest approximate solutionu(k). For the next iteration the pressure and
velocity field should satisfy

Qu(k+1) = f −∇hp(k+1).



ETNA
Kent State University 
etna@mcs.kent.edu

Michael Pernice 79

To determine an equation forp(k+1), introduce the splittingQ = D− (L + U), whereD is
again given by (2.4) and−(L + U) contains the off-diagonal elements ofQ. It follows that

u(k+1) = D−1(f + (L + U)u(k+1) −∇hp(k+1))
≈ D−1(f + (L + U)u(k) −∇hp(k+1)).(2.9)

Taking the divergence of both sides of (2.9), requiring that∇h · u(k+1) = 0, changing the
approximation to equality, and rearranging terms leads to

Sp(k+1) = −∇h ·D−1(f + (L + U)u(k)),(2.10)

whereS is again given by (2.8).
Oncep(k+1) is known, the velocity field is updated by first solving

Qu(k+ 1
2 ) = f −∇hp(k+1)(2.11)

and then correctingu(k+ 1
2 ). This is done using the gradient of an auxiliary variableφ. To

determine an equation forφ, the followingansatzis made for the correction:

u(k+1) = u(k+ 1
2 ) −D−1∇hφ.(2.12)

An equation forφ is then determined by taking the divergence of (2.12) and requiring that
∇h · u(k+1) = 0:

Sφ = −∇ · u(k+ 1
2 ),(2.13)

whereS is again given by (2.8). Summarizing:

Algorithm SIMPLER:

DETERMINE p(k+1) BY SOLVING (2.10).
DETERMINE u(k+ 1

2 ) BY SOLVING (2.11).
DETERMINE φ BY SOLVING (2.13).
CORRECTu(k+ 1

2 ) USING (2.12).

The improved approximation (2.9) reduces the need for underrelaxation, though it is still
used in practice. The momentum equations are solved with 4 sweeps of point Gauss-Seidel
relaxation, and the pressure equation (2.10) is solved with 20 sweeps. Instead of solving
(2.10) directly, a residual equation is solved forδp, following [36], and an underrelaxation
factor of0.8 is used to complete the pressure update.

Note that the correction (2.12) may be rewritten as follows:

u(k+1) = u(k+ 1
2 ) + D−1∇hS−1∇h · u(k+ 1

2 )

=
(
I + D−1∇hS−1∇h·)u(k+ 1

2 )

≡ Pu(k+ 1
2 ).

From (2.8) it follows thatP2 = P . ThusP is actually aprojection (though it is not an
orthogonalprojection with respect to the standard inner product).

An interesting feature of SIMPLER is the use ofφ to enforce mass conservation. Note
that the derivation of (2.13) is unconventional. Patankar [25] derives theansatz(2.12) through
a process similar to the one that led to (2.6). Because of this approximation, the conventional
wisdom is thatφ need not be calculated with high accuracy, and usually only a few sweeps
of a stationary iterative method are applied. However the derivation based on (2.12) shows
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clearly that the residual in mass conservation is directly related to the accuracy with which
(2.13) is solved:

‖∇h · u(k+1)‖ = ‖∇h · Pu(k+ 1
2 )‖ = ‖∇h · u(k+ 1

2 ) + Sφ‖.
Thus, the conventional approach may fail to produce a mass-conserving velocity field, since
just a few sweeps of a stationary iterative method may not reduce the residual of (2.13) by
very much. A guaranteed improvement can be achieved by solving (2.13) to a prescribed
accuracy:

‖∇h · u(k+ 1
2 ) + Sφ‖ ≤ tol(2.14)

wheretol can be either an absolute or a relative accuracy. Doing so increases the cost of
each iteration of SIMPLER, and the additional cost must be offset by an improved rate of
convergence for the overall scheme. Thus, a very efficient solver should be used to enforce
(2.14). SinceS is symmetric and positive semi-definite, a preconditioned conjugate gradient
method can be used. The efficiency of this approach depends on using an effective pre-
conditioner. This work employs a multigrid preconditioner, which is composed of volume
averaged restrictions, piecewise constant prolongation, symmetric Gauss-Seidel smoothing,
V(1,1) cycles, and a Galerkin coarse grid version of (2.8). This latter choice was made neces-
sary by the fact thatD is not conveniently available on the coarser grids, and was made easy
to implement because of the choices made for intergrid transfers.

