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Abstract. Semiiterative methods are known as a powerful tool for the iterative solution of

nonsingular linear systems of equations. For singular but consistent linear systems with coefficient
matrix of index one, one can still apply the methods designed for the nonsingular case. However,
if the system is inconsistent, the approximations usually fail to converge. Nevertheless, it is still
possible to modify classical methods like the Chebyshev semiiterative method in order to fulfill the
additional convergence requirements caused by the inconsistency. These modifications may suffer
from instabilities since they are based on the computation of the diverging Chebyshev iterates. In
this paper we develop an alternative algorithm which allows to construct more stable approximations.
This algorithm can be efficiently implemented with short recurrences. There are several reasons
indicating that the new algorithm is the most natural generalization of the Chebyshev semiiteration
to inconsistent linear systems.
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1. Introduction. It is quite well known that the discrete modeling of Neumann
problems for elliptic partial differential equations (cf. Hackbusch [13]) and problems
from statistics such as finding the steady state of a Markov chain (cf. Barker [1]) lead to
singular systems of linear equations. In addition, from the early days of computerized
tomography until today the solution of singular systems of equations has played a
substantial role (cf. Natterer [18]). Finally, overdetermined systems of equations are
intimately connected to the concept of frames which presently undergoes a revival
due to its impact on wavelet analysis (cf. Daubechies [5]) and irregular sampling
algorithms (cf. Feichtinger [9]).

With an appropriate transformation (postmultiplication, preconditioning, etc.),
all these applications eventually lead to a square, singular linear system of equations

Ax = b.(1.1)

We concentrate on the case where the matrix A is structured in a way which favors
the application of iterative methods rather than direct methods for the solution of
(1.1). Here, we are mainly concerned with semiiterative methods as introduced by
Varga [23].

The Chebyshev method is a semiiterative method which can be applied to con-
sistent singular systems (1.1) when the spectrum of A is real and nonnegative:

σ(A) ⊂ {0} ∪ [c− d, c + d], 0 < d < c(1.2)

(cf. Manteuffel [17], Woźniakowski [24]). A semiiterative method can be described by
its associated sequence {pn}n≥0 of so-called residual polynomials normalized at the
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origin by pn(0) = 1. For the Chebyshev method the residual polynomials are shifted
and translated Chebyshev polynomials of the first kind. Recall the following three
fundamental properties of these polynomials:

(i) they are orthogonal with respect to the equilibrium distribution on the inter-
val [c− d, c + d];

(ii) they satisfy a three-term recurrence formula;
(iii) the nth residual polynomial pn minimizes the L∞ norm on [c−d, c+d] among

all residual polynomials of degree less or equal n.
It is because of the second property that the iterates of the Chebyshev method can be
computed efficiently via coupled two-term recursions. The third property guarantees
that the Chebyshev method is optimal in the sense that no other semiiteration can
converge faster for all problems (1.1) with spectral enclosure (1.2). Note that both
of these properties are somehow connected to the first one; in particular, the second
property is a well-known consequence of the orthogonality.

For various reasons, e. g. approximation errors, discretization errors, or measur-
ing errors, the final system (1.1) can be inconsistent even if the underlying physical
model predicts solvability. In this case, a generalized solution of the discretized equa-
tions is sought. However, for inconsistent problems the Chebyshev method will fail to
converge [24]. A theory for semiiterative methods for general singular linear systems
has been developed by Eiermann, Marek, and Niethammer [6]. In the particular case
where the index of A is one, several authors, e. g. in [24, 7, 15], suggested modifica-
tions of the Chebyshev algorithm which guarantee convergence of the iterates to the
so called group inverse solution (cf. Campbell and Meyer [3]). These modifications
maintain Property (ii) but they may fail to be numerically stable as they are based on
the original (diverging) Chebyshev method. Further on, the corresponding residual
polynomials no longer have an optimality property similar to (iii). On the other hand,
one could try to impose some analog of (iii): Eiermann and Starke [8], for example,
constructed residual polynomials that are “near optimal” in an L∞ sense, but cannot
be computed by means of short recurrences.

Here we propose a different approach of constructing semiiterative methods for
inconsistent systems which is based on orthogonality, i.e., an appropriate analog of
Property (i). It turns out, that the resulting residual polynomials are also near op-
timal in the sense of [8], and that the iterates can be computed efficiently via short
recurrences. In other words, this new method, especially designed for inconsistent
problems, shares all main features (i), (ii), and (iii) of the Chebyshev method.

