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ON PRECONDITIONING SCHUR COMPLEMENT AND SCHUR COMPLEMENT
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Abstract. We study two implementation strategies to utilize Schur complement technique in multilevel recur-
sive incomplete LU preconditioning techniques (RILUM) for solving general sparse matrices. The first strategy
constructs a RILUM to precondition the original matrix. The second strategy solves the first Schur complement
matrix using the lower level parts of the RILUM as the preconditioner. We discuss computational and memory costs
of both strategies and the potential effect on grid independent convergence rate of RILUM with different implemen-
tation strategies.
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1. Introduction. In this paper, we discuss the issue of implementing a class of multi-
level recursive incomplete LU (RILUM) preconditioners. These preconditioners were first
reported and implemented in [40]. RILUM is a general framework for constructing robust
multilevel preconditioning techniques based on block incomplete LU factorization of the co-
efficient matrix. The problems targeted by RILUM are general sparse linear systems of the
form

Ax = b,(1.1)

whereA is an unstructured real matrix of ordern.
It is common to solve general sparse linear systems by a preconditioned iterative method

consisting of an accelerator and a preconditioner [24]. In most situations, a Krylov subspace
method such as GMRES is used as the accelerator [25, 24]. A sparse matrixM based on an
incomplete LU (ILU) factorization of the coefficient matrixA is constructed to serve as the
preconditioner. Analytical studies [18] and experimental investigations [37] have shown that
the convergence rate of a preconditioned Krylov subspace method is mainly determined by
the quality of the preconditioner. The ILU type preconditioning techniques lie between direct
and iterative methods and provide a balance between reliability and scalability.

Although preconditioners may be developed from many sources and with different strate-
gies, most general purpose preconditioners seem to be derived from ILU factorizations of the
coefficient matrices [17]. It has been noted by a few researchers [12, 23, 24, 35] that standard
ILU preconditioners are not robust for solving realistic problems. High accuracy precondi-
tioners that allow more fill-in in the ILU factorizations are needed in these situations. Re-
cently, a class of preconditioners based on multilevel block ILU factorization (BILUM) have
been introduced and shown to yield grid independent convergence rates for certain types of
problems [23, 29]. BILUM is faster and more robust than standard ILU preconditioners. For
certain difficult problems, these favorable attributes come with the added benefit of smaller
memory usage. In addition, these preconditioners are highly parallel and their inherent paral-
lelism can be exploited on parallel computers [26]. Other multilevel preconditioning methods
have also been developed from various multilevel incomplete factorization of the coefficient
matrices [1, 2, 13, 19, 30, 39] and with different construction techniques [3, 4, 5, 6, 7, 15, 34].
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Multilevel and multigrid techniques build on the idea that different error components can
be treated efficiently on different level scales. This is the fundamental philosophy behind
many multiscale computation techniques. Multilevel ILU preconditioning techniques such as
BILUM are similar in philosophy to classical algebraic multigrid methods [8, 10, 20]. The
latter were designed to mimic geometric multigrid methods for solving sparse linear systems
without a grid structure. In fact, it has been shown that there are links between multilevel
preconditioning techniques and algebraic multigrid methods [28]. Our recent research work
shows that comparable multilevel ILU preconditioners can also be constructed using algebraic
multigrid approaches [39].

A common problem with most ILU preconditioners is that their accuracy is fixed once
they are computed. If it is found that the accuracy of a computed preconditioner is insufficient
and the preconditioned iterative method converges unacceptably slowly, a new preconditioner
with a higher accuracy has to be recomputed. The previously computed preconditioner cannot
be updated and the computation is wasted.

In a recent paper [40], we proposed a general framework for constructing robust mul-
tilevel recursive ILU preconditioning techniques (RILUM). We enhanced the robustness of
BILUM preconditioner by adding interlevel acceleration in the form of solving interlevel
Schur complement matrices approximately. The main quality of RILUM that differs it from
other ILU preconditioners is that its accuracy is dynamically determined in the precondi-
tioning process by specifying different stopping criteria to the coarse level iterations. These
preconditioners, by their construction and by the philosophy on which they are based, may
be highly robust and scalable for solving general sparse linear systems. Two implementa-
tions have been tested in [40], mainly to compare different treatments of successive Schur
complement matrices. It has been found that forming the Schur complement matrices in the
preconditioning process is more efficient than computing and storing the approximate Schur
complement matrices in the construction phase. For certain types of problems, the former
implementation may yield a convergence rate that is independent of the problem sizes; the
latter may not.

This paper follows the idea of [40]. Instead of using the constructed multilevel recursive
matrices to precondition the original coefficient matrixA, we propose to solve the first Schur
complement matrix by an iterative process. Such a solution process is then preconditioned by
the coarser level recursive Schur complement matrices. This new strategy is realized with the
implementation of forming Schur complement matrices in the preconditioning process.

This paper includes four additional sections. The next section introduces a general frame-
work for constructing multilevel recursive ILU preconditioning techniques. Section 3 dis-
cusses the advantages and disadvantages of different treatments of the Schur complement
matrices. Section 4 reports numerical comparisons. Concluding remarks are given in Sec-
tion 5.