It is also possible to enforce a condition similar to (2.14) in the solve for the pressure
correction (2.7) in SIMPLE. However it was found that this was accompanied by a need to
dampδp even further in order to achieve convergence. Doing so slowed convergence of the
overall method, making it non-competetive. This effect was not observed with SIMPLER,
whereφ is used solely to correctu(k+ 1

2 ).

2.3. Inexact Newton Methods.Newton’s method for solving a system of nonlinear
equations

F (x) = 0, F :Rn → R
n ,(2.15)

requires, at thekth step, the solution of the linearNewton equation

F ′(xk) sk = −F (xk),(2.16)

wherexk is the current approximate solution andF ′ is the Jacobian matrix of the system.
Once the Newton stepsk is determined the current approximation is updated via

xk+1 = xk + sk.

This process is continued until a satisfactory solution is found, which is usually judged by
making‖F (xk)‖ or ‖sk‖ (or both) sufficiently small. Traditionally, Newton’s method was
considered to be inappropriate for the solution of large-scale systems of nonlinear equations
because of the high computational and storage costs of solving (2.16). However exact solution
of (2.16) is not necessary for Newton’s method to converge. In aNewton iterative method, or
truncated Newton method, (2.16) is replaced by aninexact Newton condition[12]

‖F (xk) + F ′(xk) sk‖ ≤ ηk‖F (xk)‖,(2.17)

and so a suitable inexact Newton stepsk can be found with an iterative method at a signif-
icant reduction in cost. The “forcing term”ηk ∈ [0, 1) in (2.17) can be specified in several
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ways; superlinear and even quadratic convergence of the inexact Newton method can be ob-
tained under certain choices of the forcing terms [12, 14]. The best choice ofηk is somewhat
problem-specific (see for example [32] for some comparative studies). In this work, the strat-
egy labeled Choice 1 in [14] is used to select the forcing terms. Newton iterative methods
are especially well-suited for large-scale problems and have been used very successfully in a
number of applications [8, 18, 19, 32, 7, 2].

There are many ways to compute an inexact Newton stepsk, and the efficiency of an
inexact Newton method is strongly affected by this choice. Krylov subspace methods [16]
are especially well-suited for this purpose since they only require matrix-vector products
F ′(xk)v. This further specialization of inexact Newton methods leads to the class of methods
referred to asNewton-Krylov methods. The matrix-vector products needed in a Newton-
Krylov method may be approximated with finite differences of function values

F ′(xk)v ≈ F (xk + εv)− F (xk)
ε

,(2.18)

and so the JacobianF ′ never needs to be explicitly formed. This approach is frequently re-
ferred to as amatrix-free Newton-Krylovmethod. While this greatly reduces storage require-
ments and simplifies implementation, the differencing parameterε must be chosen carefully
to balance different sources of errors and differences in scales that may be present inv. Fur-
thermore, some information about the Jacobian is still neeeded to construct a preconditioner.
Finally, matrix-free Newton-Krylov methods generally require more nonlinear iterations than
a Newton-Krylov method that uses the Jacobian directly.

Among Krylov subspace methods, GMRES [31] is generally preferred, since it mini-
mizes the residual at every iteration. Unfortunately, in order to enforce this, storage require-
ments grow linearly and work requirements grow quadratically with the number of iterations.
In practice this is dealt with by restarting the method, which can potentially slow down con-
vergence or even cause divergence if restarting is done too frequently. While alternatives such
as BiCGSTAB [35] and transpose-free QMR [15] can be used, they do not share the mini-
mum residual property and are generally not as robust as GMRES, provided a sufficiently
large restart value is used.

Effective preconditioning plays a critical role in the efficient computation of an inexact
Newton step. For restarted GMRES, a good preconditioner not only accelerates convergence
but also reduces storage requirements by allowing more frequent restarts. Incomplete LU
(ILU) factorizations [24, 30] are popular choices, but they require information about the Ja-
cobian that may be difficult to determine in a matrix-free inexact Newton method. Further,
ILU factorizations can have high storage requirements if a lot of element fill-in is allowed.
Calculating an incomplete factorization can also be computationally expensive, and this cost
is multiplied by the number of times the preconditioner is updated during the nonlinear so-
lution process. One approach to constructing an effective preconditioner is to use a linear
multigrid method [20, 27]. When using the Newton-Krylov method as a coarse grid solver,
this approach has the added advantage of reusing software components in the linear precon-
ditioner that were used to implement the FAS smoother.