We would like to stress that conjugate gradient type methods for inconsistent
linear systems have been considered in the Hermitian case only, cf. Paige and Saun-
ders [20]. For consistent but non-Hermitian linear systems convergence results for
Krylov subspace methods can be found in [11]. However, conjugate gradient type
methods require the computation of several inner products per iteration. On modern
computer architectures this may be a severe algorithmic disadvantage (see [16] for
a discussion of this subject including experimental illustrations). Like the classical
Chebyshev method, our new method requires no inner products at all which may
favor its application on modern supercomputers.

This paper is organized as follows: after a brief review of semiiterative methods for
singular systems in Section 2, we derive a proper analog of the above Property (i) for
inconsistent problems in Section 3. In Section 4 we develop simple recursions for the
resulting residual polynomials and an efficient implementation of the corresponding
semiiterative method. The asymptotic properties of this algorithm are studied in
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Section 5. Finally, in Section 6, we present a basic numerical example illustrating the
theoretical results.

2. Semiiterative methods. In this section, we briefly review semiiterative
methods for inconsistent problems as developed by Eiermann, Marek, and Nietham-
mer [6]. The nth iterate xn of a semiiterative method lives in the shifted nth Krylov
subspace

x0 +Kn(A, r0) := x0 + span {r0, Ar0, . . . , A
n−1r0}.

Here, x0 is any initial guess and r0 = b − Ax0 denotes the corresponding residual.
Expanding xn with respect to the Krylov basis we can find a polynomial qn−1 of
degree n− 1 with

xn = x0 + qn−1(A)r0 = pn(A)x0 + qn−1(A)b,(2.1)

where

pn(λ) = 1− λqn−1(λ)(2.2)

is the nth residual polynomial.
Let R(A) and N (A) denote the range and null space of A, respectively, and let

b = bR + bN , bR ∈ R(A), bN ∈ N (A)

be the decomposition of b into its “solvable” and “unsolvable” components. Such
a decomposition always exists, and it is unique if the index of A equals one, i. e.,
if N (A) = N (A2), which we will assume from now on. We shall write P for the
corresponding projector onto N (A); hence we have Pb = bN . Finally, we denote by
x = x(x0) the unique solution of Ax = bR with x− x0 ∈ R(A) . The corresponding
(linear) map b 7→ x(x0)−Px0 is called the group inverse of A; if A is Hermitian then
x(x0) is the least squares solution of (1.1) closest to x0 in norm (cf. Campbell and
Meyer [3]).

For the error en = x− xn we obtain from (2.1):

en = x− pn(A)x0 − qn−1(A)(Ax + bN )

= pn(A)(x− x0)− qn−1(0)bN .
(2.3)

Hence, if bN 6= 0, that is, if the system (1.1) is inconsistent, then we observe that
xn → x(x0) as n→∞ for any initial guess x0, if and only if

qn−1(0)→ 0 and pn(A)v → 0 for all v ∈ R(A).

Note that, in view of (2.2), qn−1(0) = −p′n(0). In other words, xn → x(x0) for any x0

if and only if

p′n(0)→ 0 and pn(A)v → 0 for all v ∈ R(A).(2.4)

It is especially the first condition that will cause difficulties since p′n(0) usually diverges
to infinity.

Example 1. Given the information (1.2), the residual polynomials tn of the Cheby-
shev method are shifted and translated Chebyshev polynomials of the first kind, i. e.

tn(λ) =
Tn(z(λ))
Tn(z(0))

, z(λ) = (c− λ)/d,
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where

Tn(z) =

{
cos(n arccos(z)), z ∈ [−1, 1],
cosh(nArcosh(z)), z 6∈ [−1, 1].

(2.5)

Denote by κ the root convergence factor associated with the interval [c − d, c + d]
(Niethammer and Varga [19]), i.e.,

κ = e−Arcosh(c/d) =
c−
√

c2 − d2

d
< 1.(2.6)

It is now easily verified that

τn := t′n(0) = − 1√
c2 − d2

n + O(nκ2n)→∞, n→∞,(2.7)

and hence the Chebyshev method fails to converge for inconsistent problems.
Woźniakowski [24] was the first to modify the iteration in order to overcome di-
vergence. He proposed the residual polynomials

pI
n(λ) = (1− τn−1λ)tn−1(λ), n ≥ 2.

These polynomials satisfy (pI
n)′(0) = 0, hence, the first condition in (2.4) is trivially

fulfilled. Note that the nth iterate of this scheme is easily obtained from the (n−1)st
Chebyshev iterate xn−1 via

xn−1 − τn−1rn−1, rn−1 = b−Axn−1.