2. RILUM Preconditioner. We useα for the level reference and assume0 ≤ α ≤ L
for a certain integerL. For convenience we denote the original coefficient matrix asA0 = A.

On a given levelα, we first permute the matrixAα into a two by two block form

PαAαPT
α =

(
Dα Fα

Eα Cα

)
,(2.1)

wherePα is a permutation matrix to be specified later. We denote the order ofAα by nα

and that ofDα by mα. The order of the submatrixCα is nα+1 = nα − mα. The submatrix
Dα is block diagonal, well conditioned, and not too small. Such a reordering of the matrix
can be obtained by a block independent set ordering [29]. The conditioning of the submatrix
Dα may be controlled by imposing a diagonal threshold strategy in the block independent set
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search process [31, 32]. For the ease of notation in our following discussions, we useAα to
denote both the permuted and the unpermuted matrices. The permutation matrixPα will no
longer appear explicitly.

In multilevel preconditioning techniques the block partitioning (2.1) induces a block LU
factorization of the form (

Iα 0α

EαD−1
α Iα

) (
Dα Fα

0α Aα+1

)
,(2.2)

where

Aα+1 = Cα − EαD−1
α Fα(2.3)

is the Schur complement ofAα with respect toCα. Iα and0α are the generic identity and
zero matrices on levelα. Suppose that the above block factorizations can be performed
successfully for0 ≤ α ≤ L, we will have a sequence of matrices

A = {A0, A1, . . . , AL, AL+1}.
The relative density (the number of nonzero elements in each row) of the matrices is increas-
ing as the matrix order decreases. To maintain sparsity during the multilevel recursive LU
factorization we drop small size elements in the computation ofAα+1 so thatAα+1 (see
Āα+1 below) is approximately as sparse asAα. There are at least two types of dropping
strategy that can be employed during the construction ofAα [40]. A single dropping strategy
uses a threshold parameterτ > 0. Any computed elements that are smaller thanτ times the
average of the nonzero elements of the current row are dropped. Adouble dropping strategy
will use another parameterp, in addition toτ , to control the total number of nonzero elements
kept in the L and U parts of each row. For detailed descriptions on various dropping strate-
gies, see [22, 30, 40]. Hence, we actually compute an approximate Schur complementĀα+1

of Aα. DenoteĀ0 = A0 = A, we have a sequence of matrices

Ā = {Ā0, Ā1, . . . , ĀL, ĀL+1},
which is an approximation ofA. ¿From the matrix sequencēA we can construct another
sequence of matrices in a block factored form

Mα =
(

Iα 0α

EαD−1
α Iα

) (
Dα Fα

0α Āα+1

)
, α = 0, 1, . . . ,L.(2.4)

The matrixMα is an approximate factorization of̄Aα and an approximate toAα in the form
of (2.2). It can be used as a preconditioner for the matrixAα or Āα. For completeness,
we assume that the matrixML+1 is constructed differently as a fixed preconditioner, which
means its action does not require any further subsidiary iteration.

A preconditioning process is to transform a linear system

Āαxα = bα(2.5)

into an equivalent form

M−1
α Āαxα = M−1

α bα.(2.6)

The purpose of performing such a transformation is the expectation that, with a “good” pre-
conditionerMα, an iterative method solving (2.6) will converge much faster than solving
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(2.5). The reduction in iteration counts is so significant that the additional cost of implement-
ing preconditioning is compensated.

The set of the matricesMα can be considered as a class of multilevel preconditioner
based on the recursive ILU factorization of the coefficient matrix. This class of preconditioner
is referred to as multilevel recursive ILU preconditioners or RILUM [40].

The application of the preconditionerMα requires the solution of a linear system (the
approximate Schur complement)

Āα+1xα+1 = bα+1.(2.7)

The solution of the system (2.7) can be obtained by another iteration process preconditioned
by the preconditionerMα+1. The application ofMα+1 requires the solution of̄Aα+2xα+2 =
bα+2, and so on. This recursive preconditioning-solving process continues until the solution
of the linear system

ĀL+1xL+1 = bL+1

can be obtained inexpensively either by a direct method1 or by an iterative method precon-
ditioned by a fixed preconditionerML+1. Figure 2.1 shows the logical relations between
Āα andMα on each level. Figure 2.2 is an illustration of the multilevel recursive ILU pre-
conditioner in a simple form in which one iteration is performed on each level. Figure 2.2
is reminiscent of a multigrid V cycle algorithm [9]. Alternative cycling algorithms can be
deduced analogously.

-

-

-

-

M

A1 M1

A2 M

0

3 M 3
preconditioning

formation

construction

fixed factorization

2

A

A

0

FIG. 2.1. Logical relations between the Schur complement (coefficient) matrices and the preconditioners on
each level in the general framework of multilevel recursive preconditioning techniques.