Finally, another traditional objection to using Newton’s method for large-scale problems
is the need to find a good initial approximationx0. Newton’s method (and its inexact coun-
terpart) can fail to converge ifx0 is not chosen carefully. Fortunately, classical strategies
for improving the likelihood of convergence from a poor initial approximation also apply to
Newton iterative methods [13]. The backtracking globalization strategy given in Algorithm
INB from [13] and implemented in NITSOL [28] is employed in this work.
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2.4. Hybrid Methods. It is possible to assemble these algorithmic components into
a number of different hybrid strategies. An FAS method can be constructed using either
SIMPLE or SIMPLER as a smoother. These pressure-correction schemes can also be used
as preconditioners for a Newton-Krylov method. Finally, the Newton-Krylov-MG method
NK-MG [27] can be used as a coarse grid solver for FAS.

Using a pressure-correction method as a smoother for FAS is easy to accomplish. The
current approximationuhl on grid levell is used to updateQhl andShl through a redis-
cretization on the grid. The SIMPLE or the SIMPLER algorithm is then applied with source
termfhl and initial approximationuhl , using the number of iterations specified by the number
of pre- and post-smoothing steps. The result then is processed for use on other grids except
at the end of the V-cycle, where it is the updated approximate solution.

Pressure-correction methods may be used as either preconditioners or linear multigrid
smoothers in a manner analogous to that described above, with one slight change in interpre-
tation. In performing either a preconditioning solve or a smoothing operation, a system of the
form

Me = r

is solved using a preconditionerM , wherer is a residual ande is a correction to the current
approximation to the solution of the linear problem. WhenM is itself one or more iterations
of an iterative method such as SIMPLE or SIMPLER, the initial approximation ise = 0,
reflecting the expectation that only a relatively small correction will be calculated.

The hybrid approach of using a Newton-Krylov method as a coarse grid solver in an FAS
procedure is accomplished by simply passing the problem

F (u, p) =
(

Qhc(u) ∇hc

∇hc · 0

) (
u
p

)
−

(
fhc

0

)
= 0

to the Newton-Krylov solver, wherehc is the coarse grid,Qhc , fhc are the corresponding
coarse grid operator and source term, and the initial approximationu = uhc uses the cur-
rent coarse grid solution. This strategy addresses several weaknesses. The Newton-Krylov
method is usually supplied with a good initial approximation, reducing the need for back-
tracking and enabling early realization of superlinear convergence. The smaller problem
size also helps to address the high storage cost of using GMRES within the Newton-Krylov
method. In contrast to the level smoothing operations, the Newton-Krylov method produces
a solution with a guaranteed amount of error reduction. Thus, the hybrid approach allows
insertion of a method that is guaranteed to produce a solution with some desired accuracy at
any level of a given grid hierarchy. This can help to stabilize and enhance the robustness of
the overall FAS method. However this feature must be balanced with increased storage and
computation costs that are incurred by introducing the Newton-Krylov method at finer levels
of the grid hierarchy.

3. Numerical Evaluations. Hybrid approaches that combine multigrid methods, Newton-
Krylov methods, and pressure-correction methods offer a wide range of algorithmic choices.
Since these combinations embed iterative methods within iterative methods, it is difficult to
predict the most effective combination. Numerical experimentation is necessary to help de-
termine which hybrid approaches warrant further investigation. This section examines the
performance of the nonlinear multigrid algorithm under various combinations of coarse grid
solvers and smoothers.

Conventional evaluations of multigrid effectiveness usually employ some standardized
measure of work unit per iteration. However, estimating work units is difficult when iter-
ative methods are used to implement smoothers and/or coarse grid solvers. Consequently
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computational effort is measured relative to the CPU time needed to reduce the residual by
a prescribed amount. CPU time on a MIPS R10000 processor needed to reach a relative
reduction of the nonlinear residual by10−6 is reported.1

Buoyancy-driven natural convection in an enclosed cavity is a standard benchmark prob-
lem that is frequently used to evaluate different numerical schemes and solution methods
[11]. The governing equations consist of the incompressible Navier-Stokes equations (2.1)
coupled to an energy transport equation

(uT )x + (vT )y − 1
RePr

∆T = 0

together with a body force on the fluid that, under the Boussinesq approximation, is propor-
tional to the temperature

f =
(

0
Ra

Re2PrT

)
.

In this,Re is the Reynolds number,Pr is the Prandtl number, andRa is the Rayleigh number.
Following [23],Re is fixed at1, Pr is fixed at0.71, andRa is varied. The problem is defined
on the unit squareΩ = [0, 1]× [0, 1] with boundary conditions

u = v = 0 on∂Ω
T (0, y) = 0, T (1, y) = 1 y ∈ [0, 1]
Ty(x, 0) = Ty(x, 1) = 0 x ∈ [0, 1].