However, this construction is unstable, since the Chebyshev iterates diverge to infinity
in norm.

Example 2. Another modification of the Chebyshev method was suggested in [15].
In this scheme, two subsequent iterates are extrapolated to approximate

x ≈ xn−1 −
τn−1

τn − τn−1
(xn − xn−1).

Note that τn is strictly decreasing so that no division by zero can occur. The residual
polynomials of this modification are

pII
n (λ) = − τn−1

τn − τn−1
tn(λ) +

τn
τn − τn−1

tn−1(λ).

Again, the derivative of pII
n at λ = 0 vanishes. The drawback of the method is the same

as in Example 1: the computation is based on the diverging sequence of Chebyshev
iterates. However, the numerical results in [15] indicate a slightly improved stability,
see also Section 6.

We emphasize that both modifications of the Chebyshev algorithm use residual
polynomials satisfying

pn(0) = 1 and p′n(0) = 0,(2.8)

and, for the sake of simplicity, we will also restrict our attention to residual polyno-
mials satisfying (2.8). Let Πn denote the set of all real polynomials of degree at most
n, and

Π0
n := {p ∈ Πn | p(0) = 1, p′(0) = 0}.
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As analog of Property (iii) from the introduction we now consider the following poly-
nomial minimization problem:

‖pn‖[c−d,c+d]→ min, pn ∈ Π0
n,(2.9)

where ‖ · ‖[c−d,c+d] denotes the L∞ norm on the interval [c − d, c + d]. Note that
for any diagonalizable matrix A with spectrum (1.2), and any residual polynomials
pn ∈ Π0

n we immediately obtain the following bound for the iteration error (2.3):

‖en‖ = ‖x− xn‖ ≤ ‖pn(A)‖ ‖x− x0‖ ≤ C‖pn‖ [c−d,c+d] ‖x− x0‖ .

Here, C is the condition number of the matrix of eigenvectors of A; in particular,
C = 1 when A is Hermitian, and it is easy to construct examples where the above
upper bound is attained. Thus, problem (2.9) arises quite naturally in this context.

The polynomials p?n minimizing (2.9) are rescaled Zolotarev polynomials. Among
all polynomials of the form λn + σλn−1 + . . ., the nth Zolotarev polynomial is the
polynomial which has minimum L∞ norm over the interval [c− d, c + d]. Like p?n, the
Zolotarev polynomial is characterized by equioscillating on the given interval, hence
there exists σ ∈ IR, such that the associated Zolotarev polynomial and p?n only differ
by a scaling factor. As the derivative of p?n vanishes at λ = 0, i. e., outside the interval
[c − d, c + d], it follows that this Zolotarev polynomial can be expressed in terms of
elliptic functions, cf. Carlson and Todd [4].

As was shown by Bernstein [2], {p?n} satisfies

‖p?n‖[c−d,c+d] ∼ 2(κ−1 − κ) nκn, n→∞,(2.10)

where an ∼ bn means that an/bn tends to one as n goes to infinity. Opposed to this,
we have for the Chebyshev polynomials:

‖tn‖[c−d,c+d] ∼ 2 κn, n→∞.

In other words, the additional interpolation condition p′n(0) = 0 is responsible for the
extra factor n in (2.10). We refer to Eiermann and Starke [8] for generalizations of
this result. Following [8], we call a sequence of residual polynomials pn ∈ Π0

n near
optimal whenever the strong asymptotics (2.10) hold for {pn}.

We would like to stress that no short recursions are known for the optimal poly-
nomials p?n, nor for the polynomials considered in [8]. However, short recursions are
essential for the construction of efficient semiiterative methods. On the other hand,
while the methods outlined in the examples above have short recurrences, they are
not near optimal as we will show in Section 5.

3. A new approach based on orthogonal polynomials. As mentioned as
Property (i) in the introduction, the Chebyshev polynomials tn are orthogonal with
respect to the inner product 〈·, ·〉 corresponding to the equilibrium distribution on the
interval [c− d, c + d], i. e.,

〈ϕ,ψ〉 :=
∫ c+d

c−d
ϕ(λ)ψ(λ)

dλ√
(d + c− λ)(λ− c + d)

.(3.1)

Note that the zeros of orthogonal polynomials with respect to any nonnegative weight
function on [c−d, c+d] are located inside this interval and hence the same fact is true
for the zeros of their derivatives. Thus, such polynomials do not belong to Π0

n and are
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therefore not suited as residual polynomials for semiiterative methods for inconsistent
systems (compare also Eiermann and Reichel [7, Theorem 3.2]).