The more accurately the system (2.7) is solved, the more accurate the preconditioner
Mα is. It follows that a more accurate RILUM preconditioner results. Thus, the accuracy
of RILUM can be controlled dynamically in the preconditioning process, after it has been
computed. If the iteration process indicates that the accuracy of the current preconditioning
process is insufficient, a more strict stopping criterion can be placed on the subiteration on
solving the system (2.7) so that it yields better preconditioning effect on levelα.

1In this case,ML+1 is not needed.
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FIG. 2.2.An illustration of a multilevel recursive ILU preconditioning process.

Let the right-hand side vectorb and the solution vectorx be partitioned in accordance to
the block partitioning (2.1). On each levelα we have

xα =
(

xα,1

xα,2

)
and bα =

(
bα,1

bα,2

)
.

Within each iteration on the original linear system (1.1) withα = 0 we need to solve the linear
systems (2.5) for1 ≤ α ≤ L+1 to a certain accuracy. We may use a Krylov subspace method
and useMα as the preconditioner. The preconditioning action consists of a block forward
elimination and a block backward substitution. On each levelα, the forward elimination is
performed by solving(

Iα 0α

EαD−1
α Iα

) (
yα,1

yα,2

)
=

(
bα,1

bα,2

)
with

{
yα,1 = D−1

α bα,1,
yα,2 = bα,2 − Eαyα,1,

whereyα = (yα,1, yα,2)T is a temporary vector. Note that we separate the applications of
D−1

α andEα since we do not in general compute the explicit product matrixEαD−1
α , but

keep them as two separate factors. The backward substitution is performed to obtain the
preconditioning solutionxα by solving(

Dα Fα

0α Āα+1

) (
xα,1

xα,2

)
=

(
yα,1

yα,2

)
with

{
xα,2 ≈ Ā−1

α+1yα,2,
xα,1 = D−1

α (yα,1 − Fαxα,2).

In the first step above, we solve the linear system

Āα+1xα,2 = yα,2(2.8)

approximately to a certain accuracy by a preconditioned Krylov subspace method. Note that
if xα,2 = xα+1 andyα,2 = bα+1, the system (2.8) is just the system (2.7) and can therefore
be preconditioned byMα+1.

Since the preconditioning procedure involves iteration processes, the preconditioner changes
in different outer iterations. Such a feature requires that the Krylov subspace accelerator be
able to accommodate a variable preconditioner. Krylov subspace methods such as FGMRES
[21] and GMRESR [33] can accept a variable preconditioner and are ideal for such applica-
tions.
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3. Block factorization and Schur complement. The block factorization (2.2) is per-
formed implicitly. The submatrixD−1

α instead ofDα is stored, along with the submatrices
Eα andFα. The product matrixEαD−1

α is not formed explicitly. Its action will be recovered
in the preconditioning process by applyingD−1

α , followed byEα, to the vector in question.
Structurally, we store the sparse matrices

M̃α =
(

D−1
α Fα

Eα Āα+1

)
or M̃α =

(
D−1

α Fα

Eα Cα

)

level by level in a single long vector, followed byML+1 = LL+1UL+1.
The Schur complement matrix̄Aα+1, similarly to Aα+1 in (2.3), will be computed ex-

plicitly in order for the next level preconditionerMα+1 to be constructed. One of the two
dropping strategies discussed previously is used to keepĀα+1 sparse. The computed̄Aα+1

is an approximate toAα+1, as in (2.3).
Since we have to solve a system withAα+1 or Āα+1 in the preconditioning iteration

process, either one of these matrices has to be stored or one of their actions has to be recov-
ered. In the first place,̄Aα+1 is computed explicitly for the construction of the coarser level
preconditionerMα+1 and is stored after serving that purpose. The preconditioning process
for Mα will solve the linear system (2.7). In this case, the submatrixCα needs not to be
stored. We emphasize that̄Aαxα = bα is solved withMα as preconditioner, which requires
thatĀα+1xα+1 = bα+1 be solved,

Alternatively, we may discard̄Aα+1 after the construction ofMα+1. Instead, we store
the submatrixCα and solve the linear system withAα+1 for the preconditionerMα. The
action ofAα+1 is recovered with matrix by matrix multiplications and a matrix subtraction as
in (2.3), since the matricesCα, D−1

α , Eα, andFα are readily available. In this case, we solve
Aα+1xα+1 = bα+1 with Mα+1 as preconditioner, which is actually the permutedĀα+1.

Suppose both linear systems withAα+1 and withĀα+1 are solved to the same accuracy.
The solution from the system withAα+1 will have a better preconditioning effect than that
from the system withĀα+1, sinceAα+1 is an exact Schur complement ofAα and Āα+1

is an approximate. KeepinḡAα+1 is expensive in terms of storage cost while computing
Aα+1 is expensive in terms of computational cost. Numerical experiments in [40] show that
the second strategy of assembling the exact Schur complement matrix in the preconditioning
process may yield a preconditioner with a convergence rate independent of the problem size
for certain types of test problems. In the sequel, we will discuss the RILUM implementation
without storing the approximate Schur complement matricesĀα.