In the staggered formulation, the temperature is treated as a cell-centered quantity. Except
for those locations where face-centering places a velocity component on∂Ω, linearly extrap-
olated values are used to specify boundary conditions.

The additional transport equation is readily accommodated by theSIMPLE andSIM-
PLER smoothers. Five sweeps of the point Gauss-Seidel method are applied to the dis-
cretized transport equation prior to solving the momentum equations. The updated tempera-
ture field is then incorporated intof before solving the momentum equations.

3.1. Effectiveness of different smoothers.The effectiveness of SIMPLE and SIM-
PLER asFAS smoothers is evaluated in this section. To distinguish among smoother vari-
ants,FAS-SIMPLE refers toFAS with SIMPLE smoothing, andFAS-SIMPLER refers to
FAS with SIMPLER smoothing.FAS-SIMPLE andFAS-SIMPLER were compared at sev-
eral values ofRa. For Ra ≤ 1000 , FAS-SIMPLE was found to be5 − 10% faster than
FAS-SIMPLER. More postsmoothing sweeps were generally needed to achieve this. How-
ever, for larger values ofRa, FAS-SIMPLE began to falter, and was outperformed byFAS-
SIMPLER. A comparison of convergence histories atRa = 10 , 000 appears in Figure 3.1.
For lower values ofRa, the convergence history ofFAS-SIMPLE is actually quite smooth,
and the irregularity of the convergence history in this figure seemed to presage failure of the
method for larger values ofRa. FAS-SIMPLE with V(2,1) cycles actually failed to converge
for this case. Included in the figure is the convergence history forFAS-SIMPLER when
(2.14) is enforced withtol = 0.5‖∇ · u(k+ 1

2 )‖ using the multigrid-preconditioned conjugate
gradients method described at the end of§2.2.2. There is a clear, though modest, benefit.

1The results for the smaller problems were obtained on a processor running at 195 Mhz with a 1 MB L2 cache;
for the larger problems a processor with a 4 MB L2 cache was used.
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FIG. 3.1.Convergence histories ofFAS-SIMPLE andFAS-SIMPLER. Results obtained on a128×128 grid
with 3 grid coarsenings.

3.2. Influence of coarse grid solution strategy.As was seen in the previous section,
no substantial convergence difficulties were observed forRa ≤ 10 , 000 . However, forRa >
10 , 000 , some instabilities were observed in the convergence histories. Here, solving the
coarse grid problem with the Newton-Krylov method was found to be beneficial. ForRa &
30 , 000 , FAS-SIMPLER actually failed to converge unless the Newton-Krylov method was
used for the coarse grid problem. For even larger values ofRa, it was found that enforcing
(2.14) benefitedboth the smoother and the coarse grid solver. These results are examined in
more detail below.

Since§3.1 demonstrated thatFAS-SIMPLER is superior toFAS-SIMPLE, all results
presented in this section were obtained using SIMPLER smoothing and the termFAS is no
longer qualified by which smoother is employed. Names by which the various combinations
of algorithms are referred to in this section are listed in Table 3.1. TheNK-MG implemen-
tation always uses V(2,1) cycles with SIMPLE smoothing in the preconditioner, which was
found in [27] to be the most efficient option.

The first set of results are forRa = 20 , 000 and appear in Figure 3.2, which compares
the effectiveness of varying numbers of pre- and post-smoothing sweeps. In this and in the
remainder of this section,log(‖F‖∞) is plotted against CPU time. Here, V(2,1) cycles are
the most efficient, and the addition of solving (2.14) withtol = δ‖∇ · u(k+ 1

2 )‖ and smaller
values ofδ produced a minor additional improvement. Note that while decreasingδ reduces
the number of iterations by 2 and smooths the convergence history somewhat, the additional
cost per iteration slightly increases the overall computational cost. For this case, and for the
cases discussed in the rest of this section, the multigrid-preconditioned conjugate gradients
method described in§2.2.2 required only 2–3 iterations to satisfy (2.14).

The plot in Figure 3.3 depicts convergence histories obtained by using the Newton-
Krylov method to solve the coarse grid problem to prescribed accuracy. For reference, the
curves labeled “V(2,1), PCG(0.5)” is duplicated between Figures 3.2 and 3.3. Clearly, solv-
ing the coarse grid problem to prescribed accuracy is always beneficial, with theNK-MG
coarse grid solver being the most efficient. Also note that theNK-MG coarse grid solver only
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TABLE 3.1
Options evaluated for nonlinear multigrid components.