On the other hand, it is a well-known consequence of the orthogonality relation
(3.1), cf. Stiefel [21], that tn solves the minimization problem

‖|p‖|2 := 〈p,
1
λ

p〉 → min(3.2)

among all polynomials of degree at most n normalized by p(0) = 1, and we may ask
whether a similar optimality property holds for polynomials in Π0

n.
Theorem 3.1. Problem (3.2) has a unique solution pn in Π0

n which is charac-
terized by

〈pn, λj〉 = 0, for j = 1, . . . , n− 1.(3.3)

Proof. Rewriting p ∈ Π0
n as p(λ) = 1− λ2u(λ), where u is a polynomial of degree

n − 2, we observe that (3.2) is equivalent to searching for the best approximation
u of λ−2 from the set of polynomials of degree at most n − 2 in the Hilbert space
induced by the inner product 〈·, λ3·〉. Since this equivalent approximation problem
has a unique solution, there is a unique minimizer of (3.2) in Π0

n.
Let pn be this minimizing polynomial, and let 1 ≤ j ≤ n−1 be arbitrarily chosen.

Consider p = pn + αλj+1, α ∈ IR, which obviously belongs to Π0
n. Hence,

‖|pn‖|2 ≤ ‖|p‖|2 = ‖|pn‖|2 + 2α〈pn,
1
λ

λj+1〉+ α2‖|λj+1‖|2.

Choosing the sign of α appropriately while letting α → 0, we conclude that this
inequality holds if and only if

〈pn,
1
λ

λj+1〉 = 〈pn, λj〉 = 0.

To proof the opposite direction, let pn satisfy the orthogonality relations (3.3)
and let p be an arbitrary polynomial in Π0

n. Then p− pn has degree n and a zero of
multiplicity two at the origin. Hence,

u := (p− pn)/λ ∈ span{λ, λ2, . . . , λn−1}.

¿From this we conclude

‖|p‖|2 = ‖|pn + λu‖|2

= ‖|pn‖|2 + 2〈pn, u〉+ ‖|λu‖|2

= ‖|pn‖|2 + ‖|λu‖|2

≥ ‖|pn‖|2.

This completes the proof.
Let us briefly return to the examples of the previous section. For the polynomials

pI
n we immediately obtain

〈pI
n, λ

j〉 = 〈tn−1, (1− τn−1λ)λj〉 = 0, j = 0, . . . , n− 3,

while for the polynomials pII
n we have

〈pII
n , λj〉 = − τn−1

τn − τn−1
〈tn, λj〉+

τn
τn − τn−1

〈tn−1, λ
j〉 = 0, j = 0, . . . , n− 2.
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It is instructive to compare these orthogonality relations with those of Theorem 3.1. In
particular, we note that the polynomials pI

n lose one degree of orthogonality compared
to pII

n ; this might indicate a certain superiority of pII
n .

We now show that the iterates of the semiiterative method based on the poly-
nomials {pn} of Theorem 3.1 can be computed with short recursions. For this we
consider the update from xn to xn+1: from (2.1) we obtain

xn+1 − xn =
(
qn(A)− qn−1(A)

)
r0 =: un(A)r0(3.4)

with the so-called update polynomials

un(λ) = qn(λ)− qn−1(λ) =
pn(λ) − pn+1(λ)

λ
.(3.5)

Note that un is a polynomial of degree n with un(0) = 0. Furthermore, if p is any
polynomial of degree at most n− 2, then

〈un
λ

, λ3p〉 = 〈pn − pn+1

λ2
, λ3p〉 = 〈pn − pn+1, λp〉 = 0

by virtue of the orthogonality relation (3.3). This means that {un/λ}n≥1 – polynomi-
als of degree n−1, respectively – are classical orthogonal polynomials with respect to
the real inner product 〈·, λ3·〉. They therefore satisfy a three-term recurrence relation;
hence, after multiplication by λ we obtain

un = ωnλun−1 + µnun−1 + νnun−2, n ≥ 2, ν2 = 0,(3.6)

with certain uniquely defined coefficients ωn, µn and νn, n ≥ 2. By (3.4), this leads
to the following iterative scheme to compute xn, n ≥ 2:

xn+1 = xn + ωnA(xn − xn−1) + µn(xn − xn−1) + νn(xn−1 − xn−2).(3.7)

The coefficients {ωn, µn, νn}n≥2 are not known explicitly, but can be obtained
from the recursion coefficients of the Chebyshev polynomials {tn} in the course of the
iteration, cf. Gautschi [12] or Fischer and Golub [10]. We will derive the corresponding
formulas in the following section.