3.1. Preconditioning Schur complement.The two implementation strategies described
above use the Schur complement matrix to precondition the matrixA. They can be viewed
asSchur complement preconditioning strategies. Since we favor the strategy that does not
store the approximate Schur complement matrices, we propose a new implementation for this
strategy which forms the Schur complement action in the preconditioning process.

The first Schur complement matrix can be formed exactly, even it is not computed explic-
itly. There seems to be no need to use it as a preconditioner. We can solve it to the required
accuracy and recover the solution of the original system by one step of backward substitution.
In an alternative view, we can consider solving the first level system

(C0 − E0D
−1
0 F0)x1 = b1(3.1)

to the accuracy that would be required by the outer iteration on the system (1.1), then the
outer iteration process will converge in one iteration. This strategy will be referred to as
preconditioning Schur complement strategy.
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There are advantages to applying a Krylov subspace accelerator to the reduced system
(3.1). A Krylov subspace accelerator like FGMRES has to be restarted after a few iterations
and a restarted FGMRES is not as robust as the full FGMRES [24]. In order for a restarted
FGMRES to be as robust as possible, the dimension of the Krylov subspace should be as
large as the computer memory permits. Since the size of the reduced system (3.1),n1, is sub-
stantially smaller than the size ofA, n0, we can allow a larger restart value for the FGMRES
applied on the reduced system (3.1) than that we could allow for the FGMRES applied on
the original systemA0x0 = b0. Furthermore, it is generally believed that, for certain classes
of problems, the condition of a Schur complement matrix is better than that of the original
matrix [14]. The preconditioned iterative solver may converge faster when applied to the
reduced system (3.1).

Another saving of memory comes from the observation that, in the case of solving the
Schur complement system (3.1) the original matrix is no longer needed since no matrix-
vector product withA is required and since the stored submatricesD−1

0 , E0, F0, andC0 and
the permutation matrixP0 are enough to compute an approximate solution to the original
linear system.

Letnz(A) be the number of nonzero elements inA andk0 be the dimension of FGMRES
of the outer iteration originally applied onA. The total saving in storage cost on the first level
with preconditioning on the first Schur complement matrixA1 is approximately

(2k0 + 3)m0 + nz(A),

wherem0 is the size of the block independent set on level0. The factor(2k0 + 3) instead
of (k0 + 3) is due to the fact that additionalk0 vectors are needed in FGMRES to store the
preconditioned residuals [21]. This extra storage space can be used to increase the dimension
of the Krylov subspace of the outer iteration fromk0 to

k0 +
(2k0 + 3)m0 + nz(A)

n − m0
.

The quality of a preconditioner is also related to a parameter commonly referred to as the
sparsity ratio. A sparsity ratio is defined as the ratio of the nonzero elements of a precondi-
tioner to that of the original matrix [28]. In the Schur complement preconditioning case, the
sparsity ratio is

Ssp =
∑L+1

α=0 nz(M̃)
nz(A)

.

In the case of preconditioning the Schur complement matrix with a Krylov subspace acceler-
ator of the same dimension, the sparsity ratio is reduced to

Sps =
∑L+1

α=1 nz(M̃) + nz(D−1
0 ) − nz(D0)

nz(A)
= Ssp − 1.

There will also be fewer floating point operations involved in the preconditioning Schur com-
plement strategy. The number of floating point operations at each preconditioning step is
proportional to the sparsity ratio of the preconditioner.

It is also possible to use the extra storage space associated with the preconditioning Schur
complement strategy to construct a more accurate RILUM preconditioner.
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3.2. Stopping criteria. As proposed in [40], the interlevel preconditioning processes
can be stopped when the residual norm with respect to the linear system on levelα satisfies
a certain stopping criterion. In practice, we should also set an upper bound for the maximum
number of iterations allowed in an iteration process. The coarse level computations can be
very complicated if many iterations are allowed on each level, since each iteration needs
preconditioning processes on all coarser levels. In fact, the total number of preconditioning
iterations can be quite large. Suppose a maximum ofq iterations are allowed on levelα
(except for the outer iterations on level0), the total number of preconditioning iterations for
one outer iteration is bounded by

L∑
α=1

qα =
q(qL − 1)

q − 1
.

Of course, each iteration on a coarse level costs much less than the one on a finer level.
Numerical experiments in [40] show that too many coarse level iterations may result in

an inefficient solver. There needs to be a mechanism to determine whether or not an iteration
on a given level needs to be preconditioned by all coarser level iterations.

The preconditioning step associated with solving the preconditioned system (2.6) is usu-
ally realized in the form of solving

Āαw̄α = rα,(3.2)

whererα is the current residual vector on levelα. An exact preconditioning would be equiv-
alent to solving the linear system

Aαwα = rα(3.3)

exactly.
PROPOSITION3.1. Let wα be the solution of the exact preconditioning equation (3.3)

and w̃α be the approximate solution to the preconditioning equation (3.2) such that‖w̄α −
w̃α‖ < εα for a given stopping criterionεα and any consistent norm‖ · ‖, then the precondi-
tioning error on levelα is bounded by

‖wα − w̃α‖ ≤ ‖A−1
α − Ā−1

α ‖ ‖rα‖ + εα.(3.4)

Proof. ¿From Equations (3.2) and (3.3), we have

w̄α = Ā−1
α rα and wα = A−1

α rα.