FAS Multigrid with SIMPLER smoothing. Coarse grid solves
use 16 sweeps of the smoother.

FAS/NK-SIMPLE(m) Multigrid with SIMPLER smoothing and a
Newton-Krylov coarse grid solver. The latter is
preconditioned withm sweeps ofSIMPLE.

FAS/NK-MG Multigrid with SIMPLER smoothing and a
Newton-Krylov coarse grid solver. The latter is
preconditioned by a multigrid method that uses a V(2,1)
cycle withSIMPLE smoothing.

FAS/PCG(δ) Same asFAS, with (2.14) enforced with

tol = δ‖∇h · u(k+ 1
2 )‖.

FAS/PCG(δ)/NK-SIMPLE(m) Same asFAS/NK-SIMPLE(m), with (2.14) enforced with

tol = δ‖∇h · u(k+ 1
2 )‖.

FAS/PCG(δ)/NK-MG Same asFAS/NK-MG, with (2.14) enforced with

tol = δ‖∇h · u(k+ 1
2 )‖.
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FIG. 3.2. Convergence histories ofFAS for Ra = 20 , 000 . Different numbers of pre- and post-smoothing
sweeps are compared. Results were obtained on a128 × 128 grid with 3 grid coarsenings.

required 2–3 iterations to reach a prescribed relative accuracy of 0.1; any smaller prescribed
accuracy increased the cost of the cost grid solver and the overall cost of the calculation.

For Ra = 50 , 000 , use of the Newton-Krylov coarse grid solver was essential, since
bothFAS andFAS/PCG(δ) failed to converge. Some typical results appear in Figures 3.4
and 3.5. Again for reference, the convergence histories labeledNK-SIMPLE(4) andNK-MG
are the same in these two figures. The plot in Figure 3.4 shows that theNK-SIMPLE(4)
coarse grid solver produces the best performance. However, the plot in Figure 3.5 shows that
enforcing (2.14) enhances the performance of bothFAS/NK-SIMPLE(4) andFAS/NK-MG,
and that reducingtol further improves the performance of both.
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FIG. 3.3. Convergence histories ofFAS for Ra = 20 , 000 . Different coarse grid solvers are compared.
Results were obtained on a128 × 128 grid with 3 grid coarsenings. The NK-MG option used an additional 3 grid
coarsenings.
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FIG. 3.4. Convergence histories ofFAS for Ra = 50 , 000 . Different preconditioners in the coarse grid
solver are compared. Results were obtained on128 × 128 grid using 3 grid coarsenings.

It is interesting to note the patterns of these improvements.FAS/PCG(0.5)/NK-SIMPLE(4)
performs poorly on the second iteration, but this is subsequently overcome by a faster rate
of convergence.FAS/PCG(0.1)/NK-SIMPLE(4) does not encounter this initial difficulty,
and subsequently converges at about the same rate asFAS/PCG(0.5)/NK-SIMPLE(4). The
strategies that employ theNK-MG coarse grid solver behave similarly, though initiallyFAS/PCG(0.5)/NK-
MG does not encounter as much difficulty asFAS/PCG(0.5)/NK-SIMPLE(4). BothFAS/PCG(δ)/NK-
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FIG. 3.5. Convergence histories ofFAS for Ra = 50 , 000 . Different tolerances in the smoother are com-
pared. Results were obtained on128 × 128 grid using 3 grid coarsenings. TheNK-MG coarse solver used 2
additional grid coarsenings.

MG variations have higher rates of convergence thanFAS/PCG(δ)/NK-SIMPLE(4).
The effect of enforcing (2.14) is even more dramatic atRa = 100 , 000 . While using

the Newton-Krylov method is necessary to achieve convergence, it alone is not enough to
guarantee efficiency. This is illustrated in Figures 3.6 and 3.7. Without enforcing (2.14),
the method failed with V(2,1) cycles, so V(2,2) cycles were used to produce Figure 3.6. On
the first few iterations, the Newton-Krylov coarse grid solver gets trapped in a backtracking
loop, with attendant increase in the forcing term. The method eventually recovers, but at an
enormous relative cost. Interestingly, theFAS/NK-SIMPLE(k) options, which use no further
grid coarsenings, are not as sensitive to this phenomenon.