We point out that so far, we have not used the special form of the weight function
in (3.1). In fact, all we need is that (3.2) defines a norm.

4. The algorithm. Following Manteuffel [17], the translated Chebyshev poly-
nomials {tn}n≥−1 satisfy the following recurrence relation∗:

t−1 ≡ 0, t0 ≡ 1,

tn+1 = −αnλtn + (1 + βn)tn − βntn−1, n ≥ 0,
(4.1)

with

α0 = 1/c, β0 = 0,

α1 = 2c/(2c2 − d2), β1 = cα1 − 1,

αn = 1/(c−
(d
2
)2

αn−1), βn = cαn − 1, n > 1.

∗ Note that we use c for center and d for distance, which differs from the notation used in [17].
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We will now see how this can be utilized for a computation of pn:
Lemma 4.1. Let τn = t′n(0) and σn = t′′n(0). Then the polynomials pn of Theo-

rem 3.1 can be expressed as

pn =
1
λ

(γntn+1 − (γn − δn)tn − δntn−1), n ≥ 0,(4.2)

where γ0 = −c, δ0 = 0, and

γn = (σn − σn−1)/ρn, δn = (σn − σn+1)/ρn, n ≥ 1,(4.3)

with

ρn = (τn+1 − τn)(σn − σn−1)− (τn − τn−1)(σn+1 − σn).

Proof. We expand λpn in terms of the Chebyshev polynomials {tn}:

λpn =
n+1∑
j=0

πj,ntj .(4.4)

Because of (3.3),

〈λpn, tj〉 = 〈pn, tjλ〉 = 0 for 0 ≤ j ≤ n− 2.

Since the left-hand side is a positive multiple of πj,n we conclude that only tn−1, tn,
and tn+1 contribute to λpn in (4.4). With γn := πn+1,n and δn := −πn−1,n we find
πn,n = δn − γn since λpn vanishes at the origin; hence we obtain (4.2). The values of
γn and δn can be determined from the first two derivatives of λpn at λ = 0:[

(λpn)′(0)
(λpn)′′(0)

]
=
[

1
0

]
=
[

τn+1 − τn τn − τn−1

σn+1 − σn σn − σn−1

][
γn
δn

]
.

This yields (4.3). Note that ρn is the determinant of the matrix on the right-hand
side. It must be nonzero, since pn is uniquely determined by Theorem 3.1.

The coefficients τn and σn are easily obtained from (4.1), namely we have

τ0 = 0, τ1 = −α0,

τn+1 = −αn + (1 + βn)τn − βnτn−1, n ≥ 1,

σ0 = 0, σ1 = 0,

σn+1 = −2αnτn + (1 + βn)σn − βnσn−1, n ≥ 1.

Now we are in a position to determine the recursion coefficients ωn, µn and νn in
(3.6). Using (3.5) and Lemma 4.1 we first rewrite the update polynomials in terms of
Chebyshev polynomials:

un =
1
λ2

(−γn+1tn+2 + (γn + γn+1 − δn+1)tn+1 + (δn+1 + δn − γn)tn − δntn−1),

valid for n ≥ 0; consequently, when n ≥ 2, similar expansions hold for un, un−1 and
un−2. Then, inserting these expansions into (3.6) and replacing the resulting terms
λtj according to (4.1), namely

λtj = − 1
αj

tj+1 +
1 + βj

αj
tj −

βj
αj

tj−1, n− 2 ≤ j ≤ n + 1,
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this yields an identity

1
λ2

n+2∑
j=n−3

ηj,ntj ≡ 0, n ≥ 2;

the coefficients ηj,n in there must equal zero, which gives us a set of linear equations for
the unknown recursion coefficients. In particular, setting ηj,n = 0 for j = n + 2, n + 1
and j = n− 3 we eventually obtain

ωn = −αn+1
γn+1

γn
,

µn =
1
γn

(
δn+1 − γn + γn+1

(
βn+1 +

αn+1

αn

)
+ (δn − γn−1)

ωn
αn

)
,

νn =
ωn

αn−2

δn−1

δn−2
βn−2.

Since σn > σn−1 for n ≥ 2, this implies γn > 0 for n ≥ 2 and δn < 0 for n ≥ 1,
cf. (4.3). Further on, since tn+1 has exact degree n, we have αn 6= 0 for every n ≥ 0.
It follows that ωn and µn are well defined for n ≥ 2 and νn is well defined for n ≥ 3;
recall that we have set ν2 = 0 in (3.6).