It follows that

‖wα − w̄α‖ = ‖(A−1
α − Ā−1

α )rα‖ ≤ ‖(A−1
α − Ā−1

α )‖ ‖rα‖.
Hence,

‖wα − w̃α‖ ≤ ‖wα − w̄α‖ + ‖w̄α − w̃α‖
≤ ‖A−1

α − Ā−1
α ‖ ‖rα‖ + εα.

It can be seen from (3.4) that there is no need to have a smallεα by solving (3.2) to a high
accuracy if‖A−1

α −Ā−1
α ‖ is large. The quantity‖A−1

α −Ā−1
α ‖ is determined by the incomplete
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factorization process and can be referred to as thefactorization error. The factorization error
is a function ofτ in the case of a single dropping strategy or a function of bothτ andp in the
case of a double dropping strategy.εα is controlled by the coarser level iteration process on
levelα + 1 and can be viewed as theiteration error. Hence, the bound (3.4) implies that the
accuracy of the preconditioner is controlled by both the factorization error and the iteration
error. A high accuracy RILUM preconditioner can be obtained by achieving a high accuracy
both in the factorization process and in the iteration process.

3.3. Grid independent convergence rate.In the case of the Schur complement pre-
conditioning, the zeroth level exact preconditioner would beA (disregarding the permutation
matrixP0) and the exact preconditioning solution would be

w0 = A−1r0.

It is obvious that the factorization error on the0th level is zero, since we form the exact
Schur complement matrix in the preconditioning process. If the iterative solution process
on the first level is solved to a certain fixed accuracy at each preconditioning step such that
‖w̄0−w̃0‖ ≤ ε0 independently of the size of the matrixA, as it would be in an implementation
with no limit on the number of coarse level iterations, the convergence rate of the outer
Krylov subspace iteration is independent of the size of the matrixA. This is the nature of the
grid independent convergence rate of RILUM with the Schur complement preconditioning
strategy.

In the case of preconditioning Schur complement, we are actually solvingA1, which
is then preconditioned bȳA1. Let the factorization error be‖A−1

1 − Ā−1
1 ‖ = ε̄1(τ) as

a function of the dropping toleranceτ , assuming a single dropping strategy is employed.
Suppose that the preconditioning system̄A1w̄1 = r1 is solved to a certain fixed accuracy
such that‖w̄1−w̃1‖ ≤ ε1. Then the overall preconditioning error on the first level is bounded
by

‖w1 − w̃1‖ ≤ ‖b1‖ ε̄1(τ) + ε1.(3.5)

Since the factorization errorε1(τ) is usually dependent on the size of the matrixA, the
bound (3.5) implies that the first level preconditioner cannot yield a preconditioning accuracy
that is independent of the size of the matrixA. In other words, the strategy of precondi-
tioning Schur complement cannot yield a grid independent convergence rate in general. We
summarize our findings in the following proposition.

PROPOSITION3.2. Suppose the first level preconditioning iteration process is solved to
a fixed accuracy regardless of the number of iterations required on the subiteration processes.
The Schur complement preconditioning strategy may yield a grid independent convergence
rate while the preconditioning Schur complement strategy may not.

Nevertheless, as indicated in our previous analyses, the preconditioning Schur comple-
ment strategy has the advantage of using less memory and performing fewer floating point
operations in each iteration step. With the same factorization error and the same stopping cri-
terion, the Schur complement preconditioning strategy tends to converge in a smaller number
of iterations than the preconditioning Schur complement strategy does. On the other hand,
the preconditioning Schur complement strategy will take less CPU time if its iteration num-
ber is not too large. As far as efficient computation is concerned, the preconditioning Schur
complement strategy may be preferred under certain conditions.

In the worst case of the preconditioning Schur complement strategy, there is a potential
problem of having too many iterations, since current iterative accelerators that allow variable
preconditioners (like FGMRES) are usually implemented with a restarted version as stated
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previously. A restarted FGMRES may take even more iterations to converge or may stag-
nate. The potential gain in reducing floating point operations by solving a smaller system
in the preconditioning Schur complement strategy may be lost if too many more iterations
are needed. It is crucial to allocate the memory saved from using the preconditioning Schur
complement strategy to allow a larger restart value for FGMRES to minimize the frequency
of restart or to allow a more accurate preconditioner to be constructed.

4. Numerical Experiments. Various implementations of multilevel ILU precondition-
ing techniques (e.g., ILUM, BILUM, and BILUTM) have been described in detail in [23,
29, 30]. One significant difference between RILUM and BILUM (BILUTM) is that we had
an outer iteration on the original system and several inner iterations on the coarse level sys-
tems. The preconditioner for the coarsest level system is the ILUT(p, τ ) of Saad [23]. Unless
otherwise explicitly indicated, we used the following default parameters for our precondi-
tioned iterative solver: FGMRES(50) (FGMRES with a restart value of50) was used as the
outer iteration accelerator; the inner iterations on each coarse level used FGMRES(10); the
maximum number of levels allowed was10; i.e.,L = 10.