Enforcing (2.14) helps to address the difficulties experienced by the coarse grid solver as
well as enabling convergence with V(2,1) cycles. This behavior is illustrated in Figure 3.7.
Here the curve labeledNK-SIMPLE(4) is the same as the one that appears in Figure 3.6.
The combination of using V(2,1) cycles and enforcing (2.14) improves the performance of
the variant using theNK-SIMPLE(4) coarse grid solver by a factor of 3. While the variant
using theNK-MG coarse grid solver is more expensive per iteration,FAS/PCG(0.5)/NK-MG
requires one third fewer iterations thanFAS/PCG(0.5)/NK-SIMPLE(4); this combination
produces a net 18% additional improvement in performance.

It is interesting to note that the coarsest grid used forRa = 50 , 000 andRa = 100 , 000
were both4× 4. However forRa = 50 , 000 , theNK-MG coarse grid solver was applied on
the32 × 32 grid, while forRa = 100 , 000 it was applied on the64 × 64 grid. In the latter
case the method failed when theNK-MG coarse grid solver was tried on the32 × 32 grid.
This illustrates the flexibility that is provided by theNK-MG coarse grid solver in deciding
which is the coarsest grid in the FAS scheme, while still allowing the use of the entire grid
hierarchy to efficiently resolve all components of the error.

Considerable difficulties were encountered when trying to apply these strategies to the
caseRa = 500 , 000 . No combination was found that enabled convergencewithFAS/PCG(δ)/NK-
SIMPLE(k) for k = 4. Fork = 2, V(2,2) cycles failed to converge and V(4,4) cycles were
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FIG. 3.6. Convergence histories ofFAS for Ra = 100 , 000 . Different preconditioners in the coarse grid
solver are compared. Results were obtained on a128 × 128 grid with 2 grid coarsenings. TheNK-MG coarse grid
solver used an additional 3 grid coarsenings.
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FIG. 3.7. Convergence histories ofFAS for Ra = 100 , 000 . Different tolerances in the smoother are
compared. Results were obtained on a128×128 grid with 2 grid coarsenings. TheNK-MG coarse grid solver used
an additional 3 grid coarsenings.

needed. Some of the remaining results are depicted in Figure 3.8. Convergence histories for
FAS/PCG(δ)/NK-SIMPLE(1) with V(4,4) cycles are even more erratic than the one shown
for V(2,2) cycles and are omitted. AllFAS/PCG(δ)/NK-MG convergence histories are quite
satisfactory, showing no signs of instability and rates of convergence on the order ofρ ≈ 0.6.

Table 3.2 summarizes the results of this section in terms of the best convergence rates that
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FIG. 3.8. Convergence histories of FAS forRa = 500 , 000 . Different numbers of pre- and post-smoothing
sweeps, different preconditioners in the coarse grid solver, and different tolerances in the smoother are compared.
Results were obtained on a256×256 grid with 2 grid coarsenings. TheNK-MG coarse grid solver uses 2 additional
grid coarsenings.

TABLE 3.2
Summary of achieved rates of convergence.

Ra 20, 000 50, 000 100, 000 500, 000
ρ 0.49 0.52 0.48 0.57

were achieved. In each case, these rates of convergencewere achieved withFAS/PCG(δ)/NK-
MG.

4. Summary and Conclusions.Classical pressure-correction strategies for solving the
steady-state incompressible Navier-Stokes equations can be effectively used as multigrid
smoothers. While the smoothing properties of SIMPLE have been previously established,
the use of SIMPLER in this context appears to be new. SIMPLER was more effective for
the natural convection problem that was studied. A re-examination of conventional strategies
for implementing single-grid versions of SIMPLER was found to be necessary to obtain good
performance when it is used in as a multigrid smoother. This required use of a highly efficient
elliptic solver in order for the SIMPLER smoother to be competetive.

TheNK-MG coarse grid solver was found to enhance the robustness ofFAS-SIMPLER.
This strategy for solving the coarse grid problem allows some flexibility in deciding which
grid is the “coarse grid” in the FAS method while still employing the entire grid hierarchy
to compute a solution. It was also found that, as the difficulty of the problem increased, it
became more important to compute the projection step in SIMPLER to prescribed accuracy
in order to obtain acceptable behavior of theNK-MG coarse grid solver. It should be noted
that no combination of strategies was found that enabled convergence ofFAS-SIMPLER for
Ra = 1 , 000 , 000 . Overall, the best performance was achieved through a combination of
SIMPLER smoothing in the nonlinear multigrid method with a Newton-Krylov coarse grid
solver that used SIMPLE smoothing in its linear multigrid preconditioner.
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