It remains to determine x1 and x2 for a correct initialization of (3.7). Obviously,
there is only one polynomial in Π0

1, namely p0 ≡ p1 ≡ 1. Hence,

x1 = x0.

Moreover, from p2 ∈ Π0
2 we conclude

p2(λ) = 1− %λ2,

and we may determine % from 〈p2, λ〉 = 0, cf. Theorem 3.1; elementary integration
yields

% =
〈1, λ〉
〈1, λ3〉 =

2
2c2 + 3d2

.

By virtue of (2.1) we therefore find

x2 = x0 + %A(b−Ax0).

We stress that the computation of x2 is the only part of the entire algorithm where
the right-hand side b of (1.1) is used. The complete algorithm is summarized in
Algorithm 4.1: for the actual implementation we updated the differences τn − τn−1

and σn − σn−1, rather than τn and σn themselves.

5. Near optimal asymptotic behavior. The aim of the following investiga-
tions is to show that (2.10) holds for the polynomials pn of Theorem 3.1. Recall
that

tn(λ) =
Tn(z(λ))
Tn(z(0))

, z(λ) = (c− λ)/d,

where Tn(z) are the usual Chebyshev polynomials of the first kind. Let < denote the
real part of a complex number and i the imaginary unit. Then, for λ ∈ [c− d, c + d]
we have z(λ) ∈ [−1, 1] and thus, by (2.5),

Tn(z(λ)) = cos(n arccos z(λ)) = <w(λ)n(5.1)
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/* let sigd(n) = sig(n)-sig(n-1) taud(n) = tau(n)-tau(n-1) */

alp(1) = 2c/(2c*c-d*d); bet(1) = c*alp(1)-1;

alp(2) = 1/(c-d*d*alp(1)/4); bet(2) = c*alp(2)-1;

alp(3) = 1/(c-d*d*alp(2)/4); bet(3) = c*alp(3)-1;

tau = -2alp(1); taud(2) = tau+1/c;

sigd(2) = 2/c*alp(1); sigd(3) = -2alp(2)tau + bet(2)sigd(2);

taud(3) = -alp(2) + bet(2)taud(2); tau = tau + taud(3);

gam(1) = 0; del(1) = -c;

rho = taud(3)sigd(2) - taud(2)sigd(3);

gam(2) = sigd(2)/rho; del(2) = -sigd(3)/rho;

nu = 0;

/* let xd(n) = x(n)-x(n-1) */

xd(1) = 0; xd(2) = 2/(2c*c+3d*d) A*(b-A*x(0));

x = x0 + xd(2);

for n=3 until ... do

sigd(n+1) = -2alp(n)tau + bet(n)sigd(n);

taud(n+1) = -alp(n) + bet(n)taud(n);

tau = tau + taud(n+1);

rho = taud(n+1)sigd(n) - taud(n)sigd(n+1);

gam(n) = sigd(n)/rho;

del(n) = -sigd(n+1)/rho;

om = -alp(n)gam(n)/gam(n-1);

mu = ( del(n) - gam(n-1) + gam(n)(bet(n)+alp(n)/alp(n-1))

+ (del(n-1)-gam(n-2))om/alp(n-1) )/gam(n-1);

if (n > 3)

nu = om*del(n-2)bet(n-3)/(alp(n-3)del(n-3));

end if;

alp(n+1) = 1/(c-d*d*alp(n)/4);

bet(n+1) = c*alp(n+1)-1;

xd(n) = om A*xd(n-1) + mu xd(n-1) + nu xd(n-2);

x = x + xd(n);

end for;

Algorithm 4.1. Chebyshev-like algorithm for inconsistent problems

with

w(λ) = ei arccos z(λ), |w(λ)| = 1.

Further on, when λ = 0 then z(0) = c/d > 1; from (2.5), with the root convergence
factor κ defined in (2.6), we thus obtain

Tn(z(0)) =
1
2
(
enArcosh(c/d) + e−nArcosh(c/d)

)
∼ 1

2
κ−n, n→∞.(5.2)

Consequently, (5.1) and (5.2) together yield the following asymptotics for the residual
polynomials tn of the Chebyshev method:

tn(λ) ∼ 2κn<w(λ)n, n→∞.(5.3)

For later use, we also mention two useful identities which readily follow from (2.6):

κ−1 + κ = 2
c

d
, κ−1 − κ = 2

√
c2 − d2

d
.(5.4)

We now turn to an analysis of {pn} based on the representation (4.2). First we
state the asymptotic behavior of the corresponding coefficients γn and δn.
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Lemma 5.1. Let γn and δn be defined as in Lemma 4.1. Then we have

γn = n
√

c2 − d2 + O(1),

δn = −n
√

c2 − d2 + O(1),
n→∞.