All matrices were considered general sparse and any available structures were not ex-
ploited. The right-hand side was generated by assuming that the solution is a vector of all
ones and the initial guess was a vector of some random numbers. The computations were
terminated when the 2-norm of the residual was reduced by a factor of108. We also set an
upper bound of200 for the outer FGMRES iteration. The inner iterations on each coarse
level satisfied convergence test if the 2-norm of the coarse level residual was reduced by a
factor of10; and a maximum of10 iterations were allowed. The initial guesses of all inner
iterations were reset to zero vectors before each round of iterations on a given level. The nu-
merical experiments were conducted on a Silicon Graphics workstation using the Fortran 77
programming language.

In all tables with numerical results, “bsize” is the size of the uniform blocks, “iter”
shows the number of outer FGMRES iteration, “prec” shows the CPU time in seconds for
the preprocessing phase (preconditioner construction), “solu” shows the CPU time for the
solution phase, “level” shows the number of actual levels of reduction, “spar” shows the
sparsity ratio. The parametersτ andp were used in the single or double dropping strategy.

We implemented RILUM with the strategy of forming the exact Schur complement ac-
tion on each level during the preconditioning process. The preconditioning Schur comple-
ment strategy will be abbreviated as PreSch and the Schur complement preconditioning strat-
egy as SchPre.

4.1. Convection diffusion problem. We first consider a convection diffusion problem

uxx + uyy − Re[x(x − 1)(1 − 2y)ux − y(y − 1)(1 − 2x)uy] = 0(4.1)

defined on the unit square. Here Re is the Reynolds number. Dirichlet boundary condition
was assumed, but the linear systems used the artificially generated right-hand side as stated
previously. We used the standard 5-point central difference discretization scheme and a fourth
order 9-point compact finite difference discretization scheme [16]. The percentage of the rows
with a diagonal dominance becomes smaller as Re increases [38, 36].

We first tested several sparse matrices arising from the 9-point finite difference discretiza-
tion scheme. We refined the mesh size to see how the performances of the precondition-
ers were affected when the problem size was enlarged. The other parameters were fixed as
Re = 1000, bsize = 30, p = 30, τ = 0.05. The single dropping strategy was used for tests in
this subsection. The test results are listed in Table 4.1.

The results in Table 4.1 confirm our analyses in Section 3.3. It shows that SchPre strategy
yields a convergence rate that is independent of the problem size. It also shows that PreSch
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TABLE 4.1
Comparison of PreSch and SchPre for solving the convection diffusion problem with the 9-point finite difference

discretization scheme and different mesh size.

PreSch SchPre
h prec iter solu spar iter solu spar

1/32 0.09 7 0.04 3.09 6 0.08 4.09
1/64 0.58 8 0.53 3.99 6 0.95 4.99
1/128 4.12 14 6.35 4.38 6 8.20 5.38
1/256 32.30 33 61.82 4.39 7 92.36 5.39

strategy does not usually converge independently of the problem size. However, in all cases
listed in Table 4.1, PreSch took less CPU time to converge and used less memory space than
SchPre did.

We did another test with a matrix arising from the 5-point central difference discretiza-
tion of Equation (4.1) withRe = 1 andh = 1/201. We varied the dropping parameterτ
so that preconditioners with different accuracy were computed. The other parameters were
fixed asbsize = 20, p = 30. The results are shown in Figure 4.1. We note that when the
accuracy of the incomplete factorization decreased, the iteration number of PreSch increased
rapidly, while that of SchPre increased moderately. On the other hand, PreSch took less CPU
time than SchPre did when FGMRES(50) did not restart. The situation was reversed when
FGMRES(50) was restarted more than once for PreSch. When FGMRES(50) was restarted
just once for PreSch and was not restarted for SchPre, both took about the same CPU time to
converge. This test indicates that restarting FGMRES deteriorates the convergence severely.
Frequently restarting FGMRES makes PreSch strategy unattractive. The test results agree
with our analyses and comments made in previous sections.

0 0.2 0.4 0.6 0.8
0

20

40

60

80

100

120

140

160

180

dropping parameter tau

nu
m

be
r o

f it
er

at
ion

s

solid line: PreSch

dashed line: SchPre

0 0.2 0.4 0.6 0.8
10

15

20

25

30

35

40

45

dropping parameter tau

CP
U 

tim
e 

in 
se

co
nd

s

solid line: PreSch

dashed line: SchPre

FIG. 4.1. Comparison of PreSch and SchPre with respect to the dropping parameterτ for solving a matrix
from the5-point central difference discretization scheme.