Proof. Here we only sketch the main steps of the proof because of its many tedious
calculations. Using the explicit representation (2.5) of the Chebyshev polynomials
(and (5.2)), one obtains the asymptotics (2.7) for τn, and similarly,

σn = t′′n(0) =
1

c2 − d2
n2 − c

(c2 − d2)3/2
n + O(nκ2n), n→∞.

Now we can evaluate ρn defined in Lemma 4.1:

ρn =
2

(c2 − d2)3/2
+ O(n2κ2n), n→∞.

Inserting these asymptotics into (4.3) completes the proof. Combining Lemma 5.1,
Lemma 4.1, and (5.3) yields the dominating term in the asymptotic expansion of pn
for λ ∈ [c− d, c + d]:

pn(λ) ∼ 2
λ

√
c2 − d2 <

(wn−1

κ
(κw − 1)2

)
nκn, n→∞.(5.5)

Here, as throughout the following manipulations, w = w(λ), and we have

λ = c− dz(λ) = c− d<w.

Hence, using (5.4) and keeping in mind that |w(λ)| = 1 we obtain

λ =
d

2
(κ−1 + κ− w − w) =

d

2
κ−1

(
κw − 1

)(
κw − 1

)
.

Inserting this into (5.5) and using (5.4) we conclude, as n→∞,

pn(λ) ∼ 4
√

c2 − d2

d
<
(

wn−1 (κw − 1)2

(κw − 1)(κw − 1)

)
nκn

= 2(κ−1 − κ) <
(

wn−1 κw − 1
κw − 1

)
nκn.

Note that (5.5) holds uniformly for λ ∈ [c− d, c + d] and hence

lim
n→∞

1
n

κ−npn(λ) = 2(κ−1 − κ) <
(

wn−1 κw − 1
κw − 1

)
,

uniformly for λ ∈ [c− d, c + d]. Taking absolute values therefore yields

1
n

κ−n‖pn‖ [c−d,c+d] ≤ 2(κ−1 − κ) + o(1), n→∞.

Since Bernstein’s result (2.10) constitutes a lower bound for ‖pn‖ [c−d,c+d] we have
actually shown
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Fig. 5.1. Optimal and near optimal polynomials of degree 6

Theorem 5.2. The polynomials pn of Theorem 3.1 are near-optimal, i.e.,

‖pn‖ [c−d,c+d] ∼ 2(κ−1 − κ)nκn, n→∞.

In Figure 5.1 we show the polynomial p6 (solid line), when [c− d, c + d] = [0.1, 1].
We compare p6 with the near optimal polynomial (dashed line) constructed by Eier-
mann and Starke [8], and with the optimal polynomial p?6 (dashdotted line) which
solves (2.9) and which we computed with a weighted Remez algorithm. The hori-
zontal dotted lines indicate the L∞ norm of p6 over [0.1, 1] which is attained when
λ = 0.1. It can be seen that the polynomials are close together which means that
the asymptotics describe the behavior of the polynomials reasonably well already for
small n.

In Figure 5.2 we compare p6 (solid line) with the polynomials pI
6 (dashed line)

and pII
6 (dashdotted line) from the examples in Section 2. Here the differences are

significant. This can also be established theoretically: both polynomials, pI
n and pII

n ,
for every n ∈ IN, attain their maximum absolute value over [c− d, c + d] at λ = c + d.
This yields

‖pI
n‖ [c−d,c+d] =

(
1− τn−1(c + d)

)
‖tn−1‖ [c−d,c+d] ∼

2
κ

(
c + d

c− d

)1/2

nκn

and

‖pII
n ‖ [c−d,c+d] ∼ n(‖tn‖ [c−d,c+d] + ‖tn−1‖ [c−d,c+d]) ∼ 2(1 + κ−1)nκn.

In both cases, the factors in front of nκn are bigger than 2κ−1 which in turn is larger
than the corresponding factor in Theorem 5.2. Moreover, when d approaches c, i. e.,
when the problem gets more ill conditioned, then the factor in Theorem 5.2 tends to
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Fig. 5.2. Polynomials of degree 6 from the examples in Section 2 and from the new approach

zero, while the factor corresponding to pII
n tends to four and the one corresponding to

pI
n goes to infinity.