We repeated our test without restarting FGMRES and used the same parameters as be-
fore. The results are depicted in Figure 4.2. This time PreSch took less CPU time than SchPre
did for all butτ = 0.8. Our observation is that preconditioning Schur complement strategy is
viable when the incomplete factorization is accurate enough and the Krylov subspace accel-
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erator does not have to be restarted frequently.
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FIG. 4.2. Comparison of PreSch and SchPre with respect to different dropping parameterτ for solving a
matrix from the 5-point central difference discretization scheme. Full FGMRES was used in both cases.

4.2. Double dropping strategy.For test results reported in this subsection, the double
dropping strategy was used and a maximum number of 5 levels of reduction was allowed.

The parameterp was used to control the maximum number of nonzero elements inĀα on
all levels. Table 4.2 tabulates the comparison of PreSch and SchPre for solving the matrices
arising from the 9-point discretization of Equation 4.1 withh = 1/151. The other parameters
used werebsize = 40, τ = 0.01.

TABLE 4.2
Comparison of PreSch and SchPre for solving the convection diffusion problem with the 9-point finite difference

discretization scheme and different Reynolds number.

PreSch SchPre
Re prec iter solu spar iter solu spar
0 6.26 40 10.16 3.97 7 12.85 4.97
1 6.24 40 9.99 3.96 7 12.94 4.96
10 6.19 39 9.80 3.95 7 12.76 4.95
100 6.23 49 12.31 3.98 9 17.69 4.98
1000 4.21 24 9.74 4.64 7 20.99 5.64
10000 6.32 9 7.40 4.21 5 9.19 5.21

The results in Table 4.2 show that the convergence rate of PreSch strategy was heavily
affected by the Reynolds number. The convergence rate of SchPre strategy was only slightly
affected by the variation of the Reynolds number. In all but one cases, PreSch used less CPU
time than SchPre did to reach convergence. Note that for these tests, FGMRES was never
restarted.

Next, we solved the UTM3060 matrix using PreSch and SchPre with different param-
eters. This matrix arises from a nuclear plasma modeling (tokamak) and is generated by
P. Brown at the Lawrence Livermore National Laboratory. The matrix has3060 unknown
and42211 nonzero elements.
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TABLE 4.3
Comparison of PreSch and SchPre for solving the UTM3060 matrix with the double dropping strategy and5

levels of reduction.

PreSch SchPre
p τ bsize prec iter solu spar iter solu spar
40 0.01 80 1.20 25 10.55 6.26 9 28.19 7.26
40 0.01 50 1.29 20 14.21 5.55 8 48.54 6.55
40 0.01 30 1.27 15 60.80 5.01 7 148.57 6.01

60 0.01 80 1.48 15 9.44 7.14 8 25.80 8.14
60 0.01 50 1.68 16 27.17 6.43 7 73.44 7.43
60 0.01 30 1.68 14 32.95 6.08 7 69.41 7.08

60 0.001 80 2.37 15 12.30 8.41 8 26.84 9.41
60 0.001 50 2.33 14 48.84 7.74 7 123.47 8.74
60 0.001 30 2.38 12 76.58 7.74 7 191.00 8.74

Based on the results presented in Table 4.3, we can see that the convergence rate of
SchPre strategy is not much affected by the variation of the parameters, but the computational
cost is. It seems that large size blocks help both PreSch and SchPre reduce computational
cost (CPU time), although the memory cost (sparsity ratio) is increased slightly. It is very
interesting to note that, for this test problem, smallerτ values and largerp values, which are
supposed to yield a more accurate preconditioner, did not produce better results.

4.3. More tests.Further, we compared the two RILUM implementation strategies using
a few sparse matrices downloaded online either from the Matrix Market of the National Insti-
tute of Standards and Technology2 or from the University of Florida sparse matrix collection
[11]. 3 Many of these matrices have been used in various tests of sparse iterative solvers
[22, 24, 29].

For this set of tests, we used the same parameters for all matrices. The parameters were
chosen asbsize = 50, τ = 0.1, p = 30. At most5 levels of reduction were allowed and the
single dropping strategy was used. The test results are listed in Table 4.4. The sparsity ratios
reported in Table 4.4 are for the PreSch strategy. The corresponding sparsity ratios for the
SchPre strategy would be “spar + 1”. We find that, except for solving the SAYLR4 matrix,
PreSch strategy took less CPU time to converge than SchPre strategy did for solving all other
matrices. Once again, the test results reinforce our observations made earlier that the PreSch
strategy is computationally more efficient.

4.4. Coarse level iterations.Finally, we tested the two implementation strategies to
solve the SAYLR4 and UTM1700b matrices with different number of coarse level iterations.
In the experiments reported previously, the maximum number of coarse level iterations on all
levels is10. One iteration on a given level will be preconditioned by at most10 iterations on
a coarser level (or until the 2-norm residual on the level in question is reduced by10 orders of
magnitude) and so on. In the current test, we fixed all other parameters aslevel = 5, bsize =
20, τ = 0.1, p = 30 and a single dropping strategy was used. The test results are given in
Table 4.5. Based on our test results, we can say that too many iterations on coarse levels do not
yield efficient computational schemes, although the numbers of outer iterations are usually
smaller for larger number of inner iterations. On the other hand, too few inner iterations do

2http://math.nist.gov/MatrixMarket .
3http://www.cise.ufl.edu/ ∼davis/sparse .
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TABLE 4.4
Comparison of PreSch and SchPre for solving general sparse matrices.