6. A numerical example. We tested the numerical properties of the new
method for a simple model problem taken from [15]. In this example we consider
the solution of the Poisson equation with Neumann boundary conditions on the unit
square. On an equidistant grid with mesh size h we discretize the Laplace opera-
tor and the boundary conditions with central differences, cf. Hackbusch [13, Chap-
ter 4.7.2]. The grid points are arranged in the red-black ordering. In this way, we end
up with a non-Hermitian matrix M with ‘Property A’. We have chosen this (some-
what academic) discretization, because we can easily compute the (real) eigenvalues
of the associated matrices. Note that M is singular with a one dimensional null space
spanned by the vector e = [1 · · · 1]T . Even if the continuous problem has a solution,
the discretized problem need not be consistent, cf. [13, Remark 4.7.10]. Recall that
the semiiterative methods described in this paper do not require the matrix to be
Hermitian.

¿From Young’s SOR theory (see for example [23], and Hadjidimos [14] for an
analysis of the singular case) we can determine the optimal SOR parameter but it
is known that the Gauss-Seidel method with appropriate semiiterative acceleration
yields the same convergence rate, cf. Varga [22]. In fact, it can be shown that the
Gauss-Seidel preconditioned coefficient matrix I−L1 has a nonnegative, real spectrum
contained in {0} ∪ [γ2, 1], where γ = (1 − cos(πh))/2 and 1 − γ is the subdominant
eigenvalue of the corresponding Jacobi operator J = I −M/4. As was shown in [14],
the matrix I − L1 has index 1; therefore, the Gauss-Seidel preconditioned problem
satisfies the requirements imposed in Section 1. For our computations we choose h =
1/63 which yields a coefficient matrix of order 4096. Moreover, we have γ = 6.2 ·10−4

and a convergence factor κ = 0.9319 of the semiiterative methods.
In order to compute the relative errors of the approximations, we first construct
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Fig. 6.1. Relative errors for the two methods from Section 2 and for the new algorithm

a consistent problem with known solution x ∈ R(I − L1), namely x = (I − L1)y,
where y is a normally distributed random vector. Then we perturb the right-hand
side (of the preconditioned problem) with a constant multiple of the null space vector
e. In this way we end up with an inconsistent problem with group inverse solution
x. For this particular example our perturbation amounts to one percent in norm, i.e.,
‖bN‖/‖bR‖ = 0.01. The initial vector is always the zero vector. All our computations
have been performed in Matlab 4.0.

Figure 6.1 shows the relative iteration errors of the new method (solid line) and
the two methods introduced in the examples in Section 2, namely the dashed line
corresponds to Example 1 and the dashdotted line corresponds to Example 2. As
expected from the asymptotic analysis and from the graphs of the residual polynomials
in Figure 5.2, the new method performs best, followed by the method from Example 2.
All curves show exactly the same slope which means that only the different factors
in the asymptotics eventually determine the superiority of the new method. The
stagnation of the error after about 430 iterations is due to accumulated round-off
components of the iterates in the null space of M (see [15] for a further discussion of
this topic). We have run the iteration up to this point to demonstrate the stability of
the three algorithms. As can be seen from the graphs in Figure 6.1, the new method
is not only faster but also achieves higher accuracy. In this application this is not
important in view of the discretization error, but it is definitely another advantage of
the new method that may pay off in other applications.
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To appear in: Appl. Math.

[17] T. Manteuffel, The Tchebychev iteration for nonsymmetric linear systems, Numer. Math.
28 (1977), pp. 307–327.

[18] F. Natterer, The Mathematics of Computerized Tomography, John Wiley & Sons, Chichester,
New York, 1986.

[19] W. Niethammer and R. S. Varga, The analysis of k-step iterative methods for linear systems
from summability theory, Numer. Math. 41 (1983), pp. 177–206.

[20] C. C. Paige and M. A. Saunders, Solution of sparse indefinite systems of linear equations,
SIAM J. Numer. Anal. 12 (1975), pp. 617–629.

[21] E. Stiefel, Relaxationsmethoden bester Strategie zur Lösung linearer Gleichungssyteme,
Comm. Math. Helv. 29 (1955), pp. 157–179.

[22] R. S. Varga, A comparison of the succesive overrelaxation method and semi-iterative methods
using Chebyshev polynomials, J. Soc. Indust. Appl. Math. 5 (1957), pp. 39–46.

[23] R. S. Varga, Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1962.
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