PreSch SchPre
Matrix order nonzero prec spar iter solu iter solu
ORSIRR11 1 030 6 858 0.09 4.77 25 0.17 7 0.24
RAEFSKY1 3 242 294 276 20.31 4.27 11 17.67 6 38.76
RAEFSKY2 3 242 294 276 27.89 4.27 10 37.45 7 76.42
RAEFSKY5 6 316 168 658 1.23 0.70 2 0.23 4 0.65
RAEFSKY6 3 402 137 845 0.83 0.47 3 0.19 4 0.42
SAYLR3 1 000 3 750 0.08 8.84 11 0.12 6 0.19
SAYLR4 3 564 22 316 0.29 5.16 90 2.02 8 1.50
SHERMAN1 1 000 3 750 0.08 8.84 11 0.12 6 0.21
SHERMAN3 5 005 20 033 0.69 8.61 21 3.23 7 6.42
SHERMAN4 1 104 3 786 0.08 6.83 9 0.05 6 0.01
UTM1700b 1 700 21 509 0.36 3.79 44 9.05 25 47.20
WATT2 1 856 11 550 0.34 8.49 30 0.60 7 0.94

not provide sufficient preconditioning effect and the outer iterations do not converge within
the maximum number of iterations allowed. As far as computational efficiency is concerned,
the number of inner iterations should be just slightly more than what is sufficient to guarantee
convergence. Nevertheless, more inner iterations usually make the preconditioned iterative
solvers more robust to reduce the possibility of no convergence.

TABLE 4.5
Comparison of PreSch and SchPre for solving the SAYLR4 and UTM1700b matrices with different number of

coarse level iterations.

SAYLR4 UTM1700b
PreSch SchPre PreSch SchPre

inner-iter iter solu iter solu iter solu iter solu
1 – – – – – – – –
2 – – – – – – – –
3 – – 86 4.91 – – – –
4 189 4.37 30 2.48 177 21.58 152 51.63
5 95 2.52 17 1.82 75 21.29 60 69.96
6 93 2.78 14 1.95 50 28.87 45 128.12
7 92 3.15 12 2.02 37 33.91 23 119.97
8 92 3.23 11 2.22 34 35.19 21 156.65
9 70 2.45 10 2.20 35 33.55 19 153.19

10 89 3.13 10 2.40 34 32.23 15 139.21
11 89 3.18 10 2.66 35 33.50 13 130.35
12 89 3.20 9 2.54 35 33.29 13 122.27

5. Concluding Remarks. We have proposed a new implementation strategy within the
general framework of multilevel recursive ILU preconditioning techniques (RILUM) for solv-
ing general sparse matrices. This strategy is based on an implementation introduced in [40]
to form the exact Schur complement action in the preconditioning process. The new strategy
abandons the original outer Krylov subspace iteration and solves the first level Schur com-
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plement matrix. The Krylov subspace iteration on the first level Schur complement matrix is
further preconditioned by the lower level RILUM.

Analyses on the new implementation strategy, which is referred to as the precondition-
ing Schur complement (PreSch) strategy, show that the PreSch strategy can save significant
amount of memory space and can lower the sparsity ratio of RILUM by1, provided that the
preconditioner is accurate enough.

Numerical results show that PreSch strategy does not usually yield a grid independent
convergence rate. It can nevertheless reduce the CPU timings significantly, comparing to the
standard implementation with the Schur complement preconditioning strategy. However, the
number of iterations of the PreSch strategy is usually large which entails more restarts of
FGMRES if the incomplete factorization is not accurate enough. Frequent restart of FGM-
RES may render the PreSch strategy inefficient.

Another possible implementation strategy for RILUM is to use a domain based multi-
level block ILU factorization (BILUTM) [30], in which the individual blocks are factored by
an ILUT strategy. This implementation strategy has been preliminarily reported by Saad and
Suchomel [27]. However, as we mentioned in [40], the RILUM implementation based on
BILUTM strategy may not yield a grid independent convergence rate, since the first level fac-
torization of BILUTM is not exact. It may also be impossible to implement apreconditioning
Schur complement strategyas discussed in this paper with the BILUTM implementation due
to the same reason (inexact factorization). On the other hand, RILUM based on BILUTM im-
plementation may be more suitable for very large blocks. In this case, the approximate Schur
complement matrices on all levels are stored and are used in the preconditioning process.

Maybe the most efficient implementations of RILUM are yet to be found. The relation
among preconditioning error and factorization error and iteration error has been addressed
qualitatively in Proposition 3.1. But we have not found a practical implementation that will
automatically determine the iteration accuracy based on the factorization accuracy. This and
other issues are to be investigated in our ongoing research on multilevel recursive ILU pre-
conditioning techniques.
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